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Abstract

We study the problem of finding large weakly stable match-

ings when preference lists are incomplete and contain one-

sided ties. Computing maximum weakly stable matchings

is known to be NP-hard. We present a polynomial-time

algorithm that achieves an improved approximation ratio

of 1 + 1/e. Like a number of existing approximation algo-

rithms for this problem, our algorithm is based on a proposal

process in which numerical priorities are adjusted according

to the solution of a linear program, and are used for tie-

breaking purposes. Our main idea is to use an infinitesimally

small step size for incrementing the priorities. Our analysis

involves solving an infinite-dimensional factor-revealing lin-

ear program. We also show that the ratio 1 + 1/e is an up-

per bound for the integrality gap, which matches the known

lower bound.

1 Introduction

The stable matching problem, introduced by Gale and
Shapley [5], involves two disjoint sets of agents, typically
called men and women in the literature. Each agent has
ordinal preferences over the agents of the opposite sex.
The objective is to find a set of disjoint man-woman
pairs, called a matching, such that no man and woman
prefer each other to their partners. Matchings satisfying
this property are said to be stable and can be computed
efficiently using the Gale-Shapley algorithm. Stable
matchings have applications such as centralized schemes
for recruiting medical residents to hospitals [25].

Ties and incomplete lists arise naturally in real-
world problems. The preference list of an agent is said
to contain a tie when the agent is indifferent between
two or more agents of the opposite sex. The preference
list of an agent is said to be incomplete when one or
more agents of the opposite sex are unacceptable to
the agent. For such variants, the notion of stability
can be generalized to weak stability, strong stability,
or super-stability [10]. In this paper, we focus on
weak stability since weakly stable matchings, unlike
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strongly stable or super-stable matchings, always exist.
A weakly stable matching can be obtained by breaking
all of the ties arbitrarily and then invoking the Gale-
Shapley algorithm. When either ties or incomplete lists
are absent, all weakly stable matchings have the same
size [6, 25]. However, when both ties and incomplete
lists are present, weakly stable matchings can vary in
size.

The problem of finding large weakly stable match-
ings with ties and incomplete lists has been intensively
studied. Iwama et al. [12] were the first to prove that
finding a maximum weakly stable matching with ties
and incomplete lists is NP-hard. Results by Yanagi-
sawa [28] imply that getting an approximation ratio of
33
29 − ε (≈ 1.1379) is NP-hard, and getting a ratio of
4
3 − ε (≈ 1.3333) is UG-hard. On the positive side, it is
straightforward to see that any weakly stable matching
is a 2-approximate solution [20]. Using a local search
approach, Iwama et al. [13] gave an algorithm with an
approximation ratio of 15

8 (= 1.875). Király [16] im-
proved the approximation ratio to 5

3 (≈ 1.6667) by in-
troducing the idea of promoting unmatched agents to
higher priorities for tie-breaking. The current best ap-
proximation ratio for two-sided ties and incomplete lists
is 3

2 (= 1.5), which is achieved by the polynomial-time
algorithm of McDermid [21], and the linear-time algo-
rithms of Paluch [23] and Király [17]. This ratio coin-
cides with a lower bound for the integrality gap of an
associated linear programming (LP) formulation [14],
indicating a potential barrier to further improvements.

Ties often appear only on one side of the market,
especially in settings where institutions need to evaluate
a large number of candidates. For example, in the Scot-
tish Foundation Allocation Scheme, residents have strict
preferences, while the preferences of the hospitals may
contain ties [11]. With one-sided ties and incomplete
lists, the problem of finding a maximum weakly stable
matching remains NP-hard [20]. Results by Halldórsson
et al. [7] imply that getting an approximation ratio of
21
19 − ε (≈ 1.105) is NP-hard, and achieving a ratio of
5
4 − ε (≈ 1.25) is UG-hard. Király [16], who showed an
approximation ratio of 3

2 (= 1.5) for an algorithm based
on the idea of promotion, conjectured that a ( 3

2 − ε)-
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approximation is UG-hard even for one-sided ties. How-
ever, Iwama et al. [14] later established an approxima-
tion ratio of 25

17 (≈ 1.4706) using an LP-based approach.
Dean and Jalasutram [3] improved on this approach to
obtain an approximation ratio of 19

13 (≈ 1.4615). Huang
and Kavitha [9] established an approximation ratio of
22
15 (≈ 1.4667) using an algorithm based on rounding
half-integral stable matchings. Subsequently, a tight
analysis [2, 24] of their algorithm established an ap-
proximation ratio of 13

9 (≈ 1.4444). It is known that
1 + 1/e (≈ 1.3679) is a lower bound for the integrality
gap of the LP formulation associated with one-sided ties
and incomplete lists [14]. In a paper by Huang et al. [8],
the integrality gap is claimed to be at least 3

2 , but their
proof contains an error.1

Our Techniques and Contributions. In this paper,
we focus on the maximum stable matching problem with
one-sided ties and incomplete lists. Our main result is
a polynomial-time algorithm that achieves an improved
approximation ratio of 1 + 1/e (≈ 1.3679).

Our algorithm is motivated by a proposal process
similar to that of Iwama et al. [14], and that of Dean
and Jalasutram [3], in which numerical priorities are
adjusted according to the LP solution, and are used for
tie-breaking purposes. However, instead of using their
priority manipulation schemes, we introduce a method
of priority incrementation based on an adjustable step
size parameter. In § 3.1, we present the description of
our process along with some key properties. Both the
description and the properties are expressed in terms of
the step size parameter. In § 3.2, we consider the limit
of this process as the step size becomes infinitesimally
small, and we present a polynomial-time algorithm that
satisfies the key properties with the step size parameter
set to zero.

We analyze the approximation ratio of our algo-
rithm in § 4 by directly comparing the size of our output

1In the proof of this claim [8, Theorem 19], Huang et al. exhibit

a family of instances with 2k men and 2k women such that the
corresponding LP has a feasible fractional value of (3/2− o(1))k.
It is asserted that a certain weakly stable matching of size k is a
maximum weakly stable matching, but this assertion is incorrect.

For the case when k = 2, there exists a weakly stable matching of
size 3. Similarly, when k > 2, it can be shown that the maximum

size of weakly stable matching is greater than k.
There is also a flaw related to the main result of their paper,

which asserts an approximation ratio of 5
4

for the special case

where ties are one-sided and are restricted to the end of the
preference lists. In the derivation of inequalities (11) and (12)

in their proof [8, Lemma 16], it is claimed that
δm,w

1+νw
≤ δm,w.

This claim depends on the unproven assumption that δm,w is
non-negative. It is unclear whether this flaw can be fixed. Both

flaws have been acknowledged by Huang et al. in a personal
communication.

matching with the optimal value of the LP. Although
this is a standard approach to analyze approximation
algorithms, it has not been used in prior work on this
problem. Prior non-LP-based analyses [2, 9, 16, 24] are
based on considering the symmetric difference of the
output matching and an unknown optimal matching,
and counting augmenting paths of various lengths. Such
symmetric difference arguments are also used in prior
LP-based analyses [3, 14], where the output matching
is compared to both an unknown optimal matching and
an optimal LP solution. Instead of focusing on the sym-
metric difference, we develop a charging scheme for the
priority increments. This scheme is described in § 4.1.
In § 4.2, the key ingredients underlying our analysis are
derived by applying the stability constraint and the tie-
breaking criterion to all of the tie-related charges. While
none of the prior analyses directly implies an upper
bound for the integrality gap, our approach enables us
to obtain an upper bound of 1 + 1/e for the integrality
gap, which matches the known lower bound [14].

As part of our analysis, we formulate an infinite-
dimensional factor-revealing LP; this LP is presented
in § 4.3. The finite-dimensional factor-revealing LP
technique was introduced by Jain et al. [15], and since
then a number of variants have been proposed [4, 19, 22].
However, it is often difficult to obtain a nice closed-
form solution. For the maximum stable matching
problem with one-sided ties and incomplete lists, Dean
and Jalasutram [3] obtained an approximation ratio
of 19

13 by enumerating the combinatorial structures of
augmenting paths and resorting to a computer-assisted
proof for solving a large factor-revealing LP. In contrast,
our infinite-dimensional factor-revealing LP is derived
from the tie-related charges. Even though our infinite-
dimensional factor-revealing LP appears to be more
complex than the one studied by Archer and Blasiak [1]
in relation to the minimum latency problem, we are
able to obtain an analytical solution using numerical
results as guidance. In § 4.3.1, we discuss informally how
calculus and numerical methods suggest a nice closed-
form solution. In § 4.3.2, we provide a formal analytical
proof using LP duality.

2 Stable Matching with One-Sided Ties and
Incomplete Lists

2.1 The Model. The stable matching problem with
one-sided ties and incomplete lists (smoti) involves a
set I of men and a set J of women. We assume that the
sets I and J are disjoint and do not contain the element
0, which we use to denote being unmatched. Each man
i ∈ I has a preference relation ≥i over the set J ∪ {0}
that satisfies antisymmetry, transitivity, and totality.
Each woman j ∈ J has a preference relation ≥j over the
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set I ∪ {0} that satisfies transitivity and totality. We
denote this smoti instance as (I, J, {≥i}i∈I , {≥j}j∈J).

Notice that the preference relations {≥j}j∈J of the
women are not required to be antisymmetric, while the
preference relations {≥i}i∈I of the men are required to
be antisymmetric. So ties are allowed in the preferences
of the women, but not in the preferences of the men.
For every woman j ∈ J , we write >j and =j to denote
the asymmetric part and the symmetric part of ≥j ,
respectively. Similarly, for every man i ∈ I, we write
>i to denote the asymmetric part of ≥i.

For every man i ∈ I and woman j ∈ J , we say that
man i is acceptable to woman j if i ≥j 0. Similarly, for
every man i ∈ I and woman j ∈ J , we say that woman j
is acceptable to man i if j ≥i 0. Notice that preference
lists are allowed to be incomplete. In other words, there
may exist i ∈ I and j ∈ J such that 0 >j i or 0 >i j.

A matching is a subset µ ⊆ I×J such that for every
(i, j), (i′, j′) ∈ µ, we have i = i′ if and only if j = j′.
For every man i ∈ I, if (i, j) ∈ µ for some woman j ∈ J ,
we say that man i is matched to woman j in matching
µ, and we write µ(i) = j. Otherwise, we say that man
i is unmatched in matching µ, and we write µ(i) = 0.
Similarly, for every woman j ∈ J , if (i, j) ∈ µ for some
man i ∈ I, we say that woman j is matched to man i
in matching µ, and we write µ(j) = i. Otherwise, we
say that woman j is unmatched in matching µ, and we
write µ(j) = 0.

A matching µ is individually rational if for every
(i, j) ∈ µ, we have j ≥i 0 and i ≥j 0. An individually
rational matching µ is weakly stable if for every man
i ∈ I and woman j ∈ J , either µ(i) ≥i j or µ(j) ≥j i.
Otherwise, (i, j) forms a strongly blocking pair.

