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Abstract

We study variants of the stable marriage and college admissions models in which the agents are
allowed to express weak preferences over the set of agents on the other side of the market and the
option of remaining unmatched. For the problems that we address, previous authors have presented
polynomial-time algorithms for computing a “Pareto-stable” matching. In the case of college admissions,
these algorithms require the preferences of the colleges over groups of students to satisfy a technical
condition related to responsiveness. We design new polynomial-time Pareto-stable algorithms for stable
marriage and college admissions that correspond to strategyproof mechanisms. For stable marriage, it is
known that no Pareto-stable mechanism is strategyproof for all of the agents; our algorithm provides a
mechanism that is strategyproof for the agents on one side of the market. For college admissions, it is
known that no Pareto-stable mechanism can be strategyproof for the colleges; our algorithm provides a
mechanism that is strategyproof for the students.

Keywords: stable matching, strategyproofness, Pareto-optimality.

1 Introduction

Gale and Shapley [6] introduced the stable marriage model and its generalization to the college admissions
model. Their work spawned a vast literature on two-sided matching; see Manlove [9] for a recent survey.
The present paper is primarily concerned with variants of the stable marriage and college admissions models
where the agents have weak preferences, i.e., where indifferences are allowed.

In the most basic stable marriage model, we are given an equal number of men and women, where
each man (resp., woman) has complete, strict preferences over the set of women (resp., men); we refer to
this model as SMCS. For SMCS, an outcome is a matching that pairs up all of the men and women into
disjoint man-woman pairs. A man-woman pair (p, q) is said to form a blocking pair for a matching M if
p prefers q to his partner in M and q prefers p to her partner in M . A matching is stable if it does not
have a blocking pair. It is straightforward to prove that any stable matching is also Pareto-optimal. Gale
and Shapley presented the deferred acceptance (DA) algorithm for the SMCS problem and proved that the
man-proposing version of the DA algorithm produces the unique man-optimal (and woman-pessimal) stable
matching. Roth [10] showed that the associated mechanism, which we refer to as the man-proposing DA
mechanism, is strategyproof for the men, i.e., it is a weakly dominant strategy for each man to declare his
true preferences. Unfortunately, the man-proposing DA mechanism is not strategyproof for the women. In
fact, Roth [10] showed that no stable mechanism for SMCS is strategyproof for all of the agents.
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The SMCW model is the generalization of the SMCS model in which each man (resp., woman) has
weak preferences over the set of women (resp., men). When indifferences are allowed, we need to refine
our notion of a blocking pair. A man-woman pair (p, q) is said to form a strongly blocking pair for a
matching M if p prefers q to his partner in M and q prefers p to her partner in M . A matching is weakly
stable if it is individually rational and does not have a strongly blocking pair. Two other natural notions of
stability, namely strong stability and super-stability, have been investigated in the literature (see Manlove [9,
Chapter 3] for a survey of these results). We focus on weak stability because every SMCW instance admits
a weakly stable matching (this follows from the existence of stable matchings for SMCS, coupled with
arbitrary tie-breaking), but not every SMCW instance admits a strongly stable or super-stable matching. It
is straightforward to exhibit SMCW instances (with as few as two men and two women) for which some
weakly stable matching is not Pareto-optimal. Sotomayor [14] argues that Pareto-stability (i.e., Pareto-
optimality plus weak stability) is an appropriate solution concept for SMCW and certain other matching
models with weak preferences, and proves that every SMCW instance admits a Pareto-stable matching.

Erdil and Ergin [5] and Chen and Ghosh [2] present polynomial-time algorithms for computing a Pareto-
stable matching of a given SMCW instance; in fact, these algorithms are applicable to certain more general
models to be discussed shortly. Given the existence of a stable mechanism for SMCS that is strategyproof for
the men (or, symmetrically, for the women), it is natural to ask whether there is a Pareto-stable mechanism
for SMCW that is strategyproof for the men. We cannot hope to find a Pareto-stable mechanism for SMCW
that is strategyproof for all agents, since that would imply a stable mechanism for SMCS that is strategyproof
for all agents. A similar statement holds for the SMIW model, the generalization of the SMCW model in
which the agents are allowed to express incomplete preferences. See Section 4 for a formal definition of the
SMIW model and the associated notions of weak stability and Pareto-stability. Throughout the remainder
of the paper, when we say that a mechanism for a stable marriage model is strategyproof, we mean that
it is strategyproof for the agents on one side of the market; moreover, unless otherwise specified, it is to
be understood that the mechanism is strategyproof for the men. The Pareto-stable algorithms of Erdil and
Ergin, and of Chen and Ghosh, are based on a two-phase approach where the first phase runs the Gale-
Shapley DA algorithm after breaking all ties arbitrarily. In Appendix A of the full version of this paper [3],
we show that this approach does not provide a strategyproof mechanism.

This paper provides the first Pareto-stable mechanism for SMIW (and also SMCW) that is shown to be
strategyproof. We present a nondeterministic algorithm for SMIW that generalizes Gale and Shapley’s DA
algorithm as follows: in each iteration, an arbitrarily chosen unmatched man “proposes” simultaneously to
all of the women in his next-highest tier of preference (i.e., the highest tier to which he has not already
proposed); the women respond to this proposal by solving a certain maximum-weight matching problem
to determine which man becomes unmatched (i.e., the man making the proposal or one of the tentatively
matched men). Our generalization of the DA mechanism admits a polynomial-time implementation.

