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1. INTRODUCTION

Speci�cations that document the interfaces of program parts [Guttag et al. 1993;
Jones 1990; Meyer 1997; Wing 1987; 1990] can play a central role in programming,
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recording the intended behavior of program parts. This information is key for main-
tenance, since code alone cannot reveal what was intended. When debugging one
can use speci�cations to isolate faults and assign blame [Findler and Felleisen 2002;
Liskov and Guttag 1986; Meyer 1992]. Speci�cations can also de�ne a standard of
correctness for testing.
Formal speci�cations have additional bene�ts. Formal, i.e., mathematically pre-

cise, notation makes them unambiguous, less dependent on cultural norms1, and
thus less likely to be misunderstood. Formal speci�cations can help automate test-
ing, both in helping decide on test results [Cheon and Leavens 2002; Peters and
Parnas 1998] and in creation of test data [Bernot et al. 1991; Chang et al. 1996;
Crowley et al. 1996; Jalote 1992; Korel and Al-Yami 1998; Richardson 1994; Sankar
and Hayes 1994], and are a key ingredient in modular veri�cation. During develop-
ment, formal speci�cations can also serve as a starting place for transformational
development [Abadi and Lamport 1988; Abrial 1996; Hehner 1993; Jones 1990;
Morgan 1994; Morgan and Vickers 1994; Morris 1980; Partsch and Steinbrüggen
1983] or the search for reusable components [Zaremski and Wing 1997].
In this survey, we focus mainly on expressing properties that enable or help

one verify that part of a program satis�es certain properties. Such properties can
range from the absence of certain known programming faults to the satisfaction of
all properties that the program must satisfy. We discuss many examples of such
properties below.
We intend this survey to be interesting for readers who want to:

�learn ways to specify or describe software properties, e.g., for use by veri�cation
or static analysis tools, or

�design a formal speci�cation language for documenting detailed designs.

In particular, we hope that this survey will be useful to researchers participating
in the Veri�ed Software Initiative (VSI) [Hoare 2005; Hoare et al. 2007]. This goal,
and space limitations, motivate our focus on detailed design speci�cations for code.

1.1 Brief Background

The term speci�cation generally means a precise description of the behavior of
some artifact, such as an abstract data type. Speci�cations are often used to
record agreements, or contracts [Liskov and Guttag 1986; Meyer 1992], between
a software artifact's implementors and its clients. We use formal speci�cation for
speci�cations with a mathematically precise semantics. Veri�cation means proving
that an implementation satis�es a particular speci�cation in every possible execu-
tion. Usually such a proof is accomplished by static reasoning, but it is possible to
combine static reasoning with dynamic checks (such as runtime assertion checking)
[Geller 1978; Flanagan 2006].
Speci�cations are used in many di�erent parts of di�erent software processes.

Requirements on a system's software as a whole (the �machine� [Jackson 1995]) are
recorded in a requirements speci�cation [van Lamsweerde 2000; Heitmeyer et al.
2007]. Such requirements speci�cations are crucial for software engineering, since
nothing else matters if the software is solving the wrong problem [Brooks 1987].

1For example, a �billion,� means 109 in the US, but 1012 in Britan [Liskov and Guttag 1986].
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The architecture of a program can also be recorded in an architectural speci�ca-
tion, documenting permitted connections between components [Aldrich et al. 2002;
Garlan et al. 2000]. Domain analysis and modeling produces precise mathematical
descriptions of data and operations that form a useful vocabulary for writing speci-
�cations and exploring design decisions in a particular application area [Hayes 1993;
Jackson and Rinard 2000; Jackson 2006; Spivey 1989]. Algebraic speci�cation tech-
niques are particularly well suited to describing such domain models [Bidoit et al.
1991; CoFI (The Common Framework Initiative) 2004; Goguen et al. 1978; Gut-
tag and Horning 1978; Guttag et al. 1993; Wand 1979; Wirsing 1990] (although
they have other uses as well [Boehm 1985; Goguen and Malcolm 1996; Hoare et al.
1987]).