The goal of the maximum stable matching problem
with one-sided ties and incomplete lists (max-smoti) is
to find a maximum-cardinality weakly stable matching
for a given smoti instance.

2.2 The Linear Programming Formulation. The
following LP formulation is based on that of Roth-
blum [26], which extends that of Vande Vate [27].

maximize
∑

(i,j)∈I×J

xi,j

subject to ∑
j∈J

xi,j ≤ 1 ∀i ∈ I(2.1)

∑
i∈I

xi,j ≤ 1 ∀j ∈ J(2.2)∑
j′∈J
j′>ij

xi,j′ +
∑
i′∈I
i′≥ji

xi′,j ≥ 1 ∀(i, j) ∈ I × J
such that j >i 0
and i >j 0

(2.3)

xi,j = 0 ∀(i, j) ∈ I × J
such that 0 >i j
or 0 >j i

(2.4)

xi,j ≥ 0 ∀(i, j) ∈ I × J(2.5)

In Lemmas 2.1 and 2.2, we present two straightforward
properties of the LP formulation. Vande Vate [27]
used constraint (2.6) in the statement of Lemma 2.2
below, together with constraint (2.5) and tight versions
of constraints (2.1) and (2.2), to characterize stable
matchings in the special case where all preference lists
are complete and the number of men is equal to the
number of women. Rothblum [26] extended the result
of Vande Vate and used constraints (2.1), (2.2), (2.3),
(2.4), and (2.5) to characterize stable matchings for the
model with strict preferences and incomplete lists, and
where the number of men is not necessarily equal to
the number of women. This formulation was adapted
to study maximum weakly stable matching with one-
sided ties and incomplete lists by Iwama et al. [14], and
by Dean and Jalasutram [3]. Our model also allows a
woman to be indifferent between being unmatched and
being matched with some of the men. Accordingly, we
provide proofs of Lemmas 2.1 and 2.2 for the sake of
completeness.

Lemma 2.1. An integral solution {xi,j}(i,j)∈I×J cor-
responds to the indicator variables of a weakly stable
matching if and only if it satisfies constraints (2.1),
(2.2), (2.3), (2.4), and (2.5).

Proof. Suppose {xi,j}(i,j)∈I×J satisfies constraints
(2.1), (2.2), (2.3), (2.4), and (2.5). Constraints (2.1),
(2.2), and (2.5) imply that {xi,j}(i,j)∈I×J corresponds
to a valid matching µ. Constraint (2.4) implies that µ
is individually rational. To show the weak stability of
µ, consider man i ∈ I and woman j ∈ J . It suffices to
show that (i, j) is not a strongly blocking pair. We may
assume that j >i 0 and i >j 0, for otherwise individ-
ual rationality implies µ(i) ≥i 0 ≥i j or µ(j) ≥j 0 ≥j i.
Consider constraint (2.3) associated with (i, j). At least
one of the two summations is equal to 1. If the first
summation is equal to 1, then µ(i) >i j. If the second
summation is equal to 1, then µ(j) ≥j i. Thus, µ is a
weakly stable matching.

Conversely, suppose {xi,j}(i,j)∈I×J corresponds to a
weakly stable matching µ. Since µ is a valid matching,
constraints (2.1), (2.2), and (2.5) are satisfied. Also, the
individual rationality of µ implies that constraint (2.4)
is satisfied. To show that constraint (2.3) is satisfied,
consider (i, j) ∈ I × J such that j >i 0 and i >j 0. It
suffices to show that at least one of the two summations
in constraint (2.3) associated with (i, j) is equal to 1.
By the weak stability of µ, we have either µ(i) ≥i j or
µ(j) ≥j i. We consider two cases.
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Case 1: µ(j) ≥j i. Since µ(j) ≥j i >j 0, the second
summation is equal to 1.

Case 2: i >j µ(j) and µ(i) ≥i j. Since i >j µ(j), we
have (i, j) /∈ µ. Since µ(i) ≥i j and (i, j) /∈ µ, we have
µ(i) >i j. Since µ(i) >i j >i 0, the first summation is
equal to 1.

Lemma 2.2. Let {xi,j}(i,j)∈I×J be a fractional solution
that satisfies constraints (2.2), (2.3), (2.4), and (2.5).
Then the following constraint is also satisfied.∑

j′∈J
j′>ij

xi,j′ ≥
∑
i′∈I
i>ji

′

xi′,j ∀(i, j) ∈ I×J such that
j ≥i 0 and i ≥j 0

(2.6)

Proof. Let (i, j) ∈ I × J with j ≥i 0 and i ≥j 0. We
consider two cases.

Case 1: i =j 0. Then∑
i′∈I
i>ji

′

xi′,j =
∑
i′∈I
0>ji

′

xi′,j = 0 ≤
∑
j′∈J
j′>ij

xi,j′ ,

where the second equality follows from constraint (2.4)
and the inequality follows from constraint (2.5).

Case 2: i >j 0. Since j ∈ J and j ≥i 0, we have
j >i 0. Since j >i 0 and i >j 0, constraint (2.3) implies∑

j′∈J
j′>ij

xi,j′ ≥ 1−
∑
i′∈I
i′≥ji

xi′,j ≥
∑
i′∈I

xi′,j −
∑
i′∈I
i′≥ji

xi′,j

=
∑
i′∈I
i>ji

′

xi′,j ,

where the second inequality is a consequence of con-
straint (2.2).

3 The Algorithm

3.1 A Proposal Process with Priorities. In this
subsection, we describe a proposal process with priori-
ties which is similar to that of Iwama et al. [14], and that
of Dean and Jalasutram [3]. Our algorithm is motivated
by this process, and is presented in § 3.2.

Our proposal process with priorities takes an smoti
instance and a step size parameter η > 0 as input, and
produces a weakly stable matching µ as output. In the
preprocessing phase, we compute an optimal fractional
solution {xi,j}(i,j)∈I×J to the associated LP. We also
define

(3.7) w(i, j) =


1 if j = 0∑
j′∈J
j′>ij

xi,j′ if j 6= 0

for every man i ∈ I and woman j ∈ J ∪ {0}. Then, in
the initialization phase, we assign the empty matching
to µ and each man i is assigned a priority pi equal to
0. For each man i, we also maintain a set Li of women
which is initialized to the empty set. We use the set Li
to store the women to whom man i must propose before
his priority pi is increased by η. After that, the process
enters the proposal phase and proceeds iteratively.

In each iteration, we pick an unmatched man i
with priority pi < 1 + η. If the set Li is empty, we
increment his priority pi by η and then update Li to
the set {j ∈ J : j ≥i 0 and w(i, j) ≤ pi}. Otherwise, the
man i that we pick has a non-empty set Li of women.
Let j denote the most preferred woman of man i in Li.
We remove j from Li and man i proposes to woman j.
When woman j receives the proposal from man i, she
tentatively accepts him if she is currently unmatched
and he is acceptable to her. Otherwise, if woman j is
currently matched to another man i′, she tentatively
accepts her preferred choice between men i and i′, and
rejects the other. In the event of a tie, she compares
the current priorities pi and pi′ of the men and accepts
the one with higher priority. (If the priorities of i and
i′ are equal, she breaks the tie arbitrarily.) If man i
is tentatively accepted by woman j, the matching µ is
updated accordingly.

When every unmatched man i has priority pi ≥
1 + η, the process terminates and outputs the final
matching µ.

Our process is similar to that of Iwama et al. [14],
and that of Dean and Jalasutram [3], which also use
a proposal scheme with priorities. In particular, the
way that we populate the set Li with a subset of
women by referring to the LP solution is based on
their methods. The major difference is that, in our
process, priorities only increase by a small step size η,
whereas in their algorithms, the priorities may increase
by a possibly larger amount, essentially to ensure that
a new woman is added to Li. As in their algorithms, for
every woman j, the sequence of tentative partners µ(j)
of woman j satisfies a natural monotonicity property.
Woman j is initially unmatched, and becomes matched
the first time she receives a proposal from a man who
is acceptable to her. In each subsequent iteration,
she either keeps her current partner or gets a weakly
preferred partner. Furthermore, if she is indifferent
between her new partner and her old partner, then the
new partner has a weakly larger priority. When the
process terminates, the following predicates hold, which
are analogous to predicates satisfied by the algorithms
of Iwama et al. [14] and Dean and Jalasutram [3].

P1(µ): for every (i, j) ∈ µ, we have j ≥i 0 and i ≥j 0.
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P2(µ): for every man i ∈ I and woman j ∈ J such
that j ≥i µ(i) and i ≥j 0, we have µ(j) 6= 0 and
µ(j) ≥j i.

P3(µ, p, η): for every man i ∈ I, we have w(i, µ(i)) ≤
pi ≤ 1 + 2η.

P4(µ, p, η): for every man i ∈ I and woman j ∈ J
such that j ≥i 0, i ≥j 0, and pi − η > w(i, j), we
have µ(j) 6= 0, µ(j) ≥j i, and if µ(j) =j i then
pµ(j) ≥ pi − η.

To establish that P1(µ) holds, it is easy to see that
man i proposes to woman j only if she is acceptable
to him, and woman j accepts a proposal from man i
only if he is acceptable to her. For P2(µ), if man i
weakly prefers woman j to µ(i) and is acceptable to
woman j, then man i has proposed to woman j. Thus
the monotonicity property implies that µ(j) 6= 0 and
µ(j) ≥j i. For P3(µ, p, η), it is easy to see that the
priority pi of man i lies within the specified range when
he proposes to woman µ(i). For P4(µ, p, η), if man i
and woman j satisfy the stated assumptions, then man
i proposed to woman j when his priority was equal
to pi − η, and this proposal was eventually rejected.
Immediately after this proposal was rejected, woman j
was matched with a man i′ such that i′ 6= i and i′ ≥j i.
The monotonicity property implies that µ(j) 6= 0 and
µ(j) ≥j i′ ≥j i. Furthermore, if µ(j) =j i, then
µ(j) =j i

′ =j i. Since i′ =j i, the priority of man i′ was
at least pi − η when the aforementioned proposal was
rejected. Since µ(j) =j i

′, the monotonicity property
implies that pµ(j) ≥ pi − η.

3.2 The Implementation. The proposal process
with priorities of § 3.1 depends on a step size param-
eter η > 0. To obtain a good approximation ratio, we
would like the step size parameter η to be small. How-
ever, the running time of a naive implementation grows
in proportion to η−1. We can imagine that if we take
an infinitesimally small step size, then P3(µ, p, η) and
P4(µ, p, η) can be satisfied with η = 0.