The college admissions model with weak preferences, which we denote CAW, is a further generalization
of the SMIW model. In the CAW model, students and colleges are being matched rather than men and
women, and each college has a positive integer capacity representing the number of students that it can
accommodate. See Section 5 for a formal definition of the CAW model and the associated notions of weak
stability and Pareto-stability.

A key difference between CAW and SMIW is that in addition to expressing preferences over individual
students, the colleges have preferences over groups of students. This characteristic is shared by the CAS
model, which is the restriction of the CAW model to strict preferences. It is known that no stable mechanism
for CAS is strategyproof for the colleges [11]; the proof makes use of the fact that the colleges do not (in
general) have unit demand. It follows that no Pareto-stable mechanism for CAW is strategyproof for the
colleges. Throughout the remainder of the paper, when we say that a mechanism for a college admissions
model is strategyproof, we mean that it is strategyproof for the students.

Gale and Shapley’s DA algorithm generalizes easily to the CAS model. Roth [11] has shown that the
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student-proposing DA algorithm provides a strategyproof stable mechanism for CAS when the preferences
of the colleges are responsive. When the colleges have responsive preferences, the student-proposing DA
mechanism is also known to be student-optimal for CAS [11].

Erdil and Ergin [5] consider the special case of the CAW model where the following restrictions hold for
all students x and colleges y: x is not indifferent between being assigned to y and being left unassigned; y is
not indifferent between having one of its slots assigned to x and having that slot left unfilled. We remark that
this special case of CAW corresponds to the HRT problem discussed in Manlove [9, Chapter 3].1 For this
special case, Erdil and Ergin present a polynomial-time algorithm for computing a Pareto-stable matching
when the preferences of the colleges satisfy a technical restriction related to responsiveness. We consider the
same class of preferences, which we refer to as minimally responsive; see Section 5 for a formal definition.
The algorithm of Erdil and Ergin does not provide a strategyproof mechanism. Chen and Ghosh [2] build
on the results of Erdil and Ergin by considering the many-to-many generalization of HRT in which the
agents on both sides of the market have capacities (and the agent preferences are minimally responsive).
For this generalization, Chen and Ghosh provide a strongly polynomial-time algorithm. No strategyproof
mechanism (even for the agents on one side of the market) is possible in the many-to-many setting, since
it is a generalization of CAS. We provide the first Pareto-stable mechanism for CAW that is shown to be
strategyproof. As in the work of Erdil-Ergin and Chen-Ghosh, we assume that the preferences of the colleges
are minimally responsive. We can also handle the class of college preferences “induced by additive utility”
that is defined in Section 5.2 in the full version of this paper [3].

In the many-to-many matching setting addressed by Chen and Ghosh [2], a pair of agents (on opposite
sides of the market) can be matched with arbitrary multiplicity, as long as the capacity constraints are
respected. Chen [1] presents a polynomial-time algorithm for the variation of many-to-many matching in
which a pair of agents can only be matched with multiplicity one. Kamiyama [7] addresses the same problem
using a different algorithmic approach. (The algorithms of Chen and Kamiyama are strongly polynomial,
since we can assume without loss of generality that the capacity of any agent is at most the number of agents
on the other side of the market.) Since this variation of the many-to-many setting also generalizes CAS, it
does not admit a strategyproof mechanism, even for the agents on one side of the market.

Erdil and Ergin [4, 5] and Kesten [8] consider a second natural solution concept in addition to Pareto-
stability. In the context of SMIW (or its special case SMCW), this second solution concept seeks a weakly
stable matching M that is “man optimal” in the following sense: for all weakly stable matchings M ′, either
all of the men are indifferent between M and M ′, or at least one man prefers M to M ′. Erdil and Ergin [5]
present a polynomial-time algorithm to compute such a man optimal weakly stable matching for SMIW; in
fact, their algorithm is presented for the generalization of SMIW to CAW. Erdil and Ergin [4] and Kesten [8]
prove that no strategyproof man optimal weakly stable mechanism exists for SMCW. Prior to our work, it
was unclear whether such an impossibility result might hold for strategyproof Pareto-stable mechanisms for
SMCW (or its generalizations to SMIW and CAW).

The assignment game of Shapley and Shubik [13] can be viewed as an auction with multiple distinct
items where each bidder is seeking to acquire at most one item. This class of unit-demand auctions has been
heavily studied in the literature (see, e.g., Roth and Sotomayor [12, Chapter 8]). In Section 2, we define
the notion of a “unit-demand auction with priorities” (UAP) and establish a number of useful properties
of UAPs; these are straightforward generalizations of corresponding properties of unit-demand auctions.

1In the model of Erdil and Ergin, which is stated using worker-firm terminology rather than student-college terminology, a “no
indifference to unemployment/vacancy” assumption makes the aforementioned restrictions explicit. In the HRT model of Manlove,
which is stated using resident-hospital terminology rather than student-college terminology, it is assumed that a set of acceptable
resident-hospital pairs is given, and that each agent specifies weak preferences over the set of agents with whom they form an
acceptable pair. We consider the approach of Erdil-Ergin — where the starting point is the preferences of the individual agents, and
the “acceptability” of a given pair of agents may be deduced from those preferences — to be more natural, but the resulting models
are equivalent.
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Section 3 builds on the UAP notion to define the notion of an “iterated UAP” (IUAP), and establishes a
number of important properties of IUAPs; these results are nontrivial to prove and provide the technical
foundation for our main results. Section 4 presents our first main result, a polynomial-time algorithm for
SMIW that provides a strategyproof Pareto-stable mechanism. Section 5 presents our second main result, a
polynomial-time algorithm for CAW that provides a strategyproof Pareto-stable mechanism assuming that
the preferences of the colleges are minimally responsive.