Our focus in this paper is on a lower level of abstraction: recording detailed design
decisions about program modules that will be useful in coding. Wing [Wing 1987;
1990] and Lamport [Lamport 1989] called such speci�cations interface speci�cations,
since they document both the interface between such modules and their behavior.
However, the term �interface speci�cation� tends to be confused with very weak
speci�cations that document just the syntactic interface of various modules, such
as the names and types of methods [Object Management Group 1992]. Thus some
authors use the term behavioral interface speci�cation [Cheon and Leavens 1994a]
to emphasize the behavioral component of such speci�cations, such as pre- and
postconditions.

Speci�cations can be stated in a variety of forms, some of which more tightly
constrain software than others. An ideal might be a speci�cation that describes
all the required functional behavior (i.e., inputs and outputs) of an entire software
system. Ideally, such a speci�cation would be a re�nement of a requirements spec-
i�cation. A speci�cation B re�nes speci�cation A if every implementation that
satis�es B also satis�es A. When one has the luxury of designing from such a
functional speci�cation of a system, careful processes can yield higher productivity
and leave behind a rational design history [Barnes et al. 2006; Chapman 2000; Hall
and Chapman 2002; King et al. 1999]. However, one is often faced with an extant
program and nothing like a complete speci�cation of a system's functional behavior;
in such cases one might wish to verify that the program satis�es a weaker, implicit
speci�cation � that certain programming errors (e.g., dereferencing a null pointer)
cannot occur [Sites 1974; German 1978; Detlefs et al. 1998]. A basic distinction is
between such safety properties, which say that nothing bad happens, and liveness
properties [Manna and Pnueli 1992]. A liveness property says that something good
eventually happens, for example, that a system eventually responds to a request.
Another kind of speci�cation concerns resource usage, such as timing constraints
or constraints on maximum memory usage.

A speci�cation language, which is a formal language capable of recording proper-
ties, can be designed to be general or specialized. General speci�cation languages,
such as Z [Hayes 1993; Spivey 1989] and OCL [OMG 2006; Warmer and Kleppe
1999], are not tailored to any speci�c methodology or veri�cation tool. However,
speci�cation languages are often specialized. Some are specialized to support a
particular methodology, such as Ei�el's support for design by contract (and dy-
namic checking) [Meyer 1997] or RESOLVE's [Edwards et al. 1994] avoidance of
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aliasing by using swapping instead of assignment [Harms and Weide 1991]. Many
others are specialized to support some particular automated veri�cation technique
such as Promela's support for the SPIN model checker [Holzmann 1991]. However,
with the recognition that there are interesting synergies between several veri�cation
techniques, such as static and dynamic checking [Ernst 2003; Flanagan 2006], some
languages, such as JML [Burdy et al. 2005; Leavens et al. 2008], have been designed
to support multiple tools.
In this survey, we make special e�orts to highlight the interplay between speci-

�cation language design and automated veri�cation techniques. Designing a speci-
�cation language to �t a particular veri�cation technique can be an excellent way
to make that veri�cation technique widely available and easily usable. Conversely,
one important aim of veri�cation technology is to support clear and precise com-
munication with human readers; thus new speci�cation language features provide
interesting challenges to those interested in veri�cation technology.
Veri�cation technology is also closely tied to semantics. A veri�cation logic is a

formal reasoning system that allows proofs that code satis�es a speci�cation [Apt
1981; Apt and 0lderog 1991; Bjørner and Henson 2008; Cousot 1990; Emerson 1990;
Francez 1992; Hoare 1969; Kozen and Tiuryn 1990; Manna and Pnueli 1992]. While
it is, in principle, possible to directly use program semantics (such as denotational
[Schmidt 1986; 1994; Scott and Strachey 1971] or structural operational [Astesiano
1991; Hennessy 1990; Plotkin 1977; 1981] semantics) to specify and verify programs,
it is often more convenient to encapsulate reusable proof principles for a given
programming language in a veri�cation logic. Then one uses the veri�cation logic
to prove correctness. That such proofs are sound (or valid) is proved using the
language's semantics [Apt 1981; Apt and Olderog 1997; Loeckx and Sieber 1987;
Winskel 1993]. On the other hand, model checking [Clarke et al. 1986; Edmund
M. Clarke et al. 1999; Holzmann 1997] uses state space exploration techniques to
verify programs, which is directly based on the semantics of �nite state machines.