Algorithm 1 is motivated by the idea of simulating
the process of § 3.1 with an infinitesimally small step
size. We maintain for every man i ∈ I a priority pi and
a pointer `i ∈ J ∪ {0} into the preference list of man i.
For every man i ∈ I and woman j ∈ J , we think of man
i as having proposed to woman j if and only if j >i `i.
Given ` = {`i}i∈I and j ∈ J , we define

Ij(`) = {i ∈ I : j >i `i}

as the set of all men i who have proposed to woman j.
Given ` = {`i}i∈I , we define G(`) as the bipartite graph

with vertex set I ∪ J and edge set

E(`) = {(i, j) ∈ I × J : i ∈ Ij(`)
and i ≥j i′ for every i′ ∈ Ij(`) ∪ {0}}.

For any ` and any matching µ, we define a µ-alternating
path in G(`) as a (possibly zero-length) simple path in
G(`) that alternates between edges not in µ and edges
in µ.

The following lemma is proven in Appendix A.
This result is used in § 4 to establish that Algorithm 1
achieves a 1 + 1/e approximation guarantee.

Lemma 3.1. When Algorithm 1 terminates, P1(µ),
P2(µ), P3(µ, p, 0), and P4(µ, p, 0) hold.

Let us define the weight of any edge (i, j) in E(`) as
w(i, `i). We use the abbreviations MCM and MWMCM
to denote the terms maximum-cardinality matching and
maximum-weight MCM, respectively. The following
lemma is proven in Appendix B.

Lemma 3.2. An invariant of the Algorithm 1 loop is
that µ is an MWMCM of G(`).

Lemma 3.2 leads us to consider Algorithm 2, which
has a more succinct description than Algorithm 1, and
does not maintain a priority vector p. In Appendix B,
we use our analysis of Algorithm 1 to prove Lemma 3.3
below. This result is used in § 4 to establish that
Algorithm 2 also achieves an approximation ratio of
1 + 1/e.

Lemma 3.3. When Algorithm 2 terminates, P1(µ) and
P2(µ) hold. Furthermore, there exist priorities {pi}i∈I
such that P3(µ, p, 0) and P4(µ, p, 0) hold.

Lemma 3.4. Algorithms 1 and 2 each produce a weakly
stable matching in polynomial time.

Proof. Letting µ denote the output matching produced
by Algorithm 1 (resp., Algorithm 2), Lemma 3.1 (resp.,
Lemma 3.3) implies that P1(µ) and P2(µ) hold. Since
P1(µ) holds, µ is individually rational. To establish
weak stability of µ, consider (i, j) ∈ I × J . It suffices
to show that (i, j) is not a strongly blocking pair.
For the sake of contradiction, suppose j >i µ(i) and
i >j µ(j). If 0 >j i, then 0 >j i >j µ(j), contradicting
the individual rationality of µ. If i ≥j 0, then since
j >i µ(i), i ≥j 0, and P2(µ) holds, we deduce that
µ(j) ≥j i, contradicting the assumption that i >j µ(j).

Algorithms 1 and 2 run in polynomial time since
linear programming is polynomial-time solvable, the
number of iterations of the loop is at most |I| × |J |,
and each iteration can be performed in polynomial time.
(Using alternating breadth-first search from i1, each
iteration of Algorithm 1 can be performed in time linear
in the size of G(`).)
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Algorithm 1

1: compute an optimal fractional solution {xi,j}(i,j)∈I×J to the associated LP
2: let {w(i, j)}(i,j)∈I×(J∪{0}) be defined by (3.7)
3: initialize µ to the empty matching
4: for every man i ∈ I, initialize `i to the most preferred woman j ∈ J ∪ {0} with respect to ≥i
5: for every man i ∈ I, initialize pi to w(i, `i)
6: while there exists a man i ∈ I such that µ(i) = 0 and `i >i 0 do
7: let i0 be such a man, and let j0 denote the woman `i0
8: update `i0 to the most preferred woman j ∈ {j′ ∈ J : j0 >i0 j

′} ∪ {0} with respect to ≥i0
9: if µ(j0) = 0 and i0 ≥j0 0 then

10: update µ to µ ∪ {(i0, j0)}
11: else

12: let i1 =

{
µ(j0) if i0 >j0 µ(j0) or (i0 =j0 µ(j0) and pi0 > pµ(j0))

i0 otherwise

13: let µ0 = (µ ∪ {(i0, j0)}) \ {(i1, j0)}
14: let I0 denote {i ∈ I : i is reachable from i1 via a µ0-alternating path in G(`)}
15: let i2 be a man in arg mini∈I0 w(i, `i)
16: let π0 be a µ0-alternating path from i1 to i2 in G(`)
17: update pi to max(pi, w(i2, `i2)) for each man i in I0
18: update µ to µ0 ⊕ π0
19: end if
20: end while
21: return matching µ

Algorithm 2

1: compute an optimal fractional solution {xi,j}(i,j)∈I×J to the associated LP
2: let {w(i, j)}(i,j)∈I×(J∪{0}) be defined by (3.7)
3: initialize µ to the empty matching
4: for every man i ∈ I, initialize `i to the most preferred woman j ∈ J ∪ {0} with respect to ≥i
5: while there exists a man i ∈ I such that µ(i) = 0 and `i >i 0 do
6: let i0 be such a man, and let j0 denote the woman `i0
7: update `i0 to the most preferred woman j ∈ {j′ ∈ J : j0 >i0 j

′} ∪ {0} with respect to ≥i0
8: update µ to an arbitrary MWMCM of G(`)
9: end while

10: return matching µ

4 Analysis of the Approximation Ratio

In this section, we analyze the approximation ratio
and the integrality gap. Our analysis applies to both
Algorithms 1 and 2. Throughout this section, whenever
we mention {xi,j}(i,j)∈I×J , {w(i, j)}(i,j)∈I×(J∪{0}), and
µ, we are referring to their values when the algorithm
terminates. By Lemmas 3.1 and 3.3, conditions P1(µ),
P2(µ), P3(µ, p, 0), and P4(µ, p, 0) hold for some p =
{pi}i∈I . We fix such priority values p throughout this
section. We also denote

I∗ = {i ∈ I : µ(i) 6= 0}

as the set of matched men and

J∗ = {j ∈ J : µ(j) 6= 0}

as the set of matched women in the output matching µ.

4.1 Auxiliary Charges. Define the auxiliary charge

x̃i,j = min(xi,j ,max(0, pi − w(i, j)))

for every man i ∈ I and woman j ∈ J . So, for every
man i ∈ I, the auxiliary charges {x̃i,j}j∈J correspond
to the following charging process: Go through the list
of all women j, from most preferred to least preferred
under preference relation ≥i, and charge an amount of
at most xi,j until a total charge of pi is reached, or the
list of women is exhausted. The quantities {x̃i,j}j∈J
correspond to the charged amounts.

In Lemma 4.1, we present some simple properties of
the auxiliary charges. In Lemma 4.2, we present some

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited



simple necessary conditions for an auxiliary charge to
be positive.

Lemma 4.1. Let i ∈ I be a man. Then the following
properties hold.

(1) For all women j, j′ ∈ J such that x̃i,j > 0 and
j′ >i j, we have x̃i,j′ = xi,j′ .

(2)
∑
j∈J

x̃i,j ≤ pi.

(3)
∑
j∈J

(xi,j − x̃i,j) ≤ 1− pi.

Proof.

(1) Let women j, j′ ∈ J satisfy x̃i,j > 0 and j′ >i j.
Since x̃i,j > 0, the definition of x̃i,j implies pi >
w(i, j). Hence

pi > w(i, j) =
∑
j′′∈J
j′′>ij

xi,j′′ ≥ xi,j′ +
∑
j′′∈J
j′′>ij

′

xi,j′′

= xi,j′ + w(i, j′),

where the equalities follow from the definitions of
w(i, j) and w(i, j′). Since pi − w(i, j′) ≥ xi,j′ , the
definition of x̃i,j′ implies x̃i,j′ = xi,j′ .

(2) Let J ′i = {j ∈ J : x̃i,j > 0}. It suffices to show that∑
j∈J′i

x̃i,j ≤ pi.

For the sake of contradiction, suppose

(4.8)
∑
j∈J′i

x̃i,j > pi.

Since pi ≥ 0, inequality (4.8) implies J ′i is non-
empty. Let j′ ∈ J ′i be the least preferred woman in
J ′i under the preference relation ≥i. Then∑

j∈J′i

x̃i,j ≤
∑
j∈J
j≥ij

′

x̃i,j = x̃i,j′ +
∑
j∈J
j>ij

′

x̃i,j

= x̃i,j′ +
∑
j∈J
j>ij

′

xi,j

= x̃i,j′ + w(i, j′),(4.9)

where the second equality follows from part (1),
and the third equality follows from the definition
of w(i, j′). Combining (4.8) and (4.9) gives x̃i,j′ >
pi − w(i, j′). Also x̃i,j′ > 0 since j′ ∈ J ′i . Hence
x̃i,j′ > max(0, pi − w(i, j′)), which contradicts the
definition of x̃i,j′ .

(3) Let J ′i = {j ∈ J : x̃i,j < xi,j}. It suffices to show
that ∑

j∈J′i

(xi,j − x̃i,j) ≤ 1− pi.

For the sake of contradiction, suppose

(4.10)
∑
j∈J′i

(xi,j − x̃i,j) > 1− pi.

P3(µ, p, 0) implies pi ≤ 1, and so inequality (4.10)
implies that J ′i is non-empty. Let j′ ∈ J ′i be the
most preferred woman in J ′i under the preference
relation ≥i. Then∑

j∈J′i

(xi,j − x̃i,j) ≤
∑
j∈J
j′≥ij

(xi,j − x̃i,j)

≤
( ∑
j∈J
j′≥ij

xi,j

)
− x̃i,j′ .(4.11)

Also, by constraint (2.1), we have

1 ≥
∑
j∈J

xi,j =
∑
j∈J
j>ij

′

xi,j +
∑
j∈J
j′≥ij

xi,j

= w(i, j′) +
∑
j∈J
j′≥ij

xi,j ,(4.12)

where the second equality follows from the def-
inition of w(i, j′). By combining (4.10), (4.11),
and (4.12), we obtain

x̃i,j′ < pi − w(i, j′) ≤ max(0, pi − w(i, j′)).

Also x̃i,j′ < xi,j′ since j′ ∈ J ′i . Hence x̃i,j′ <
min(xi,j′ ,max(0, pi − w(i, j′))), which contradicts
the definition of x̃i,j′ .

Lemma 4.2. Let i ∈ I be a man and j ∈ J be a woman
such that x̃i,j > 0. Then j ∈ J∗ and µ(j) ≥j i.
Furthermore, if i ∈ I \ I∗ and µ(j) =j i, then pµ(j) = 1.

Proof. Since x̃i,j > 0, the definition of x̃i,j implies
xi,j > 0 and pi > w(i, j). Since xi,j > 0, constraint (2.4)
implies j ≥i 0 and i ≥j 0. Since P4(µ, p, 0) holds, we
deduce that j ∈ J∗ and µ(j) ≥j i.