Due to space limitations, some of the proofs are omitted from this paper. See the full version [3] for all
of the proof details.

2 Unit-Demand Auctions with Priorities

In this section, we first formally define the notion of a unit-demand auction with priorities (UAP). Then, we
describe an associated matroid for a given UAP and we use this matroid to define the notion of a “greedy
MWM”. Finally, we introduce a key definition that is helpful for establishing our strategyproofness results.
We start with some useful definitions.

A (unit-demand) bid β for a set of items V is a subset of V × R such that no two pairs in β share the
same first component. (So β may be viewed as a partial function from V to R.)

A bidder u for a set of items V is a triple (α, β, z) where α is an integer ID, β is a bid for V , and z
is a real priority. For any bidder u = (α, β, z), we define id(u) as α, bid(u) as β, priority(u) as z, and
items(u) as the union, over all (v, x) in β, of {v}.

A unit-demand auction with priorities (UAP) is a pair A = (U, V ) satisfying the following conditions:
V is a set of items; U is a set of bidders for V ; each bidder in U has a distinct ID.

A UAP A = (U, V ) may be viewed as an edge-weighted bipartite graph, where the set of edges incident
on bidder u correspond to bid(u): for each pair (v, x) in bid(u), there is an edge (u, v) of weight x. We
refer to a matching (resp., maximum-weight matching (MWM), maximum-cardinality MWM (MCMWM))
in the associated edge-weighted bipartite graph as a matching (resp., MWM, MCMWM) of A. For any edge
e = (u, v) in a given UAP, the associated weight is denoted w(e) or w(u, v). For any set of edges E, we
define w(E) as

∑
e∈E w(e). For any UAP A, we let w(A) denote the weight of an MWM of A.

Lemma 1. Let A = (U, V ) be a UAP, and let I denote the set of all subsets U ′ of U such that there exists
an MWM of A that matches every bidder in U ′. Then (U, I) is a matroid.

For any UAP A, we define matroid(A) as the matroid of Lemma 1.
For any UAP A = (U, V ) and any independent set U ′ of matroid(A), we define the priority of U ′ as

the sum, over all bidders u in U ′, of priority(u). For any UAP A, the matroid greedy algorithm can be used
to compute a maximum-priority maximal independent set of matroid(A).

For any matching M of a UAP A = (U, V ), we define matched(M) as the set of all bidders in U that
are matched in M . We say that an MWM M of a UAP A is greedy if matched(M) is a maximum-priority
maximal independent set of matroid(A). For any UAP A, we define the predicate unique(A) to hold if
matched(M) = matched(M ′) for all greedy MWMs M and M ′ of A.

For any matching M of a UAP, we define the priority of M , denoted priority(M), as the sum, over all
bidders u in matched(M), of priority(u). Thus an MWM is greedy if and only if it is a maximum-priority
MCMWM.

Lemma 2. All greedy MWMs of a given UAP have the same distribution of priorities.

For any UAP A and any real priority z, we define greedy(A, z) as the (uniquely defined, by Lemma 2)
number of matched bidders with priority z in any greedy MWM of A.
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Now, we define the notion of a “threshold” of an item in a UAP. This lays the groundwork for a corre-
sponding IUAP definition in Section 3.2. Item thresholds play an important role in our strategyproofness
results. We start with some useful definitions.

Let A = (U, V ) be a UAP and let u be a bidder such that id(u) is not equal to the ID of any bidder in
U . Then we define A + u as the UAP (U + u, V ). For any UAPs A = (U, V ) and A′ = (U ′, V ′), we say
that A′ extends A if U ⊆ U ′ and V = V ′.

Lemma 3. Let A = (U, V ) be a UAP, let u be a bidder in U that is not matched in any greedy MWM of A,
and let A′ = (U ′, V ) be a UAP that extends A. Then u is not matched in any greedy MWM of A′.

Lemma 4. Let A = (U, V ) be a UAP and let v be an item in V . Let U ′ be the set of bidders u such that
A+u is a UAP and bid(u) is of the form {(v, x)}. Then there is a unique pair of reals (x∗, z∗) such that for
any bidder u in U ′, the following conditions hold, whereA′ denotesA+u, x denotes w(u, v), and z denotes
priority(u): (1) if (x, z) > (x∗, z∗) then u is matched in every greedy MWM of A′; (2) if (x, z) < (x∗, z∗)
then u is not matched in any greedy MWM of A′; (3) if (x, z) = (x∗, z∗) then u is matched in some but not
all greedy MWMs of A′.2

For any UAP A = (U, V ) and any item v in V , we define the unique pair (x∗, z∗) of Lemma 4 as
threshold(A, v).