1.2 Kinds of Speci�cation Languages

We organize the survey around classes of properties. As a prelude to discussion of
the classes of properties we survey, we present a broader categorization of possible
kinds of properties and their relation to known speci�cation languages.

�Requirements-level properties (whole system speci�cations), and requirements
speci�cation languages such as SCR [Heitmeyer et al. 1998; Heitmeyer and Jef-
fords 2007; Je�ords and Heitmeyer 1998], RSML and its variants [Heimdahl et al.
2003; Leveson et al. 1999], FSP [Kramer and Magee 2006; Magee and Kramer
2005], CSP [Brookes et al. 1984; Hoare 1985; Roscoe 1994], parts of the UML
[Arlow and Neustadt 2005; Rumbaugh et al. 1999] such as Statecharts [Harel
et al. 1990; Harel 1987], etc.

�Analysis-level properties that express concepts in a domain. These include:
�Functional behavior properties describe the (data) values associated with sys-
tem operations or state changes and that include types that may take on a
potentially in�nite number of values. Such properties typically describe the
relationships between inputs and outputs, and thus typically do not involve
more than two states. Analysis speci�cation languages that describe func-
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tional behavior include Alloy [Jackson 2006], Z [Hayes 1993; Spivey 1989],
TLA [Lamport 1994], ASML [Börger and Stärk 2003; Gurevich 1991], and al-
gebraic equational speci�cation languages [Bidoit et al. 1991; Goguen et al.
1978; Wirsing 1990] such as LSL [Guttag and Horning 1986] and Casl [CoFI
(The Common Framework Initiative) 2004; Mossakowski et al. 2008]. Some
re�nement-oriented languages, such as B [Abrial 1996], have the capability to
state speci�cations at this level and also lower levels.

�Temporal properties describe a �nite set of events (i.e., states) and properties
of a system's (potentially in�nite) sequences of events. Such properties typi-
cally do not involve in�nite sets of data values. Temporal properties can be
expressed in temporal logic [Emerson 1990; Manna and Pnueli 1992], or event-
based speci�cation languages such as Statemate [Harel et al. 1990], Petri nets
[Peterson 1977; 1981], and process algebras [Hennessy and Milner 1985; Milne
and Milner 1979; Milner 1990; 1991; Milner et al. 1992].

�Resource properties state constraints on how much of some resource, such as
time or space, may be used by an operation or may be used between a pair
of events. Timing constraints are especially important for the modeling and
analysis of real-time systems [Alur and Henzinger 1992; Jahanian and Mok
1986]. Such properties can be expressed in speci�cation languages such as
timed automata [Alur et al. 1990], TPTL [Alur and Henzinger 1994], met-
ric temporal logic [Ouaknine and Worrell 2005], HighSpec [Dong et al. 2006],
CS-OZ-DC [Olderog 2008], Uppaal [Larsen et al. 1997], Esterel [Berry 2000],
Lustre [Halbwachs et al. 1992; Halbwachs 2005; Pilaud et al. 1987], and the
duration calculus [Hansen 2008]. [Bellini et al. 2000] survey speci�cation lan-
guages build on temporal logic for real-time system speci�cation.

�Blends of the above (values and events), with languages such as CSP [Brookes
et al. 1984; Hoare 1985; Roscoe 1994], RAISE [Nielsen et al. 1989; George and
Haxthausen 2008].