Furthermore, suppose i ∈ I\I∗ and µ(j) =j i. Since
µ(j) =j i, conditions P3(µ, p, 0) and P4(µ, p, 0) imply

1 ≥ pµ(j) ≥ pi ≥ w(i, 0) = 1,

where the equality follows from the definition of w(i, 0).
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For every man i ∈ I∗, we define the auxiliary
quantity

qi =
∑
j∈J∗
µ(j)=ji

x̃i,j .

For every woman j ∈ J∗, we define the auxiliary
quantities

yj = yµ(j) =
∑
i∈I\I∗
µ(j)=ji

x̃i,j

and

zj = zµ(j) =
∑
i∈I

µ(j)>ji

xi,j .

We also denote

1[0,∞)(ξ) =

{
1 if ξ ≥ 0

0 if ξ < 0

as the Heaviside step function.
Intuitively, for every man i ∈ I and woman j ∈ J ,

we think of the auxiliary charge x̃i,j as tie-related if
woman j is indifferent between i and µ(j). Then
the quantity qi corresponds to the total tie-related
charge associated with man i and all matched women.
Similarly, the quantity yj corresponds to the total
tie-related charge associated with woman j and all
unmatched men. Finally, the quantity zj corresponds
to the right hand side of constraint (2.6) for (i, j) =
(µ(j), j).

For every man i ∈ I and woman j ∈ J , it is easy
to see that 0 ≤ x̃i,j ≤ xi,j . Hence it follows from
constraints (2.1) and (2.2) that qi, yi, zi ∈ [0, 1] for every
man i ∈ I∗. In Lemma 4.3, we present some simple
properties of the auxiliary quantities. In Lemma 4.4,
we show that the difference between the size of the
matching produced by the algorithm and the optimal
fractional value of the LP is bounded by an expression
involving the auxiliary quantities.

Lemma 4.3. Let i ∈ I∗ be a man. Then (1− pi)yi = 0
and qi ≤ pi.

Proof. Let j = µ(i). By the definition of yi, we have

(1− pi)yi = (1− pµ(j))yj =
∑

i′∈I\I∗
µ(j)=ji

′

(1− pµ(j))x̃i′,j

=
∑

i′∈I\I∗
µ(j)=ji

′

(1− 1)x̃i′,j = 0,

where the third equality follows from Lemma 4.2. By
the definition of qi, we have

qi =
∑
j′∈J∗

µ(j′)=j′ i

x̃i,j′ ≤
∑
j′∈J

x̃i,j′ ≤ pi,

where the second inequality follows from part (2) of
Lemma 4.1.

Lemma 4.4.
(∑
i∈I

∑
j∈J

xi,j

)
−|µ| ≤

∑
i∈I∗

(qi−pi+yi+zi).

Proof. Consider

(4.13)
∑
i∈I

∑
j∈J

xi,j =
∑
i∈I

∑
j∈J

(xi,j − x̃i,j) +
∑
i∈I

∑
j∈J

x̃i,j .

Part (3) of Lemma 4.1 implies∑
i∈I

∑
j∈J

(xi,j − x̃i,j) ≤
∑
i∈I

(1− pi)

= |µ| −
∑
i∈I∗

pi +
∑
i∈I\I∗

(1− pi)

≤ |µ| −
∑
i∈I∗

pi +
∑
i∈I\I∗

(1− w(i, 0))

= |µ| −
∑
i∈I∗

pi,(4.14)

where the second inequality follows from P3(µ, p, 0),
and the second equality follows from the definitions of
{w(i, 0)}i∈I\I∗ . Lemma 4.2 implies∑

i∈I

∑
j∈J

x̃i,j

=
∑
i∈I

∑
j∈J∗
µ(j)>ji

x̃i,j +
∑
i∈I

∑
j∈J∗
µ(j)=ji

x̃i,j

=
∑
i∈I

∑
j∈J∗
µ(j)>ji

x̃i,j +
∑
i∈I\I∗

∑
j∈J∗
µ(j)=ji

x̃i,j

+
∑
i∈I∗

∑
j∈J∗
µ(j)=ji

x̃i,j

=
∑
i∈I

∑
j∈J∗
µ(j)>ji

x̃i,j +
∑
i∈I\I∗

∑
j∈J∗
µ(j)=ji

x̃i,j +
∑
i∈I∗

qi,(4.15)

where the last equality follows from the definitions of
{qi}i∈I∗ . The definitions of {zi}i∈I∗ imply∑
i∈I∗

zi =
∑
j∈J∗

zj =
∑
j∈J∗

∑
i∈I

µ(j)>ji

xi,j =
∑
i∈I

∑
j∈J∗
µ(j)>ji

xi,j

≥
∑
i∈I

∑
j∈J∗
µ(j)>ji

x̃i,j ,(4.16)
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where the inequality follows from the definitions of
{x̃i,j}(i,j)∈I×J . The definitions of {yi}i∈I∗ imply∑

i∈I∗
yi =

∑
j∈J∗

yj =
∑
j∈J∗

∑
i∈I\I∗
µ(j)=ji

x̃i,j

=
∑
i∈I\I∗

∑
j∈J∗
µ(j)=ji

x̃i,j .(4.17)

Combining (4.13), (4.14), (4.15), (4.16), and (4.17) gives
the desired inequality.

4.2 The Stability Constraint and the Tie-
Breaking Criterion. In this subsection, we develop
the key ingredients underlying our analysis by mak-
ing careful use of the stability constraint for matched
women and the tie-breaking criterion for matched men.
The stability constraint, which says that no matched
woman can participate in a strongly blocking pair, cor-
responds to Lemma 2.2. The tie-breaking criterion cor-
responds to predicate P4(µ, p, 0).

In Lemma 4.5, we consider the stability constraint
associated with a matched pair (i, j) ∈ µ and show that
zi is at most pi.

Lemma 4.5. Let i ∈ I∗ be a man. Then zi ≤ pi.

Proof. Let j = µ(i). Since P1(µ) holds, we have j ≥i 0
and i ≥j 0. By the definition of zi, we have

zi = zj =
∑
i′∈I
i>ji

′

xi′,j ≤
∑
j′∈J
j′>ij

xi,j′ = w(i, j) ≤ pi,

where the first inequality follows from Lemma 2.2, the
third equality follows from the definition of w(i, j), and
the second inequality follows from P3(µ, p, 0).

In Lemma 4.6, we consider pairs (i, j) ∈ I∗ × J∗

where the associated auxiliary charge x̃i,j is positive
and woman j is indifferent between man i and the
man µ(j) to whom she is matched. These are the
pairs that contribute to the tie-related charges {qi}i∈I∗ .
By applying the tie-breaking criterion and the stability
constraint to these pairs (i, j), we establish two useful
inequalities.

Lemma 4.6. Let i ∈ I∗ be a man and j ∈ J∗ be a
woman such that x̃i,j > 0 and µ(j) =j i. Then

pi ≤ pµ(j) and
∑
j′∈J

µ(j′)=j′ i

j≥ij
′

x̃i,j′ ≤ pµ(j) − zj .

Proof. Since x̃i,j > 0, the definition of x̃i,j implies
xi,j > 0 and pi > w(i, j). Since xi,j > 0, constraint (2.4)
implies j ≥i 0 and i ≥j 0. Thus P4(µ, p, 0) implies

(4.18) pi ≤ pµ(j),

which establishes the first desired inequality.
Since x̃i,j > 0, parts (2) and (1) of Lemma 4.1 imply

pi −
∑
j′∈J
j′>ij

xi,j′ ≥
∑
j′∈J

x̃i,j′ −
∑
j′∈J
j′>ij

x̃i,j′ =
∑
j′∈J
j≥ij

′

x̃i,j′

≥
∑
j′∈J

µ(j′)=j′ i

j≥ij
′

x̃i,j′ .(4.19)

By the definition of zj , we have

(4.20) zj =
∑
i′∈I

µ(j)>ji
′

xi′,j =
∑
i′∈I
i>ji

′

xi′,j ≤
∑
j′∈J
j′>ij

xi,j′ ,

where the second equality follows from µ(j) =j i,
and the inequality follows from Lemma 2.2. Combin-
ing (4.18), (4.19), and (4.20) gives the second desired
inequality.

Let F be the set of all non-increasing functions
f : [0, 1] → [0,+∞). Lemma 4.7 below aggregates the
inequalities of Lemma 4.6 with respect to functions
f ∈ F . The proof of Lemma 4.7 is presented after
we establish a few technical results in Lemmas 4.8, 4.9,
and 4.10.

Lemma 4.7. If I∗ is non-empty, then for every f ∈ F ,

1

|I∗|
∑
i∈I∗

max(qi − f(pi), 0)

≤ 1

|I∗|
∑
i∈I∗

(1− yi − zi) · 1[0,∞)(pi − zi − f(pi)).

Lemma 4.8. Let i ∈ I∗ be a man and f ∈ F . Let

(4.21) J∗i =
{
j ∈ J∗ : µ(j) =j i

and
∑
j′′∈J

µ(j′′)=j′′ i

j≥ij
′′

x̃i,j′′ ≥ f(pi)
}
.

Then max(qi − f(pi), 0) ≤
∑
j∈J∗i

x̃i,j.
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Proof. We may assume that qi > f(pi), for otherwise

max(qi − f(pi), 0) = 0 ≤
∑
j∈J∗i

x̃i,j . Let

J ′i =
{
j ∈ J∗ : µ(j) =j i and

∑
j′′∈J

µ(j′′)=j′′ i

j≥ij
′′

x̃i,j′′ < f(pi)
}
.

Then

max(qi − f(pi), 0) = qi − f(pi)

=
( ∑

j∈J∗
µ(j)=ji

x̃i,j

)
− f(pi)

=
( ∑
j∈J∗i

x̃i,j +
∑
j∈J′i

x̃i,j

)
− f(pi),

where the second equality follows from the definition of

qi. So, it suffices to show that
∑
j∈J′i

x̃i,j ≤ f(pi).

For the sake of contradiction, suppose∑
j∈J′i

x̃i,j > f(pi).

Since f ∈ F , we have

0 ≤ f(pi) <
∑
j∈J′i

x̃i,j .

So the set J ′i is non-empty. Let j′ ∈ J ′i be the most
preferred woman in J ′i under the preference relation ≥i.
Then ∑

j′′∈J
µ(j′′)=j′′ i

j′≥ij
′′

x̃i,j′′ ≥
∑
j′′∈J′i

x̃i,j′′ > f(pi),

which contradicts j′ ∈ J ′i .

Lemma 4.9. Let i ∈ I∗ be a man and f ∈ F . Let J∗i be
the set defined by (4.21). Then, for every woman j ∈ J∗i
such that x̃i,j > 0, we have pµ(j) − zj ≥ f(pµ(j)).

Proof. Let j ∈ J∗i be a woman such that x̃i,j > 0. Since
j ∈ J∗i , we have j ∈ J∗ and µ(j) =j i. Since x̃i,j > 0
and µ(j) =j i, Lemma 4.6 implies

(4.22) pi ≤ pµ(j)

and

(4.23)
∑
j′∈J

µ(j′)=j′ i

j≥ij
′

x̃i,j′ ≤ pµ(j) − zj .