3 Iterated Unit-Demand Auctions with Priorities

In this section, we formally define the notion of an iterated unit-demand auction with priorities (IUAP).
An IUAP allows the bidders, called “multibidders” in this context, to have a sequence of unit-demand bids
instead of a single unit-demand bid. In Section 3.1, we define a mapping from an IUAP to a UAP by
describing an algorithm that generalizes the DA algorithm, and we establish Lemma 8 that is useful for
analyzing the matching produced by Algorithm 2 of Section 4. Lemma 8 is used to establish weak stability
(Lemmas 11, 12, and 13) and Pareto-optimality (Lemma 14). In Section 3.2, we define the threshold of an
item in an IUAP and we establish Lemma 10, which plays a key role in establishing our strategyproofness
results. We start with some useful definitions.

A multibidder t for a set of items V is a pair (σ, z) where z is a real priority and σ is a sequence of bidders
for V such that all the bidders in σ have distinct IDs and a common priority z. We define priority(t) as z.
For any integer i such that 1 ≤ i ≤ |σ|, we define bidder(t, i) as the bidder σ(i). For any integer i such that
0 ≤ i ≤ |σ|, we define bidders(t, i) as {bidder(t, j) | 1 ≤ j ≤ i}. We define bidders(t) as bidders(t, |σ|).

An iterated UAP (IUAP) is a pair B = (T, V ) where V is a set of items and T is a set of multibidders
for V . In addition, for any distinct multibidders t and t′ in T , the following conditions hold: priority(t) 6=
priority(t′); if u belongs to bidders(t) and u′ belongs to bidders(t′), then id(u) 6= id(u′). For any IUAP
B = (T, V ), we define bidders(B) as the union, over all t in T , of bidders(t).

3.1 Mapping an IUAP to a UAP

Having defined the notion of an IUAP, we now describe an algorithm TOUAP that maps a given IUAP to a
UAP. Algorithm TOUAP generalizes the DA algorithm. In each iteration of the DA algorithm, an arbitrary
single man is chosen, and this man reveals his next choice. In each iteration of TOUAP, an arbitrary single
multibidder is chosen, and this multibidder reveals its next bid. We prove in Lemma 7 that, like the DA
algorithm, algorithm TOUAP is confluent: the output does not depend on the nondeterministic choices made
during an execution. We conclude this section by establishing Lemma 8, which is useful for analyzing the

2Throughout this paper, comparisons of pairs are to be performed lexicographically.
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matching produced by Algorithm 2 in Section 4. Lemma 8 is used to establish weak stability (Lemmas 11,
12, and 13) and Pareto-optimality (Lemma 14). We start with some useful definitions.

Let A be a UAP (U, V ) and let B be an IUAP (T, V ). The predicate prefix(A,B) is said to hold if
U ⊆ bidders(B) and for any multibidder t in T , U ∩ bidders(t) = bidders(t, i) for some i.

A configuration C is a pair (A,B) where A is a UAP, B is an IUAP, and prefix(A,B) holds.
Let C = (A,B) be a configuration, where A = (U, V ) and B = (T, V ), and let u be a bidder in U .

Then we define multibidder(C, u) as the unique multibidder t in T such that u belongs to bidders(t).
Let C = (A,B) be a configuration where A = (U, V ) and B = (T, V ). For any t in T , we define

bidders(C, t) as {u ∈ U | multibidder(C, u) = t}.
Let C = (A,B) be a configuration where B = (T, V ). We define ready(C) as the set of all bidders

u in bidders(B) such that greedy(A, priority(u)) = 0 and u = bidder(t, |bidders(C, t)| + 1) where
t = multibidder(C, u).

Algorithm 1 TOUAP(B)
Input: An IUAP B = (T, V )

1: A← (∅, V )
2: C ← (A,B)
3: while ready(C) is nonempty do
4: A← A+ an arbitrary bidder in ready(C)
5: C ← (A,B)
6: end while
7: return A

Our algorithm for mapping an IUAP to a UAP is Algorithm 1. The input is an IUAP B and the output
is a UAP A such that prefix(A,B) holds. The algorithm starts with the UAP consisting of all the items in
V but no bidders. At this point, no bidder of any multibidder is “revealed”. Then, the algorithm iteratively
and chooses an arbitrary “ready” bidder and “reveals” it by adding it to the UAP that is maintained in the
program variable A. A bidder u associated with some multibidder t = (σ, z) is ready if u is not revealed
and for each bidder u′ that precedes u in σ, u′ is revealed and is not matched in any greedy MWM of A. It
is easy to verify that the predicate prefix(A,B) is an invariant of the algorithm loop: if a bidder u belonging
to a multibidder t is to be revealed at an iteration, and U ∩ bidders(t) = bidders(t, i) for some integer i
at the beginning of this iteration, then U ∩ bidders(t) = bidders(t, i + 1) after revealing u, where (U, V )
is the UAP that is maintained by the program variable A at the beginning of the iteration. No bidder can
be revealed more than once since a bidder cannot be ready after it has been revealed; it follows that the
algorithm terminates. We now argue that the output of the algorithm is uniquely determined (Lemma 7),
even though the bidder that is revealed in each iteration is chosen nondeterministically.

For any configuration C = (A,B), we define the predicate tail(C) to hold if for any bidder u that is
matched in some greedy MWM ofA, we have u = bidder(t, |bidders(C, t)|) where t = multibidder(C, u).

Lemma 5. The predicate tail(C) is an invariant of the Algorithm 1 loop.