�Properties of code and interface speci�cation languages. These include:

�Functional properties of data, such as pre- and postconditions, invariants,
frame axioms, etc. This includes properties speci�ed both as types and as
more general assertions. Type systems are convenient ways to state invariant
properties that are true in all states. Types can concisely state a �nite set
of invariant properties, such as non-nullness and numerical range restrictions
[Nielson 1996] and can also encode general predicates with the aid of depen-
dent type constructors [Backhouse et al. 1989; Lampson and Burstall 1988;
Constable et al. 1986; Schmidt 1994; Martin-Löf 1985]. Functional properties
of data for imperative languages often hold only at certain program points,
so design-by-contract style speci�cation languages rely heavily on one or two-
state assertions, including pre- and postconditions, as well as invariants. This
style of speci�cation language is typi�ed by Ei�el [Ei�el 2005; 1997] and in-
cludes languages such as Gypsy [Ambler et al. 1977], Anna [Luckham and von
Henke 1985; Luckham 1990], SPARK [Barnes 1997; Chapman 2000], VDM
[Andrews 1996; Fitzgerald and Larsen 1998; Fitzgerald 2008; Jones 1990],
VDM++ [Fitzgerald et al. 2005; Mitra 1994], Larch interface speci�cation lan-
guages [Guttag et al. 1993; Guttag et al. 1985; Wing 1987] (such as LM3
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[Jones 1991], LCL [Guttag and Horning 1991; Tan 1995], Larch/C++ [Cheon
and Leavens 1994b], and Larch/Smalltalk [Cheon and Leavens 1994a]), the
RESOLVE family [Ogden et al. 1994; Edwards et al. 1994], Spec# [Barnett
et al. 2005; Barnett et al. 2006], and JML [Burdy et al. 2005; Leavens et al.
2006; Leavens 2006; Leavens et al. 2005]. The Object Constraint Language of
the UML [Warmer and Kleppe 1999; OMG 2006] also �ts in this style. This
style also includes more property-oriented speci�cation languages, such as B
[Abrial 1996; Lano 1996] and Event-B [Cansell and Méry 2008]. There is also
work that blends these two styles, often doing runtime checking when type-
speci�ed properties cannot be statically proven by a type checker [Flanagan
2006; Cartwright and Felleisen 1996].

�Temporal properties of events in code, such as those expressible in various forms
of temporal logic. Speci�cation languages that handle various forms of tem-
poral logic include the Bandera Speci�cation Language [Corbett et al. 2000],
Promela [Holzmann 1997], and SLIC (the SLAM model checker's speci�cation
language) [Ball and Rajamani 2001].

JH comment: I think there are additional languages that we can insert here
such as those used for specifying temporal properties in run-time monitor-
ing, type-state notations, etc.

GTL comment: Great, please do so.

�Timing properties for events in code, including the PSpec language [Perl and
Weihl 1993] and Real-time Euclid [Kligerman and Stoyenko 1992; Stoyenko
1992].

In certain domains one can also declaratively specify computations or computa-
tional artifacts, using speci�cation constructs like those described above or using
more specialized notations. For example, one can specify the semantics of a pro-
gramming language using the conventions of denotational or operational semantics
[Schmidt 1994; Winskel 1993]. Another example is that veri�cation tools can make
use of specialized languages for stating proof obligations and a program's semantics,
such as Boogie [Leino 2008] and Why [Filliâtre 2003].

1.3 Scope

We focus on speci�cation languages (or �assertion languages�) that can be used to
document the behavior of executable code modules and that can be mechanized to
aid the Veri�ed Software Initiative. This includes languages that are able to specify
behavior across a range of levels in the software development process as long as
that range includes executable code. Most such languages are usually not designed
for the speci�cation of the behavior of an entire application or an application's
environment, but rather are designed to specify the behavior of individual modules
and the environmental assumptions within a program that such modules make. In
particular we consider interface speci�cation languages that are able to document
both the behavior of code modules and their interfaces to other program modules
[Lamport 1989; Wing 1987]. Thus in particular, we focus on speci�cation languages
that are able to document detailed designs at the same level of abstraction as a
programming language.