Since f ∈ F , inequality (4.22) implies

f(pµ(j)) ≤ f(pi) ≤
∑
j′∈J

µ(j′)=j′ i

j≥ij
′

x̃i,j′ ≤ pµ(j) − zj ,

where the second inequality follows from j ∈ J∗i , and
the third inequality follows from (4.23).

Lemma 4.10. Let j ∈ J∗ be a woman. Then∑
i∈I∗

µ(j)=ji

x̃i,j ≤ 1− yj − zj.

Proof. By constraint (2.2), we have

1 ≥
∑
i∈I

xi,j

≥
∑
i∈I

µ(j)>ji

xi,j +
∑
i∈I\I∗
µ(j)=ji

xi,j +
∑
i∈I∗

µ(j)=ji

xi,j

≥
∑
i∈I

µ(j)>ji

xi,j +
∑
i∈I\I∗
µ(j)=ji

x̃i,j +
∑
i∈I∗

µ(j)=ji

x̃i,j

= zj + yj +
∑
i∈I∗

µ(j)=ji

x̃i,j ,

where the third inequality follows from the definitions of
{x̃i,j}i∈I , and the equality follows from the definitions
of zj and yj .

Proof of Lemma 4.7. Suppose I∗ is non-empty. Let
f ∈ F . For every man i ∈ I∗, let J∗i be the set defined
by (4.21). Then Lemma 4.8 implies

1

|I∗|
∑
i∈I∗

max(qi − f(pi), 0)

≤ 1

|I∗|
∑
i∈I∗

∑
j∈J∗i

x̃i,j

=
1

|I∗|
∑
i∈I∗

∑
j∈J∗i

x̃i,j · 1[0,∞)(pµ(j) − zj − f(pµ(j)))

≤ 1

|I∗|
∑
i∈I∗

∑
j∈J∗
µ(j)=ji

x̃i,j · 1[0,∞)(pµ(j) − zj − f(pµ(j)))

=
1

|I∗|
∑
j∈J∗

1[0,∞)(pµ(j) − zj − f(pµ(j)))
∑
i∈I∗

µ(j)=ji

x̃i,j

≤ 1

|I∗|
∑
j∈J∗

1[0,∞)(pµ(j) − zj − f(pµ(j))) · (1− yj − zj)

=
1

|I∗|
∑
i∈I∗

1[0,∞)(pi − zi − f(pi)) · (1− yi − zi),
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where the first equality follows from Lemma 4.9, the
second inequality follows from the definition of J∗i , the
third inequality follows from Lemma 4.10, and the last
equality follows from the change of variables i = µ(j).

4.3 Factor-Revealing Optimization. In order to
obtain the approximation ratio, we use Lemmas 4.3,
4.5, and 4.7 to derive a bound for the right-hand
side of Lemma 4.4. We can formulate this as the
following factor-revealing optimization problem over
{pi, qi, yi, zi}i∈I∗ .

maximize
1

|I∗|
∑
i∈I∗

(qi − pi + yi + zi)

subject to

(1− pi)yi = 0 ∀i ∈ I∗

qi ≤ pi ∀i ∈ I∗

zi ≤ pi ∀i ∈ I∗

1

|I∗|
∑
i∈I∗

(
max(qi − f(pi), 0)

− (1− yi − zi)

· 1[0,∞)(pi − zi − f(pi))
)
≤ 0 ∀f ∈ F

pi, qi, yi, zi ∈ [0, 1] ∀i ∈ I∗

The above factor-revealing optimization problem is non-
convex in {pi, qi, yi, zi}i∈I∗ . Moreover, the formulation
depends on the size of I∗. To overcome these issues,
we reformulate it as the following infinite-dimensional
factor-revealing LP over random variables P,Q, Y, Z ∈
[0, 1].

maximize E[Q− P + Y + Z]

subject to

Pr[(1− P )Y = 0(4.24)

and max(Q,Z) ≤ P ] = 1

E[max(Q− f(P ), 0)(4.25)

− (1− Y − Z)

· 1[0,∞)(P − Z − f(P ))] ≤ 0 ∀f ∈ F

Notice that the above infinite-dimensional factor-
revealing LP is linear in the joint distribution of
(P,Q, Y, Z).

4.3.1 An Informal Investigation. We first present
an informal investigation of the infinite-dimensional
factor-revealing LP. A formal analytical solution is
presented in § 4.3.2.

One approach to the infinite-dimensional factor-
revealing LP is to obtaining a numerical solution via

a suitable discretization. More precisely, we can bucket
the support of (P,Q, Y, Z) into disjoint hypercubes, and
assign to each such hypercube a variable that corre-
sponds to the probability mass inside the hypercube.
We can also restrict our attention to a finite subfamily
of F . This discretizes the infinite-dimensional factor-
revealing LP into a finite LP which can be solved numer-
ically. However, none of the numerical optimal solutions
of the finite LP can equal 1/e, which is irrational.

Our numerical results suggest that an optimal so-
lution occurs when P = Q = p0 ≈ 0.6 and Y = 0.
Suppose P = Q = p0 and Y = 0. Then it is easy to see
that constraint (4.25) depends only on u = f(p0). So
the infinite-dimensional factor-revealing LP becomes

maximize

∫ p0

0

z · ρZ(z) dz

subject to ∫ p0

0

ρZ(z) dz = 1

(p0 − u)−
∫ p0−u

0

(1− z) · ρZ(z) dz ≤ 0 ∀u ∈ [0, p0]

the dual of which is

minimize λ−
∫ p0

0

(p0 − u) · ρU (u) du

subject to

λ−
∫ p0−z

0

(1− z) · ρU (u) du ≥ z ∀z ∈ [0, p0]

Suppose the constraints in the dual are tight for all
z ∈ (0, p0). Differentiating twice with respect to z gives

(1− z) · ρ′U (p0 − z)− 2ρU (p0 − z) = 0.

This ordinary differential equation has the solution
ρU (u) ∝ (1 − p0 + u)−2. Furthermore, assuming that
the constraints in the dual are tight for all z ∈ [0, p0],
we get ρU (u) = (1 − p0)(1 − p0 + u)−2 and λ = p0,
with an objective value of (p0 − 1) ln(1 − p0). In fact,
if p0 ≤ 1 − 1/e, this objective value is attained by the
primal solution

ρZ(z) = (1− z)−1 + (1 + ln(1− p0)) · δ(p0 − z)

where δ is the Dirac delta function. The maximum
objective value of (p0−1) ln(1−p0) is 1/e, which occurs
when p0 = 1− 1/e.

4.3.2 A Formal Analytical Solution. To obtain
a formal analytical solution, we consider functions in
F of the form fu(p) = (1 − p)u where u ∈ [0,∞).
(In our earlier technical report [18], we established
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an approximation ratio of ln 4 by considering constant
functions.) Then constraint (4.25) implies

E[max(Q− (1− P )u, 0)(4.26)

− (1− Y − Z)

· 1[0,∞)(P − Z − (1− P )u)] ≤ 0 ∀u ∈ [0,∞)

Lemma 4.11 below presents a simple inequality.
Lemma 4.12 can be regarded as a dual feasibility result.
The probability density function ρU plays the role of the
dual variables corresponding to constraint (4.26), while
the dual variable λ corresponds to constraint (4.24).
Lemma 4.13 uses Lemma 4.12 to bound the objective
value of the infinite dimensional factor-revealing LP
using Lemma 4.12. Our proof is analogous to that of
the weak duality theorem for finite LP, in which any
feasible primal solution is bounded by any feasible dual
solution.

Lemma 4.11. For every p ∈ [0, 1), we have (1−p) ln(1−
p) ≥ −e−1.

Proof. Let g(p) = (1 − p) ln(1 − p). It suffices to show
that g(p) ≥ g(1− e−1) for every p ∈ [0, 1).

For every p ∈ (0, 1− e−1), we have

dg(p)

dp
= − ln(1− p)− 1 < − ln(1− (1− e−1))− 1 = 0.

Hence g(p) ≥ g(1− e−1) for every p ∈ [0, 1− e−1].
For every p ∈ (1− e−1, 1), we have

dg(p)

dp
= − ln(1− p)− 1 > − ln(1− (1− e−1))− 1 = 0.

Hence g(p) ≥ g(1− e−1) for every p ∈ [1− e−1, 1).

Lemma 4.12. Let p, q, y, z ∈ [0, 1] such that (1−p)y = 0
and max(q, z) ≤ p. Let U be a continuous random
variable with probability density function

(4.27) ρU (u) =

{
(1 + u)−2 if u ≥ 0

0 otherwise

and λ = e−1. Then

E[max(q − (1− p)U, 0)

− (1− y − z) · 1[0,∞)(p− z − (1− p)U)]

≥ q − p+ y + z − λ.

Proof. Since 0 ≤ p ≤ 1, we consider two cases.

Case 1: p = 1. Then

E[max(q − (1− p)U, 0)

− (1− y − z) · 1[0,∞)(p− z − (1− p)U)]

= E[q − (1− y − z)]
= q − 1 + y + z

= q − p+ y + z

> q − p+ y + z − λ.

Case 2: 0 ≤ p < 1. Then 0 ≤ z ≤ p < 1. Hence

E[max(q − (1− p)U, 0)]

− E[(1− y − z) · 1[0,∞)(p− z − (1− p)U)]

=

∫ q/(1−p)

0

(q − (1− p)u) · ρU (u) du

−
∫ (p−z)/(1−p)

0

(1− y − z) · ρU (u) du

=

∫ q/(1−p)

0

q − (1− p)u
(1 + u)2

du

−
∫ (p−z)/(1−p)

0

1− y − z
(1 + u)2

du

=
[−(1− p+ q)

1 + u
− (1− p) ln(1 + u)

]q/(1−p)
0

−
[−(1− y − z)

1 + u

](p−z)/(1−p)
0

=
(
q − (1− p) ln

1− p+ q

1− p

)
− (1− y − z)

(p− z
1− z

)
≥
(
q − (1− p) ln

1

1− p

)
− (1− y − z)

(p− z
1− z

)
+ y
(1− p

1− z

)
≥ (q − e−1)− (1− y − z)

(p− z
1− z

)
+ y
(1− p

1− z

)
= q − λ− p+ y + z,

where the first inequality follows from q ≤ p and
(1 − p)y = 0, and the second inequality follows from
Lemma 4.11.

Lemma 4.13. Let P,Q, Y, Z ∈ [0, 1] be random vari-
ables satisfying constraints (4.24) and (4.25). Then
E[Q− P + Y + Z] ≤ e−1.