Lemma 6. Let C = (A,B) be a configuration such that tail(C) holds. Then unique(A) holds.

Lemma 7. Let B = (T, V ) be an IUAP. Then all executions of Algorithm 1 on input B produce the same
output.

Proof. Suppose not, and let X1 and X2 denote two executions of Algorithm 1 on input B that produce
distinct output UAPs A1 = (U1, V ) and A2 = (U2, V ). Without loss of generality, assume that |U1| ≥ |U2|.
Then there is a first iteration of execution X1 in which the bidder added to A in line 4 belongs to U1 \ U2;
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let u′ denote this bidder. Let C ′ = (A′, B) where A′ = (U ′, V ) denote the configuration in program
variable C at the start of this iteration, and let t′ denote multibidder(C ′, u′). Let i be the integer such that
u′ = bidder(t′, i). We know that i > 1 because it is easy to see that U2 contains bidder(t′, 1). Let u′′

denote bidder(t′, i − 1). Since u′ belongs to ready(C ′), Lemmas 5 and 6 imply that u′′ is not matched in
any greedy MWM ofA′. Since U ′ is contained in U2, Lemma 3 implies that u′′ is not matched in any greedy
MWM of A2. Let C2 = (A2, B) denote the final configuration of execution X2; thus ready(C2) is empty
and |bidders(C2, t

′)| = i− 1. By Lemma 5, we conclude that greedy(A2, priority(t′)) = 0, and hence that
u′′ is contained in ready(C2), a contradiction.

For any IUAP B, we define uap(B) as the unique (by Lemma 7) UAP returned by any execution of
Algorithm 1 on input B.

We can use the modified incremental Hungarian step of [3, Section 2.3] in each iteration of the loop of
Algorithm 1 to maintain UAP A, and a greedy MWM of A, as follows: we maintain dual variables (a price
for each item) and a residual graph; the initial greedy MWM is the empty matching; when a bidder u is
added to A at line 4, we perform an incremental Hungarian step to process u to update the greedy MWM,
the prices, and the residual graph. Since we maintain a greedy MWM of A at each iteration of the loop, it is
easy to see that identifying a bidder in ready(C) (or determining that this set is empty) takes O(|V |) time.
Thus the whole algorithm can be implemented in O(|bidders(B)| · |V |2) time.

We now present a lemma that is used in Section 4 to establish weak stability (Lemmas 11, 12, and 13)
and Pareto-optimality (Lemma 14).

Lemma 8. Let B = (T, V ) be an IUAP, let (σ, z) be a multibidder that belongs to T , let uap(B) be (U, V ),
and let M be a greedy MWM of the UAP (U, V ). Then the following claims hold: (1) if σ(k) is matched in
M for some k, then σ(k′) ∈ U if and only if 1 ≤ k′ ≤ k; (2) if σ(k) is not matched in M for any k, then
σ(k) ∈ U for 1 ≤ k ≤ |σ|.

3.2 Threshold of an Item

In this section, we define the threshold of an item in an IUAP and we establish Lemma 10, which plays a
key role in establishing our strategyproofness results. We start with some useful definitions.

For any IUAP B, Lemmas 5 and 6 imply that unique(uap(B)) holds, and thus that every greedy MWM
of uap(B) matches the same set of bidders. We define this set of matched bidders as winners(B). For any
IUAP B, we define losers(B) as U \ winners(B) where (U, V ) is uap(B).

Let B = (T, V ) be an IUAP and let u = (α, β, z) be a bidder for V . Then we define the IUAP B + u
as follows: if T contains a multibidder t of the form (σ, z) for some sequence of bidders σ, then we define
B+ u as (T − t+ t′, V ) where t′ = (σ′, z) and σ′ is the sequence of bidders obtained by appending u to σ;
otherwise, we define B + u as (T + t, V ) where t = (〈u〉, z).

Lemma 9. Let B = (T, V ) be an IUAP and let v be an item in V . For i ∈ {1, 2}, let Bi = B + ui be
an IUAP where ui = (αi, {(v, xi)} , zi). Let A1 = (U1, V ) denote uap(B1) and let A2 = (U2, V ) denote
uap(B2). Assume that α1 6= α2, z1 6= z2, and u1 belongs to winners(B1). Then the following claims hold:
if u2 belongs to winners(B2) then U1 − u1 = U2 − u2; if u2 belongs to losers(B2) then U1 − u1 contains
U2 − u2.

We are now ready to define the threshold of an item in an IUAP, and to state Lemma 10. In Section 4,
Lemma 10 plays an important role in establishing that our SMIW mechanism is strategyproof (Lemma 16).