ACM Journal Name, Vol. V, No. N, January 2009.
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However, we do not limit ourselves to interface speci�cation languages or to
languages that are only capable of documenting detailed designs. That is, we
include languages that can be used in stepwise re�nement e�orts, perhaps even
starting with user-level requirements. However, as we will discuss below, we exclude
languages that are not able to document the behavior of code.
Due to space restrictions, we focus on assertion languages for sequential programs

that describe their functional behavior.

1.4 Outline

In the remainder of this survey, we have one section for each kind of property.

2. FUNCTIONAL (INPUT-OUTPUT) BEHAVIOR

The most basic notions of behavioral speci�cations capture a program's functional
behavior. Functional speci�cations may describe a relationship between a program's
(or subprogram's) inputs and outputs. For example, a functional speci�cation of
a sorting algorithm might capture the fact that the algorithm takes as input an
arbitrary array of integers and returns a permutation of the input array with the
elements arranged according to some total order. Functional speci�cations may
also constrain the intermediate states that a program passes through in the process
of transforming inputs into outputs. One common form of constraint speci�cation
is an assertion � a predicate embedded in the code that must hold on the current
program state when execution reaches the point at which the assertion is written.
For example, in a sorting algorithm, an assertion might be used to state that the
array being sorted must be non-empty before the sorting process begins. Another
common form of constraint is an invariant � a predicate that must be hold in every
program state encountered during execution. For example, in a sorting algorithm,
one might have an invariant stating that an index variable for the array being sorted
must always lie within the bounds of the array.
This section overviews basic forms of code-level functional speci�cations along

with notions of program architecture, encapsulation, and abstraction that are di-
rectly related to such speci�cations. Although many of the forms of speci�cation
that we discuss are relevant in a variety of programming language paradigms, we fo-
cus our initial discussion of speci�cation concepts in simple imperative languages.
A program P in such a language consists of commands such as variable assign-
ment, conditionals, and loops, organized into subprograms such as procedures and
modules.
We now sketch a simple semantic model of programs that we will use to ground

the discussion of speci�cation semantics below. A program store σ for P is a map-
ping from P's variables to values. Intuitively, a store represents the programmer's
view of the computer's memory as it stores the current value associated with each
program variable. As P executes, a program counter pc indicates the current com-
mand be to executed. A program state is a tuple (pc, σ) consisting of the current
value of the program counter pc and the current store σ.
A store predicates is a boolean formula over variable values, e.g., X > 1 ∨ Y = 5.

We say that a store predicate P holds for the values of variables in a particular
store σ (denoted σ |= P ) when the values of variables as given by σ satisfy the
constraints given by P . A store predicate P can also be viewed as characterizing a
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set of stores [[P ]] � namely, the set of stores for which P holds.

2.1 In-line Assertions

2.1.1 Overview. Consider a situation in which client code uses a library function
to generate a random number. Let us assume that the client developer reads the
informal documentation associated with the library and concludes that the gener-
ator will always return non-negative values. The developer can use an assertion to
specify this assumption/belief about the functional behavior of the library function
at the point where the random function is used.

R := Lib.Random();
--# assert R >= 0;

Assertions are typically written as side-e�ect-free boolean expressions in the pro-
gramming language in which they are embedded. In some cases, assertions are
embedded in program comments (as with the SPARK Ada assertion above) and
are recognized and processed by veri�cation tools that understand the special com-
ment syntax (--# indicates a SPARK speci�cation). In other cases (such as with
Java assertions), assertions are written as executable code that be may executed
during testing and removed by a pre-processor once testing is completed.
Although assertions can be checked by static analysis tools, they are typically

viewed as executable speci�cations. When an assertion is executed, its evaluation
has no e�ect if the assertion holds for the current state. If the assertion does
not hold, program execution is halted and a system-generated error message is
displayed on the system console. In additional to this operational bene�t of asser-
tions, assertion information can aid subsequent code maintenance (perhaps carried
out by someone other than then original developer) by expressing assumptions and
important aspects of the intended functionality of the code.