Proof. Pick U independent of (P,Q, Y, Z) according to
the probability density function ρU defined by (4.27).
Since constraint (4.24) is satisfied by (P,Q, Y, Z),
Lemma 4.12 implies

E[max(Q− (1− P )U, 0)

− (1− Y − Z) · 1[0,∞)(P − Z − (1− P )U)]

≥ E[Q− P + Y + Z]− e−1.
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Also since constraint (4.25) is satisfied by (P,Q, Y, Z),
constraint (4.26) is satisfied by (P,Q, Y, Z). Hence

0 ≥ E[max(Q− (1− P )U, 0)

− (1− Y − Z) · 1[0,∞)(P − Z − (1− P )U)]

Thus E[Q− P + Y + Z] ≤ e−1.

4.4 The Approximation Ratio. Lemma 4.14 be-
low is obtained by putting together the results in the
preceding subsections. Our main results are presented
in Theorems 4.1 and 4.2 and proved using Lemma 4.14.

Lemma 4.14.
∑
i∈I

∑
j∈J

xi,j ≤ (1 + e−1) · |µ|.

Proof. We may assume that I∗ is non-empty, for other-
wise Lemma 4.4 implies∑

i∈I

∑
j∈J

xi,j = |µ| = 0.

Let (P,Q, Y, Z) = (pi′ , qi′ , yi′ , zi′), where i′ is a man
picked uniformly at random from I∗. Then Lemmas 4.3
and 4.5 imply that (P,Q, Y, Z) satisfies (4.24). Also,
Lemma 4.7 implies that (P,Q, Y, Z) satisfies (4.25).
Hence Lemma 4.13 implies

e−1 ≥ E[Q− P + Y + Z] =
1

|I∗|
∑
i∈I∗

(qi − pi + yi + zi).

Thus Lemma 4.4 implies∑
i∈I

∑
j∈J

xi,j ≤ |I∗|+
∑
i∈I∗

(qi − pi + yi + zi)

≤ |I∗|+ e−1 · |I∗|
= (1 + e−1) · |µ|.

Theorem 4.1. Algorithms 1 and 2 are polynomial-time
(1 + e−1)-approximation algorithms for max-smoti.

Proof. By Lemma 3.4, Algorithms 1 and 2 each run in
polynomial time and produce a weakly stable matching
µ. Let µ′ be a maximum weakly stable matching, and
{x′i,j}(i,j)∈I×J be the indicator variables of µ′. Since µ′

is weakly stable, Lemma 2.1 implies that {x′i,j}(i,j)∈I×J
satisfies constraints (2.1), (2.2), (2.3), (2.4), and (2.5).
Hence Lemma 4.14 implies

(1 + e−1) · |µ| ≥
∑
i∈I

∑
j∈J

xi,j ≥
∑
i∈I

∑
j∈J

x′i,j = |µ′|,

where the second inequality follows from the optimality
of {xi,j}(i,j)∈I×J .

Theorem 4.2. The integrality gap of the LP formula-
tion in § 2.2 is 1 + e−1.

Proof. By Lemmas 3.4 and 4.14, there exists a weakly
stable matching µ such that

(1 + e−1) · |µ| ≥
∑
i∈I

∑
j∈J

xi,j .

Let {x′i,j}(i,j)∈I×J be the indicator variables of µ.
Since µ is weakly stable, Lemma 2.1 implies that
{x′i,j}(i,j)∈I×J is an integral solution satisfying con-
straints (2.1), (2.2), (2.3), (2.4), and (2.5). Since

(1 + e−1)
∑
i∈I

∑
j∈J

x′i,j = (1 + e−1) · |µ| ≥
∑
i∈I

∑
j∈J

xi,j ,

the integrality gap is at most 1+e−1. This upper bound
matches the known lower bound for the integrality
gap [14, § 5.1].

We remark that our analysis of the infinite-
dimensional factor-revealing LP in Lemma 4.13 is tight,
since our upper bound for the integrality gap is tight.
Similarly, our reformulation of the finite-dimensional
factor-revealing optimization problem into the infinite-
dimensional factor-revealing LP is tight in the limit as
|I∗| tends to infinity.
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A Proof of Lemma 3.1

The purpose of this section is to prove Lemma 3.1.
We begin by establishing additional properties of Algo-
rithm 1. It is straightforward to prove that throughout
any execution of Algorithm 1, the program variable µ
corresponds to a matching in the sense defined in § 2.1.
Likewise, where it is defined, the program variable µ0

corresponds to a matching. Accordingly, throughout
our analysis, we assume that µ and µ0 are matchings.
It is convenient to define the following predicates.

Q1(`): `i ≥i 0 for all i ∈ I.

Q2(`, µ): µ is a matching of G(`) such that for every
i ∈ I and j ∈ J , if i ∈ Ij(`) and i ≥j 0, then
µ(j) 6= 0.

Q3(`, p): for every i ∈ I, we have pi ≤ w(i, `i).

Q4(`, µ, p): for every i ∈ I such that µ(i) = 0, we have
pi = w(i, `i).

Q5(`, p): for every i ∈ I and j ∈ J such that j >i `i,
we have w(i, j) ≤ pi.

Q6(`, µ, p): for every i, i′ ∈ I and j ∈ J such that
(i, j) ∈ E(`) and µ(i′) = j, we have pi ≤ pi′ .

In addition we, define Q(`, µ, p) as the conjunction
of predicates Q1(`), Q2(`, µ), Q3(`, p), Q4(`, µ, p),
Q5(`, p), and Q6(`, µ, p).

Lemma A.1. Let `, µ, and p be such that Q(`, µ, p)
holds. Then P1(µ), P2(µ), P3(µ, p, 0), and P4(µ, p, 0)
hold.

Proof. We begin by proving that P1(µ) holds. Let
(i, j) ∈ µ. Since Q2(`, µ) holds, µ is matching of G(`).
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Since (i, j) ∈ µ and µ is a matching of G(`), we have
(i, j) ∈ E(`). Since (i, j) ∈ E(`), we have i ∈ Ij(`) and
i ≥j 0. Since i ∈ Ij(`), we have j >i `i. Since Q1(`)
holds, we have `i ≥i 0. Since j >i `i and `i ≥i 0, we
have j >i 0.

We now prove that P2(µ) holds. holds. Let i ∈ I
be a man and j ∈ J be a woman such that j ≥i µ(i)
and i ≥j 0. We prove that i ∈ Ij(`) by considering two
cases.

Case 1: µ(i) = 0. The loop termination condition
implies 0 ≥i `i. Since j ∈ J and j ≥i µ(i) = 0, we have
j >i 0. Since j >i 0 ≥i `i, we have i ∈ Ij(`).

Case 2: µ(i) 6= 0. Since (i, µ(i)) ∈ µ ⊆ E(`), we
have i ∈ Ij(`).

Having established that i ∈ Ij(`), we now complete
the proof that P2(µ) holds. Since i ∈ Ij(`) and
i ≥j 0, condition Q2(`, µ) implies µ(j) 6= 0. Since
(µ(j), j) ∈ E(`) and i ∈ Ij(`), the definition of E(`)
implies µ(j) ≥j i.

We now prove that P3(µ, p, 0) holds. Let i ∈ I be a
man. We consider two cases.

Case 1: µ(i) = 0. Since Q1(`) holds, we have
`i ≥i 0. Since µ(i) = 0 and `i ≥i 0, the loop termination
condition implies that `i = 0. Since `i = 0, we have
w(i, `i) = 1. Since µ(i) = 0, w(i, `i) = 1, and Q4(`, µ, p)
holds, we have pi = 1.

Case 2: µ(i) 6= 0. Let j denote µ(i). Since Q2(`, µ)
holds, µ is a matching of G(`). Since µ(i) = j and
µ is a matching of G(`), we have (i, j) ∈ E(`). Since
(i, j) ∈ E(`), we have i ∈ Ij(`) and hence j >i `i. Since
j >i `i and Q5(`, p) holds, we have w(i, j) ≤ pi. It
remains to argue that pi ≤ 1. Since constraint (2.1)
holds, we have w(i, `i) ≤ 1. Since w(i, `i) ≤ 1 and
Q3(`, p) holds, we have pi ≤ 1.

It remains to prove that P4(µ, p, 0) holds. Let i ∈ I
be a man and j ∈ J be a woman such that j ≥i 0, i ≥j 0,
and pi > w(i, j). Since pi > w(i, j) and Q3(`, p) holds,
we have j >i `i and hence i ∈ Ij(`). Since i ∈ Ij(`),
i ≥j 0, and Q2(`, µ) holds, we know that µ is a matching
of G(`) with µ(j) 6= 0. Let i′ ∈ I denote µ(j). Since µ
is a matching of G(`) and (i′, j) belongs to µ, we have
(i′, j) ∈ E(`). Since (i′, j) ∈ E(`) and i ∈ Ij(`), the
definition of E(`) implies that i′ ≥j i. It remains to
prove that if i′ =j i then pi ≤ pi′ . Assume i′ =j i.
Since (i′, j) ∈ E(`), i ∈ Ij(`), and i′ =j i, the definition
of E(`) implies that (i, j) ∈ E(`). Since (i, j) ∈ E(`),
µ(i′) = j, and Q6(`, µ, p) holds, we have pi ≤ pi′ .

The following lemma is proven in §A.1.

Lemma A.2. Consider an iteration of the Algorithm 1
loop. Let `−, µ−, and p− denote the values of `, µ,
and p at the start of the iteration. Assume that the loop
condition is satisfied, and that Q(`−, µ−, p−) holds. Let

`+, µ+, and p+ denote the values of `, µ, and p at the
end of the iteration. Then Q(`+, µ+, p+) holds.

Proof of Lemma 3.1. Fix an execution of Algorithm 1.
It is straightforward to verify that Q(`, µ, p) holds the
first time the loop is reached. Lemma A.2 implies that
Q(`, µ, p) holds upon termination of the loop. Thus the
claim of the lemma follows by Lemma A.1.

A.1 Proof of Lemma A.2. The purpose of this
section is to prove Lemma A.2. Throughout this section,
we fix an iteration of the Algorithm 1 loop. Let `−,
µ−, and p− denote the values of `, µ, and p before the
iteration, and let `+, µ+, p+ denote the values of `,
µ, and p after the iteration. Assume that `− and µ−

are such that the loop condition holds, so that the loop
body is executed.

Lemma A.3. Assume that Q1(`−) holds. Then Q1(`+)
holds.

Proof. The only line in the loop body that modifies ` is
line 8, which updates `i0 . The definition of i0 implies
that `−i0 >i0 0. It follows that `+i0 ≥i0 0 holds.

The following lemma characterizes how E(`)
changes in a single iteration of the loop of Algorithm 1.
We omit the proof, which is straightforward but tedious.

Lemma A.4. Assume that Q2(`−, µ−) holds. Then the
following claims hold: (1) µ−(j) ≥j 0 for all j ∈ J ; (2)
if i0 <j0 µ

−(j0), then E(`+) = E(`−); (3) if µ−(j0) = 0
and i0 ≥j0 0, then E(`+) = E(`−) ∪ {(i0, j0)}; (4) if
µ−(j0) 6= 0 and i0 =j0 µ

−(j0), then E(`+) = E(`−) ∪
{(i0, j0)}; (5) if µ−(j0) 6= 0 and i0 >j0 µ−(j0), then
E(`+) = {(i, j) ∈ E(`−) : j 6= j0} ∪ {(i0, j0)}.