Let B = (T, V ) be an IUAP and let v be an item in V . By Lemma 9, there is a unique subset U of
bidders(B) such that the following condition holds: for any IUAP B′ = B + u where u is of the form
(α, {(v, x)} , z) and u belongs to winners(B′), uap(B′) is equal to (U +u, V ). We define uap(B, v) as the
UAP (U, V ), and we define threshold(B, v) as threshold(uap(B, v), v).
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Lemma 10. Let B = (T, V ) be an IUAP, let t = (σ, z) be a multibidder that belongs to T , and let B′

denote the IUAP (T − t, V ). Suppose that (σ(k), v) is matched in some greedy MWM of uap(B) for some
k. Then

(w(σ(k), v), z) ≥ threshold(B′, v). (1)

Furthermore, for each k′ and v′ such that 1 ≤ k′ < k and v′ belongs to items(σ(k′)), we have

(w(σ(k′), v′), z) < threshold(B′, v′). (2)

4 Stable Marriage with Indifferences

The stable marriage model with incomplete and weak preferences (SMIW) involves a set P of men and
a set Q of women. The preference relation of each man p in P is specified as a binary relation �p over
Q ∪ {∅} that satisfies transitivity and totality, where ∅ denotes being unmatched. Similarly, the preference
relation of each woman q inQ is specified as a binary relation�q over P ∪{∅} that satisfies transitivity and
totality, where ∅ denotes being unmatched. To allow indifferences, the preference relations are not required
to satisfy antisymmetry. We will use �p and �q to denote the asymmetric part of �p and �q respectively.

A matching is a function µ from P to Q∪ {∅} such that for any woman q in Q, there exists at most one
man p in P for which µ(p) = q. Given a matching µ and a woman q in Q, we denote

µ(q) =
{
p if µ(p) = q

∅ if there is no man p in P such that µ(p) = q

A matching µ is individually rational if for any man p in P and woman q in Q such that µ(p) = q, we
have q �p ∅ and p �q ∅. A pair (p, q′) in P ×Q is said to form a strongly blocking pair for a matching µ
if q′ �p µ(p) and p �q′ µ(q′). A matching is weakly stable if it is individually rational and does not admit
a strongly blocking pair.

For any matching µ and µ′, we say that the binary relation µ � µ′ holds if for every man p in P and
woman q in Q, we have µ(p) �p µ

′(p) and µ(q) �q µ
′(q). We let � denote the asymmetric part of �.

We say that a matching µ Pareto-dominates another matching µ′ if µ � µ′. We say that a matching is
Pareto-optimal if it is not Pareto-dominated by any other matching. A matching is Pareto-stable if it is
Pareto-optimal and weakly stable.

A mechanism is an algorithm that, given (P,Q, (�p)p∈P , (�q)q∈Q), produces a matching µ. A mecha-
nism is said to be strategyproof (for the men) if for any man p in P expressing preference �′p instead of his
true preference �p, we have µ(p) �p µ

′(p), where µ and µ′ are the matchings produced by the mechanism
given �p and �′p, respectively, when all other inputs are fixed.

By introducing extra men or women who prefer being unmatched to being matched with any potential
partner, we may assume without loss of generality that the number of men is equal to the number of women.
So, P = {p1, . . . , pn} and Q = {q1, . . . , qn}.

4.1 Algorithm

The computation of a matching for SMIW is shown in Algorithm 2. We construct an item for each woman
in line 4, and a multibidder for each man in line 13 by examining the tiers of preferences of the men and the
utilities of the women. Together with dummy items constructed in line 8, this forms an IUAP, from which
we obtain a UAP and a greedy MWM M0. Using Lemma 8, we argue that for any man pi, exactly one of
the bidders associated with pi is matched in M0; see the proof of Lemma 11. Finally, in line 18, we use M0
to determine the match of a man pi as follows, where u denotes the unique bidder associated with pi that is
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Algorithm 2
1: Let p0 denote ∅.
2: for all 1 ≤ j ≤ n do
3: Convert the preference relation �qj of woman qj into utility function ψqj : P ∪ {∅} → R that

satisfies the followings: ψqj (∅) = 0; for any i and i′ in {0, 1, . . . , n}, we have pi �qj pi′ if and only if
ψqj (pi) ≥ ψqj (pi′). This utility assignment should not depend on the preferences of the men.

4: Construct an item vj corresponding to woman qj .
5: end for
6: for all n < j ≤ 2n do
7: Let qj denote ∅.
8: Construct a dummy item vj corresponding to qj .
9: end for

10: for all 1 ≤ i ≤ n do
11: Partition the set {1, . . . , n}∪ {n+ i} of woman indices into tiers τi(1), . . . , τi(Ki) according to the

preference relation of man pi, such that for any j in τi(k) and j′ in τi(k′), we have qj �pi qj′ if and
only if k ≤ k′.

12: For j in {1, . . . , n} ∪ {n+ i}, denote tier number κi(qj) as the unique k such that j in τi(k).
13: Construct a multibidder ti = (σi, zi) with priority zi = i corresponding to man pi. The multibidder

ti has Ki bidders. For each bidder σi(k) we define items(σi(k)) as {vj | j ∈ τi(k)} and w(σi(k), qj)
as ψqj (pi), where ψqn+i(pi) is defined to be 0.

14: end for
15: (T, V ) = ({ti | 1 ≤ i ≤ n}, {vj | 1 ≤ j ≤ 2n}).
16: (U, V ) = uap(T, V ).
17: Compute a greedy MWM M0 of UAP (U, V ) as described in [3, Section 2.3].
18: Output matching µ such that for all 1 ≤ i ≤ n and 1 ≤ j ≤ 2n, we have µ(pi) = qj if and only if

σi(k) is matched to item vj in M0 for some k.

matched in M0: if u is matched in M0 to the item corresponding to a woman qj , then we match pi to qj ;
otherwise, u is matched to a dummy item in M0, and we leave pi unmatched.