2.1.2 Semantic Foundations. Formally, an assertion a is a store predicate Pa

that must hold on the program store that is current when execution reaches the
point in the program where the assertion is written. When one considers the pro-
gram counter position at which the assertion is written as part of its de�nition,
then an assertion a = (pca, Pa) is an invariant that must hold in each state (pc, σ);
where (pca, Pa) holds in state (pc, σ) if pc = pca implies σ |= Pa.

2.1.3 Tool Foundations. Because the assertion concept is easy to learn and easy
to use, it one of the most familiar widely used forms of program speci�cation (see,
e.g., [McConnell 1993]).
Clarke and Rosenblum [Clarke and Rosenblum 2006] give a detailed historical

perspective on the development and use of runtime assertion checking. (See also
Jones's article on the early history of reasoning about programs [Jones 2003].)
Floyd made very early use of the assertion concept as a program speci�cation
mechanism [Floyd 1967]. Hoare's seminal paper on axiomatic semantics [Hoare
1969] also makes fundamental use of assertions. Two pioneering languages that were
designed for verifying programs, Gypsy [Ambler et al. 1977] and Euclid [Lampson
et al. 1981], used assert statements (and other speci�cations) as built-in language
features. Due to their increasing use in current programming practice, modern
languages like Ei�el, Java, and Spec# also include assertions as built-in language
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features. However, in-line assertions can be included in almost any language by
de�ning an assert construct as a procedure or macro.
A key issue for tools is when and how to check assertions.

�A number of program checkers and veri�ers analyze in-line assertions statically.
For example, ESC/Java attempts to prove that each in-line assertion will hold in
all executions.

�If both static and dynamic checking are supported by tools, then it is useful to
distinguish between assertions that one expects a static program checker to verify
and assertions that cannot be veri�ed in the given context but that are needed
for the rest of the veri�cation. JML and Spec# o�er a way to distinguish these,
using an assert statement for properties to be veri�ed and an assume statement
for properties that are declared to be true. When assert statements have been
statically veri�ed, one may want to disable run-time checking for them while
always enabling the run-time checks of assume statements.

�Run-time checking of in-line assertions is e�ective in �nding unexpected behavior
during the development and testing of a program.

GTL comment: Citation for that?

KRML comment: I think Code Complete mentions this, but I'll need to
double check at the o�ce.

However, when the quality of a program is high enough to deploy the program,
developers often want to trade the additional checking for improved performance,
which can be achieved by disabling run-time assertion checking.

2.2 The Pre/Post Technique

2.2.1 Overview. While assertions can be placed at arbitrary points in the code,
they can also be used in a structured manner to enable more systematic reason-
ing about program behavior. Pre/postconditions are one example of structured
assertions. A precondition is an assertion stated at the beginning a procedure that
speci�es conditions that must hold true whenever the procedure is called. A post-
condition is an assertion stated at the end of procedure that speci�es conditions
that must hold immediately after the procedure completes its execution.
The SPARK function Find_Index_Pos of Figure 1 illustrates the use of pre/post-

conditions in a simple function that searches a global array S for the value of input
parameter X. First, note that the �assertions� representing pre/postconditions are
not stated in the procedure code using the assert keyword as in the previous exam-
ple. Instead, to highlight the distinguished role of the pre/postcondition assertions,
they are written using the keywords pre and return and placed in a special collec-
tion of annotations at the header of the function.
The precondition states that the value of Xmust be in the array when the function

is invoked. The use of existential quanti�cation in the precondition (i.e., there is
some position M in the array that holds the value X) illustrates that the language of
assertion expressions may be richer than language of program expressions (program
expressions may not contain existential quanti�cation).