Lemma A.5. Assume that Q2(`−, µ−) holds. Then
Q2(`+, µ+) holds. Furthermore, if µ−(j0) 6= 0 or 0 >j0
i0, then Q2(`+, µ0) holds.

Proof. Since Q2(`−, µ−) holds, we know that µ− is a
matching of G(`−). Let i ∈ I and j ∈ J be such that
i ∈ Ij(`+) and i ≥j 0.

Case 1: µ−(j0) = 0 and i0 ≥j0 0. Then µ+ = µ− ∪
{(i0, j0)}. Since µ−(j0) = 0, i0 ≥j0 0, and Q2(`−, µ−)
holds, part (3) of Lemma A.4 implies that E(`+) =
E(`−) ∪ {(i0, j0)}. Since µ− is a matching of G(`−),
µ−(i0) = 0, µ−(j0) = 0, E(`+) = E(`−) ∪ {(i0, j0}, and
µ+ = µ− ∪ {(i0, j0)}, we find that µ+ is a matching of
G(`+). To establish that Q2(`+, µ0) holds, it remains
to prove that µ+(j) 6= 0.

Case 1.1: j 6= j0. Then Ij(`
+) = Ij(`

−), and hence
i ∈ Ij(`

−). Since i ∈ Ij(`
−), i ≥j 0, and Q2(`−, µ−)

holds, we have µ−(j) 6= 0. Since µ+ = µ− ∪ {(i0, j0)}

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited



and j 6= j0, we have µ+(j) = µ−(j). Since µ+(j) =
µ−(j) and µ−(j) 6= 0, we have µ+(j) 6= 0.

Case 1.2: j = j0. Since µ+ = µ− ∪ {(i0, j0)}, µ+

is a matching of G(`+), and j = j0, we deduce that
µ+(j) = i0 6= 0.

Case 2: µ−(j0) 6= 0 or 0 >j0 i0. We need to prove
that Q2(`+, µ0) and Q2(`+, µ+) hold. We begin by
establishing two useful claims.

The first claim is that µ0 is a matching of G(`+)
that matches the same set of women as µ−. To prove
this claim, we consider three cases.

(a) i0 <j0 µ−(j0). Then i1 = i0 and part (2) of
Lemma A.4 implies E(`+) = E(`−). Since i1 = i0,
we have µ0 = µ−. Since µ0 = µ−, E(`+) = E(`−),
and µ− is a matching of G(`−), the claim follows.

(b) i0 =j0 µ
−(j0). Then part (4) of Lemma A.4 implies

E(`+) = E(`−) ∪ {(i0, j0)}. Since µ0 = (µ− ∪
{(i0, j0)}) \ {(i1, j0)}, E(`+) = E(`−) ∪ {(i0, j0)},
and µ− is a matching of G(`−), the claim follows.

(c) i0 >j0 µ−(j0). Then i1 6= i0 and part (5) of
Lemma A.4 implies E(`+) = {(i, j) ∈ E(`−) : j 6=
j0} ∪ {(i0, j0)}. Since µ0 = (µ− ∪ {(i0, j0)}) \
{(i1, j0)}, E(`+) = {(i, j) ∈ E(`−) : j 6= j0} ∪
{(i0, j0)}, and µ− is a matching of G(`−), the claim
follows.

The second claim is that µ+ is a matching of G(`+)
that matches the same set of women as µ0. Since
µ0 is a matching of G(`+) and µ+ is the symmetric
difference between µ0 and an oriented µ0-alternating
path in G(`+) from i1 to i2, the second claim follows.

Given the two preceding claims, we can establish
that Q2(`+, µ0) and Q2(`+, µ+) hold by proving that
µ−(j) 6= 0. If j = j0, the latter inequality follows from
the Case 2 condition. Now suppose that j 6= j0. Then
Ij(`

+) = Ij(`
−), and hence i ∈ Ij(`−). Since i ∈ Ij(`−),

i ≥j 0, and Q2(`−, µ−) holds, we have µ−(j) 6= 0.

Lemma A.6. Assume that Q3(`−, p−) holds. Then
Q3(`+, p+) holds.

Proof. Let i ∈ I. We consider two cases.
Case 1: p+i = p−i . Since Q3(`−, p−) holds, we have

p−i ≤ w(i, `−i ). Line 8 of Algorithm 1 implies w(i, `−i ) ≤
w(i, `+i ). Thus p+i = p−i ≤ w(i, `−i ) ≤ w(i, `+i ).

Case 2: p+i 6= p−i . Then line 17 of Algorithm 1
implies i ∈ I0 and p+i = w(i2, `

+
i2

). Since i ∈ I0,

line 15 of Algorithm 1 implies w(i2, `
+
i2

) ≤ w(i, `+i ).

Thus p+i = w(i2, `
+
i2

) ≤ w(i, `+i ).

Lemma A.7. Assume Q3(`−, p−) and Q4(`−, µ−, p−)
hold. Then Q4(`+, µ+, p+) holds.

Proof. Let i ∈ I be such that µ+(i) = 0. Since
Q3(`−, p−) holds, Lemma A.6 implies that p+i ≤
w(i, `+i ). Thus it is sufficient to prove that p+i ≥
w(i, `+i ). We consider two cases.

Case 1: µ−(j0) = 0 and i0 ≥j0 0. In this case, we
have p+i = p−i . Since µ+(i) = 0, line 10 of Algorithm 1
implies i 6= i0 and µ−(i) = 0. Since µ−(i) = 0,
condition Q4(`−, µ−, p−) implies p−i = w(i, `−i ). Since
i 6= i0, line 8 of Algorithm 1 implies w(i, `−i ) = w(i, `+i ).
Thus p+i = p−i = w(i, `−i ) = w(i, `+i ).

Case 2: µ−(j0) 6= 0 or 0 >j0 i0. We consider two
subcases.

Case 2.1: i = i2. Then line 15 of Algorithm 1
implies i2 ∈ I0. Since i2 ∈ I0, line 17 of Algorithm 1
implies p+i2 ≥ w(i2, `

+
i2

).
Case 2.2: i 6= i2. Since µ+(i) = 0, i 6= i2, and {i′ ∈

I : µ+(i′) 6= 0} = ({i′ ∈ I : µ−(i′) 6= 0} ∪ {i0}) \ {i2},
we deduce that i 6= i0 and µ−(i) = 0. Line 17 of
Algorithm 1 implies p+i ≥ p−i . Since µ−(i) = 0 and
Q4(`−, µ−, p−) holds, we have p−i = w(i, `−i ). Since
i 6= i0, line 8 of Algorithm 1 implies w(i, `−i ) = w(i, `+i ).
Thus p+i ≥ p

−
i = w(i, `−i ) = w(i, `+i ).

Lemma A.8. Assume Q4(`−, µ−, p−) and Q5(`−, p−)
hold. Then Q5(`+, p+) holds.

Proof. Let i ∈ I and j ∈ J be such that j >i `
+
i . Line 17

of Algorithm 1 implies p+i ≥ p
−
i . We consider two cases.

Case 1: j >i `
−
i . Then Q5(`−, p−) implies p−i ≥

w(i, j). Thus p+i ≥ p
−
i ≥ w(i, j).

Case 2: `−i ≥i j. Since `−i ≥i j >i `
+
i , line 8

of Algorithm 1 implies i = i0 and j = `−i . Since
i = i0 and µ−(i0) = 0, condition Q4(`−, µ−, p−) implies
p−i = w(i, `−i ). Thus p+i ≥ p

−
i = w(i, `−i ) = w(i, j).

Lemma A.9. Assume that µ−(j0) 6= 0 or 0 >j0 i0. Fur-
ther assume that Q3(`−, p−) and Q6(`−, µ−, p−) hold.
Then the following conditions hold: (1) Q6(`+, µ0, p

−);
(2) Q6(`+, µ0, p

+); (3) p+i = w(i2, `
+
i2

) for every man i
on path π0; (4) Q6(`+, µ+, p+).

Proof.

(1) Let i, i′ ∈ I and j ∈ J be such that (i, j) ∈ E(`+)
and µ0(i′) = j. We need to prove that p−i ≤ p−i′ .
We consider two cases.

Case 1: j 6= j0. Since j 6= j0, we have µ−(j) =
µ0(j) = i′. In addition, Lemma A.4 implies that
(i, j) ∈ E(`−). Since µ−(j) = i′, (i, j) ∈ E(`−),
and Q6(`−, µ−, p−) holds, we conclude that p−i ≤
p−i′ .

Case 2: j = j0. Thus i′ = µ0(j0). Let i′′ ∈ I denote
µ−(j0). We consider two subcases.
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Case 2.1: i 6= i0. Since i 6= i0, Lemma A.4 implies
that (i, j0) ∈ E(`−). Since (i, j0) ∈ E(`−) and
Q6(`−, µ−, p−) holds, we have p−i ≤ p−i′′ . Since
i 6= i0 and (i, j0) ∈ E(`+), Lemma A.4 implies
that i ≥j0 i0. Since i ≥j0 i0, lines 12 and 13 of
Algorithm 1 imply that p−i′′ ≤ p−i′ . Since p−i ≤ p−i′′
and p−i′′ ≤ p

−
i′ , we have p−i ≤ p

−
i′ .

Case 2.2: i = i0. Since (i0, j0) ∈ E(`+), we have
i0 ≥j0 i′′. Since i0 ≥j0 i′′, lines 12 and 13 of
Algorithm 1 imply that p−i0 ≤ p

−
i′ .

(2) Let i, i′ ∈ I and j ∈ J be such that (i, j) ∈ E(`+)
and µ0(i′) = j. By part (1), we have p−i ≤ p−i′ .
We need to prove that p+i ≤ p+i′ . If i = i′, this
inequality is immediate, so we can assume that
i 6= i′. We consider two cases.

Case 1: p+i = p−i . We have p+i = p−i ≤ p
−
i′ ≤ p

+
i′ .

Case 2: p+i 6= p−i . In this case, i belongs to I0 and
p+i = w(i2, `

+
i2

). Moreover, i′ also belongs to I0 and

hence p+i′ ≥ w(i2, `
+
i2

). Thus p+i ≤ p
+
i′ .

(3) Let i1 = i′1, . . . , i
′
s = i2 denote the sequence of men

on path π0. By part (1), we have p−i′t
≤ p−i′t+1

for

1 ≤ t < s. It follows that p−i ≤ p−i2 for every
man i on path π0. Since Q3(`−, p−) holds, we have
p−i2 ≤ w(i2, `

−
i2

) ≤ w(i2, `
+
i2

). Thus p−i ≤ w(i2, `
+
i2

)
for every man i on path π0. Since every man on
path π0 belongs to I0, line 17 of Algorithm 1 implies
that p+i = w(i2, `

+
i2

) for every man i on path π0.