In Lemma 12, we prove individually rationality by arguing that the dummy items ensure that no man or
woman is matched to an unacceptable partner. In Lemma 13, we prove weak stability using the properties
of a greedy MWM. In Lemmas 14 and 15, we prove Pareto-optimality by showing that any matching that
Pareto-dominates the output matching induces another MWM that contradicts the greediness of the MWM
produced by the algorithm. In Lemma 16, we establish two properties of IUAP thresholds that are used to
show strategyproofness in Theorem 1.

Lemma 11. Algorithm 2 produces a valid matching.

Lemma 12. Algorithm 2 produces an individually rational matching.

Proof. We have shown in Lemma 11 that µ is a valid matching. Consider man pi and woman qj such that
µ(pi) = qj , where i and j belong to {1, . . . , n}. Let k denote κi(qj) and let k′ denote κi(qn+i). It suffices
to show that k ≤ k′ and ψqj (pi) ≥ 0.

Since µ(pi) = qj , bidder σi(k) is matched to item vj in M0. Since M0 is an MWM, we have ψqj (pi) =
w(σi(k), vj) ≥ 0.

It remains to show that k ≤ k′. For the sake of contradiction, suppose k > k′. Since bidder σi(k) is
matched to item vj in M0, by Lemma 8 the set U contains bidder σi(k′). Since bidder σi(k′) is not matched
in M0, the dummy item vn+i is also not matched in M0. Hence, adding the pair (σi(k′), vn+i) to M0 gives a
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matching in (U, V ) with the same weight and larger cardinality. This contradicts the fact thatM0 is a greedy
MWM of (U, V ).

Lemma 13. Algorithm 2 produces a weakly stable matching.

Proof. By Lemma 12, it remains only to show that µ does not admit a strongly blocking pair. Consider
man pi and woman qj′ , where i and j′ belong to {1, . . . , n}. We want to show that (pi, qj′) does not form a
strongly blocking pair. Let qj denote µ(pi) and let pi′ denote µ(qj′), where j belongs to {1, . . . , n}∪{n+i}
and i′ belongs to {0, 1, . . . , n}. It suffices to show that either κi(qj) ≤ κi(qj′) or ψqj′ (pi′) ≥ ψqj′ (pi). For
the sake of contradiction, suppose κi(qj) > κi(qj′) and ψqj′ (pi′) < ψqj′ (pi). Let k denote κi(qj) and let k′

denote κi(qj′). Since σi(k) is matched in M0 and k′ < k, Lemma 8 implies that the set U contains bidder
σi(k′) and that σi(k′) is unmatched in M0. We consider two cases.

Case 1: i′ = 0. Then ψqj′ (pi) > ψqj′ (pi′) = 0. Since neither bidder σi(k′) nor item vj′ is matched in
M0, adding the pair (σi(k′), vj′) to M0 gives a matching of (U, V ) with a larger weight. This contradicts
the fact that M0 is an MWM of (U, V ).

Case 2: i′ 6= 0. Since pi′ = µ(qj′), there exists k′′ such that bidder σi′(k′′) is matched to vj′ in M0.
Since σi(k′) is unmatched in M0, the matching M0 − (σi′(k′′), vj′) + (σi(k′), vj′) is a matching of (U, V )
with weight w(M0)− ψqj′ (pi′) + ψqj′ (pi), which is greater than w(M0). This contradicts the fact that M0
is an MWM of (U, V ).

Lemma 14. Let µ be the matching produced by Algorithm 2 and let µ′ be a matching such that µ′(p) �p

µ(p) for every man p in P and
∑
q∈Q

ψq(µ′(q)) ≥
∑
q∈Q

ψq(µ(q)). Then µ(p) �p µ
′(p) for every man p in P

and
∑
q∈Q

ψq(µ′(q)) =
∑
q∈Q

ψq(µ(q)).

Proof. For any i such that 1 ≤ i ≤ n, let ki denote κi(µ(pi)) and let k′i denote κi(µ′(pi)).
Below we use µ′ to construct an MWM M ′0 of (U, V ). We give the construction of M ′0 first, and then

argue that M ′0 is an MWM of (U, V ). Let M ′0 denote the set of bidder-item pairs (σi(k′i), vj) such that
µ′(pi) = qj where i in {1, . . . , n} and j in {1, . . . , n} ∪ {n + i}. It is easy to see that M ′0 is a valid
matching. Notice that for any 1 ≤ i ≤ n, since µ′(pi) �pi µ(pi), we have k′i ≤ ki. So, by Lemma 8, the set
U contains all bidders σi(k′i). Hence, M ′0 is a matching of (U, V ). Furthermore, it is easy to see that

w(M ′0) =
∑

1≤j≤n

ψqj (µ′(qj)) ≥
∑

1≤j≤n

ψqj (µ(qj)) = w(M0).

Thus M ′0 is an MWM of (U, V ), and we have
∑

1≤j≤n

ψqj (µ′(qj)) =
∑

1≤j≤n

ψqj (µ(qj)).

Furthermore, M ′0 is an MCMWM of (U, V ) because both M ′0 and M0 have cardinality equal to n. Also,
M ′0 is a greedy MWM of (U, V ), because both M ′0 and M0 have priorities equal to

∑
1≤i≤n zi. Hence, for

each 1 ≤ i ≤ n, we have ki ≤ k′i by Lemma 8. Thus, µ(pi) �pi µ
′(pi) for all 1 ≤ i ≤ n.