ACM Journal Name, Vol. V, No. N, January 2009.
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function Find_Index_Pos (X : Integer) return Index_Range
--# global in S;
--# pre for some M in Index_Range => (S(M) = X);
--# return Z => (S(Z) = X) and
--# (for all M in Index_Range
--# range Index_Range’First .. Z-1
--# => (S(M) /= X));
is
Result_Pos : Index_Range;

begin
for I in Index_Range loop

if S(I) = X then
Result_Pos := I;
exit;

end if;
end loop;
return Result_Pos;

end Find_Index_Pos;

function Value_Present (X : Integer) return Boolean
--# global in S;
--# return for some M in Index_Range => (S(M) = X);
is

Result : Boolean;
begin

Result := False;
for I in Index_Range loop

if S(I) = X then
Result := True;
exit;

end if;
--# assert I in Index_Range and
--# not Result and
--# (for all M in Index_Range range Index_Range’First .. I => (S(M) /= X));

end loop;
return Result;

end Value_Present;

Fig. 1. SPARK illustrations of structured assertions

In the postcondition, the construct return Z names the return value Z and the
imposes two constraints: (1) the value at index position Z is equal to X, and (2) Z
is the �rst position in the array to have a value of X.
Together, the pre- and postconditions of a sub-program can be viewed as sum-

marizing the sub-program's functional behavior in the sense that the associated
assertions describe properties of states �owing into and out of the sub-program.
Summaries can vary in their precision. For example, dropping the constraint (2)
in the postcondition above still yields a valid summary of the associated function
implementation, but it is a less precise summary because it doesn't capture the fact
that the index value returned corresponds to the �rst occurrence of X.
It is also fruitful to view a sub-program pre/postcondition pair as de�ning a

contract κ between the sub-program P and its clients (other sub-programs that
call P ). From the point of view of a client of P , it must abide by the contract by
calling P in a state that satis�es κ's precondition. When doing so, it can rely on P to
satisfy the contract by completing in a state that satis�es κ's postcondition. From
P 's point of view, it can assume that it will always be called with parameters and
an associated global variable state that satis�es κ's precondition. Working under
this assumption, P must ful�ll its contract by ensuring that κ's postcondition will
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always be satis�ed.

2.2.2 Semantic Foundations. The use of pre/postconditions in program speci-
�cation can be traced back to Floyd/Hoare Logic [Floyd 1967; Hoare 1969] which
characterizes the behavior of a program statement C using triples of the form

{P}C {Q}

where both P (the precondition) and Q (the postcondition) are store predicates.
The triple is valid i� for any store σ that satis�es P , executing C on σ yields a
store σ′ that satis�es Q. Since [[P ]] and [[Q]] can be viewed as characterizing sets
of stores, a triple can be viewed as summarizing the input/output behavior of C in
terms of the set of output stores [[Q]] that result from input stores in [[P ]].
Di�erences in precision of summaries such as those discussed for the example

of Figure 1 can also be captured within this logical view. A formula Q is weaker
than P if P ⇒ Q (P entails Q). When P ⇒ Q, we say that Q abstracts P
(equivalently, P re�nes Q). Intuitively this means that Q is less restrictive and
more approximate than P , and P represents a more precise summary of stores �
a fact that is perhaps more easily grasped when considering that P ⇒ Q holds
when [[P ]] ⊆ [[Q]]. Store predicates can be viewed as abstractions that summarize
program state information, and they can be arranged in a natural approximation
lattice based on the entailment relation as an ordering.
This approximation ordering on store predicates can be used to de�ne an approx-

imation ordering on pre/postconditions pairs (sub-program contracts) as illustrated
in the following diagram.