(4) Let J ′ denote the set of women who are matched in
µ0. Line 18 of Algorithm 1 ensures that the set of
women who are matched in µ+ is also J ′. Moreover,
by part (3), p+µ+(j) = p+µ0(j)

for every woman j in J ′.

Consequently, part (2) implies that Q6(`+, µ+, p+)
holds.

Lemma A.10. Assume that Q2(`−, µ−), Q3(`−, p−),
and Q6(`−, µ−, p−) hold. Then Q6(`+, µ+, p+) holds.

Proof. If µ−(j0) 6= 0 or 0 >j0 i0, then part (4) of
Lemma A.9 implies that Q6(`+, µ+, p+) holds. For
the remainder of the proof, assume that µ−(j0) = 0
and i0 ≥j0 0. Thus µ+ = µ− ∪ {(i0, j0)}, p+ = p−,
and part (3) of Lemma A.4 implies E(`+) = E(`−) ∪
{(i0, j0)}.

Let i, i′ ∈ I and j ∈ J be such that (i, j) ∈ E(`+)
and µ+(i′) = j. We need to prove that p+i ≤ p+i′ . We
consider two cases.

Case 1: j 6= j0. Since j 6= j0 and µ+ is equal to
µ− ∪ {(i0, j0)}, we have µ−(j) = µ+(j) = i′. Since
(i, j) ∈ E(`+) = E(`−) ∪ {(i0, j0)} and j 6= j0, we have
(i, j) ∈ E(`−). Since (i, j) ∈ E(`−), µ−(i′) = j, and

Q6(`−, µ−, p−) holds, we have p−i ≤ p
−
i′ . Since p−i ≤ p

−
i′

and p+ = p−, we have p+i ≤ p
+
i′ .

Case 2: j = j0. Since µ−(j0) = 0 and Q2(`−, µ−)
holds, we deduce that none of the edges in E(`−) are
incident on j0. Since j = j0 and none of the edges in
E(`−) are incident on j0, we have (i, j) 6∈ E(`−). Since
(i, j) 6∈ E(`−) and (i, j) ∈ E(`+) = E(`−) ∪ {(i0, j0)},
we have (i, j) = (i0, j0). Since µ+ = µ− ∪ {(i0, j0)}, we
have µ+(j0) = i0. Since (i, j) = (i0, j0) and µ+(j0) = i0,
we have i′ = µ+(j) = µ+(j0) = i0 = i. Since i = i′ we
have p+i = p+i′ .

Proof of Lemma A.2. Immediate from Lemmas A.3,
A.5, A.6, A.7, A.8, and A.10.

B Proofs of Lemmas 3.2 and 3.3

The purpose of this section is to prove Lemmas 3.2
and 3.3. For any `, any matching µ, and any men
i, i′ ∈ I, we define an oriented µ-alternating path in
G(`) from i to i′ as a µ-alternating path π in G(`) such
that no edge in π ∩ µ is incident on i.

Lemma B.1. Let `, µ, and p satisfy Q6(`, µ, p), let
i, i′ ∈ I, and let π be an oriented µ-alternating path
in G(`) from i to i′. Then pi ≤ pi′ .

Proof. If i = i′ then pi = pi′ , so we can assume that
i 6= i′. Let i = i1, i2, . . . , ik = i′ denote the sequence
of k > 1 men appearing on path π. Since Q6(`, µ, p)
holds and π is an oriented µ-alternating path in G(`)
from i to i′, we deduce that pij ≤ pij+1

for all j such
that 1 ≤ j < k. Hence pi = pi1 ≤ pik = pi′ .

Lemma B.2. Let `, µ, and p satisfy Q2(`, µ), Q3(`, p),
Q4(`, µ, p), and Q6(`, µ, p). Then µ is an MWMCM of
G(`).

Proof. Since Q2(`, µ) holds, µ is an MCM of G(`). Let
µ′ be an MWMCM of G(`). Since µ′ is an MCM of
G(`), Q2(`, µ) implies that µ and µ′ match the same
set of women. Thus µ ⊕ µ′ corresponds to a collection
X of cycles (of positive even length) and man-to-man
paths (of positive even length). For any cycle γ in X ,
the edges of µ on γ match the same set of men as the
edges of µ′ on γ. Thus the total weight (in G(`)) of the
edges of µ on γ is equal to the total weight of the edges
of µ′ on γ.

Now consider a man-to-man path π in X . Let the
endpoints of π be i and i′, where i is matched in µ
and not in µ′, and i′ is matched in µ′ and not in µ.
Since µ′ is an MWMCM of G(`), and since µ′ ⊕ π is an
MCM of G(`), we deduce that w(i, `i) ≤ w(i′, `i′). Since
µ(i′) = 0 and Q4(`, µ, p) holds, we have pi′ = w(i′, `i′).
SinceQ6(`, µ, p) holds and π is an oriented µ-alternating
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path in G(`) from i to i′, Lemma B.1 implies that
pi ≥ pi′ . Since Q3(`, p) holds, we have pi ≤ w(i, `i).
Since pi ≥ pi′ and pi ≤ w(i, `i) ≤ w(i′, `i′) = pi′ , we
deduce that pi = w(i, `i) = w(i′, `i′) = pi′ . Thus the
total weight (in G(`)) of the edges of µ on π is equal to
the total weight of the edges of µ′ on π.

The foregoing analysis of the cycles and paths in X
implies that the weight of µ is equal to that of µ′, and
hence that µ is an MWMCM of G(`).

Proof of Lemma 3.2. It is easy to check that µ is an
MWMCM of G(`) when the Algorithm 1 loop is first
encountered. Hence the claim of the lemma follows by
Lemmas A.2 and B.2.

Lemma B.3. Let `, µ, and p satisfy Q2(`, µ), Q3(`, p),
Q4(`, µ, p), and Q6(`, µ, p), and let µ′ be an MWMCM
of G(`). Then Q2(`, µ′), Q4(`, µ′, p), and Q6(`, µ′, p)
hold.

Proof. Lemma B.2 implies that µ is an MWMCM of
G(`). Let J ′ denote the set of women with nonzero
degree in G(`). Since Q2(`, µ) holds, the set of women
matched by µ is J ′. Since µ′ is an MCM, we deduce
that the set of women matched by µ′ is also J ′, and
hence that Q2(`, µ′) holds. Thus µ⊕ µ′ corresponds to
a collection X of cycles (of positive even length) and
man-to-man paths (of positive even length).

Consider a cycle γ in X . Since Q6(`, µ, p) holds and
there is an oriented µ-alternating path in G(`) from i
to i′ for every pair of men i and i′ on γ, Lemma B.1
implies that pi = pi′ for all men i and i′ on γ.

Consider a path π in X . Let the endpoints of π
be i and i′, where i is matched in µ and not in µ′,
and i′ is matched in µ′ and not in µ. Since Q6(`, µ, p)
holds and π is an oriented µ-alternating path in G(`)
from i′ to i, there are oriented µ-alternating paths in
G(`) from i′ to i′′ and from i′′ to i for every man i′′

on π. Thus Lemma B.1 implies that pi′ ≤ pi′′ ≤ pi for
every man i′′ on π. Since µ and µ′ are each MWMCMs,
and µ ⊕ π and µ′ ⊕ π are MCMs of G(`), we deduce
that w(i, `i) = w(i′, `i′). Since Q4(`, µ, p) holds, we
have pi′ = w(i′, `i′). Since Q3(`, p) holds, we have
pi ≤ w(i, `i). Since pi ≤ w(i, `i) = w(i′, `i′) = pi′ ≤ pi,
we deduce that pi = w(i, `i) = pi′ . Since pi = w(i, `i),
we conclude that Q4(`, µ′, p) holds. Since pi = pi′ and
pi′ ≤ pi′′ ≤ pi for every man i′′ on π, we deduce that
pi = pi′′ for every man i′′ on π.

The foregoing analysis of the cycles and paths in
X implies that pµ(j) = pµ′(j) for every woman j in
J ′. Since Q6(`, µ, p) holds, we deduce that Q6(`, µ′, p)
holds.

We now use our results concerning Algorithm 1 to
reason about Algorithm 2. To do this, it is convenient to

introduce an intermediate algorithm, which we define by
modifying Algorithm 1 as follows: At the end of each
iteration of the while loop, update the matching µ to
to an arbitrary MWMCM of G(`). We refer to this
intermediate algorithm as Algorithm 3.

Lemma B.4. Consider an iteration of the Algorithm 3
loop. Let `−, µ−, and p− denote the values of `, µ,
and p at the start of the iteration. Assume that the loop
condition is satisfied, and that Q(`−, µ−, p−) holds. Let
`+, µ+, and p+ denote the values of `, µ, and p at the
end of the iteration. Then Q(`+, µ+, p+) holds.

Proof. Lemma A.2 implies that Q(`, µ, p) holds just be-
fore µ is updated to an arbitrary MWMCM of G(`).
Lemma B.2 implies that µ is an MWMCM of G(`) at
this point in the execution. Thus Lemma B.3 implies
that Q2(`+, µ+), Q4(`+, µ+, p+), and Q6(`+, µ+, p+)
hold. Since Q(`, µ, p) holds just before µ is up-
dated to an arbitrary MWMCM of G(`), we conclude
that Q1(`+), Q3(`+, p+) and Q5(`+, p+) hold. Hence
Q(`+, µ+, p+) holds, as required.

The converse of the following lemma also holds, but
we only need the stated direction.

Lemma B.5. Fix an execution of Algorithm 2, and let
n denote the number of times the body of the loop is
executed. For 0 ≤ i ≤ n, let `(i) and µ(i) denote
the values of the corresponding program variables after
i iterations of the loop. Then there is an n-iteration
execution of Algorithm 3 such that, for 0 ≤ i ≤ n, the
program variables ` and µ are equal to `(i) and µ(i),
respectively, after i iterations of the loop.

Proof. Observe that Algorithms 2 and 3 are equivalent
in terms of their initialization of ` and µ, and also in
terms of the set of possible updates to ` and µ associated
with any given iteration. (While Algorithm 3 also
maintains a priority vector p, this priority vector has
no influence on the overall update applied to ` and µ in
a given iteration.) Given this observation, the claim of
the lemma is straightforward to prove by induction on
i.

Proof of Lemma 3.3. Fix an execution of Algorithm 2,
and let `∗ and µ∗ denote the final values of ` and µ.
Lemma B.5 implies that there exists an execution of
Algorithm 3 with the same final values of ` and µ. Fix
such an execution of Algorithm 3, and let p∗ denote
the final value of p. It is straightforward to verify that
Q(`, µ, p) holds the first time the loop is reached in this
execution of Algorithm 3. Thus, Lemma B.4 implies
that Q(`∗, µ∗, p∗) holds. Hence the claim of the lemma
follows by Lemma A.1.
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