Lemma 15. Let µ be the matching produced by Algorithm 2 and µ′ be a matching such that µ′ � µ. Then,
µ � µ′.

Proof. Since µ′ � µ, we have µ′(pi) �pi µ(pi) and ψqj (µ′(qj)) ≥ ψqj (µ(qj)) for every i and j in
{1, . . . , n}. So, by Lemma 14, we have µ(pi) �pi µ

′(pi) for every i in {1, . . . , n} and∑
1≤j≤n

ψqj (µ′(qj)) =
∑

1≤j≤n

ψqj (µ(qj)).

Therefore, ψqj (µ′(qj)) = ψqj (µ(qj)) for every j in {1, . . . , n}. This shows that µ � µ′.
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Lemma 16. Consider Algorithm 2. Suppose µ(pi) = qj , where 1 ≤ i ≤ n and j belongs to {1, . . . , n} ∪
{n+ i}. Then, we have

(ψqj (pi), i) ≥ threshold((T − ti, V ), vj). (3)

Furthermore, for all j′ in {1, . . . , n} ∪ {n+ i} such that κi(qj′) < κi(qj), we have

(ψqj′ (pi), i) < threshold((T − ti, V ), vj′). (4)

Proof. Let k denote κi(qj). Since µ(pi) = qj , we know that bidder σi(k) is matched to item vj in M0. So,
inequality (1) of Lemma 10 implies inequality (3), because w(σi(k), vj) = ψqj (pi) and zi = i.

Now, suppose κi(qj′) < κi(qj). Let k′ denote κi(qj′). Since k′ < k, inequality (2) of Lemma 10 implies
inequality (4), because w(σi(k′), vj′) = ψqj′ (pi) and zi = i.

Theorem 1. Algorithm 2 is a strategyproof Pareto-stable mechanism for the stable marriage problem with
incomplete and weak preferences (for any fixed choice of utility assignment).

Proof. We have shown in Lemma 13 that the algorithm produces a weakly stable matching. Moreover,
Lemma 15 shows that the weakly stable matching produced is not Pareto-dominated by any other match-
ing. Hence, the algorithm produces a Pareto-stable matching. It remains to show that the algorithm is a
strategyproof mechanism.

Suppose man pi expresses �′pi
instead of his true preference relation �pi , where 1 ≤ i ≤ n. Let µ and

µ′ be the resulting matchings given �pi and �′pi
, respectively. Let qj denote µ(pi) and let qj′ denote µ′(pi),

where j and j′ belong to {1, . . . , n} ∪ {n + i}. Let k denote κi(qj) and let k′ denote κi(qj′), where κi(·)
denotes the tier number with respect to �pi . It suffices to show that k ≤ k′. For the sake of contradiction,
suppose k > k′.

Let (T, V ) be the IUAP, let ti be the multibidder corresponding to man pi, and let vj′ be the item corre-
sponding to woman qj′ constructed in the algorithm given input �pi . Since µ(pi) = qj , by inequality (4) of
Lemma 16, we have

(ψqj′ (pi), i) < threshold((T − ti, V ), vj′).

Now, consider the behavior of the algorithm when preference relation �pi is replaced with �′pi
. Let

(T ′, V ′) be the IUAP, let t′i be the multibidder corresponding to man pi, and let v′j′ be the item correspond-
ing to woman qj′ constructed in the algorithm given input �′pi

. Since µ′(pi) = qj′ , by inequality (3) of
Lemma 16, we have

(ψqj′ (pi), i) ≥ threshold((T ′ − t′i, V ′), v′j′).

Notice that in Algorithm 2, the only part of the IUAP instance that depends on the preferences of man pi

is the multibidder corresponding to man pi. In particular, we have T − ti = T ′ − t′i, V = V ′, and vj′ = v′j′ .
Hence, we get

(ψqj′ (pi), i) < threshold((T − ti, V ), vj′) = threshold((T ′ − t′i, V ′), v′j′) ≤ (ψqj′ (pi), i),

which is a contradiction.

5 College Admissions with Indifferences

Our strategyproof mechanism can be generalized to the college admissions model with weak preferences. In
this model, students and colleges play the roles of men and women respectively, and colleges are allowed to
be matched with multiple students up to their capacities. Colleges’ preferences over groups of students can
be obtained from preferences over individual students using minimal responsiveness. The formal definitions
are given in [3, Section 5].
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We can apply our mechanism for SMIW by transforming each student to a man and each slot of a college
to a woman in a standard fashion. In [3, Section 5.1], we show that this yields a strategyproof Pareto-stable
mechanism when colleges’ group preferences are minimally responsive. In [3, Section 5.2], we introduce
the notion of group preferences induced by additive utilities, for which our results also hold.

Our algorithm admits an O(n4)-time implementation, where n is the sum of the number of students and
the total capacities of all the colleges, because the reduction from CAW to IUAP takes O(n2) time, and
lines 16 and 17 of Algorithm 2 can be implemented in O(n4) time using the version of the incremental
Hungarian method discussed in Section 3.1.

References

[1] N. Chen. On computing Pareto stable assignments. In Proceedings of the 29th International Sympo-
sium on Theoretical Aspects of Computer Science, pages 384–395, March 2012.

[2] N. Chen and A. Ghosh. Algorithms for Pareto stable assignment. In Proceedings of the Third Interna-
tional Workshop on Computational Social Choice, pages 343–354, September 2010.
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