less precise {P} C {Q}
re�ne ↓ ⇓ ⇑ abstract ↑

more precise {P ′} C ′ {Q′}

Let κ represent the top contract {P} · {Q} and κ′ represent the bottom contract
{P ′} · {Q′}. κ′ is said to be a re�nement of κ (alternatively, κ is an abstraction of
κ′) if Q′ ⇒ Q and P ⇒ P ′ [Back 1978].
From the point of view of clients that might call sub-programs with contracts

κ′ or κ, if κ′ re�nes κ then a sub-program C ′ that satis�es κ′ can be used in any
calling context where C satisfying κ is used. This is because C ′ imposes stronger
conditions on its output while being more permissive on inputs then C [Chen and
Cheng 2000; Naumann 2001; Olderog 1983]. Any context that can supply inputs
satisfying C's precondition P can also supply inputs satisfying C ′'s precondition
P ′ since P ⇒ P ′ ([[P ]] ⊆ [[P ′]]). Simiarly, any context that can accept outputs
satisfying C's postcondition Q can also accept outputs satisfying C ′'s postcondition
Q since Q′ ⇒ Q ([[Q′]] ⊆ [[Q]]) From the point of view of sub-programs that might
implement κ and κ′, if κ′ re�nes κ then every implementation that satis�es κ′ also
satis�es κ.

2.2.3 Tool Foundations. Early tools associated with Floyd/Hoare Logic meth-
ods required a high degree of manual intervention to construct appropriate pre/-
postconditions. However, modern tools achieve signi�cant amounts of automation
using techniques such as weakest precondition calculation. A weakest precondition

operator wp(C,Q) takes a command C and postcondition Q and automatically
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constructs a precondition P that makes {P}C {Q} valid. More precisely, P is con-
structed to be the weakest formula that can establish Q as a postcondition for C
[Dijkstra 1976]. Recalling the discussion of �weakest� above, the precondition re-
turned by wp(C,Q) is the most general (or �best�) one in the sense that it imposes
the fewest restrictions on inputs to C that can guarantee Q to hold. A wp-calculus

contains rules for computing wp, such as the rule for assignments

wp(x := E, Q) = Q[E/x]

i.e., for Q (viewed as a predicate that states a property of x) to hold after the
assignment of E to x, Q should hold for the value E before the assignment. Similar
rules exist for computing weakest preconditions for conditional statements [Dijkstra
1976] and manipulation of basic data structures such as records and arrays [Hoare
1972]. Due to basic undecidability results, an algorithm for calculating weakest
preconditions for while loops that can be discharged by automated theorem provers
is infeasible. Useful automated approaches that �nd or over-approximate �xpoints
for loops exist for restricted classes of data values (using techniques such as abstract
interpretation [Cousot and Cousot 1977]), but many program veri�cation tools
require loop invariants to be explicitly stated, or even take the Draconian approach
of sacri�cing soundness by only verifying a bounded number of loop iterations.

2.2.4 Issues

�Design-by-contract

2.3 Loops and Recursion

Reasoning about loops and recursion is often challenging because one must come
up with speci�cations that capture the e�ect of repeated computations where the
number of repetitions is not known in advance. In these cases, reasoning usually
proceeds according to some induction principle, and thus one aims to specify a
property that is preserved by each repetition of the computation.
When reasoning about loops, such properties are called loop invariants. A loop

invariant is a store predicate that is always holds (i.e., is invariant) at the beginning
and end of each loop iteration. The role of loop invariants in specifying functional
properties of loops can be seen in the Hoare logic rule for while loops [Hoare 1969].

{P ∧ b}C {P}
{P}while b do C {P ∧ ¬b}

Consider a situation in which we want to prove some that the loop concludes with
a set of variables satisfying P . When the loop concludes, we know that its test b
must be false as well, so an appropriate postcondition is P ∧ ¬b. To establish this
postcondition, we need to show that P holds no matter how many times the loop
is executed � and this follows by showing P to be an invariant. First, because the
loop body may never execute in the case where the test b is false initially, we need
P to hold as a precondition to executing the while � this corresponds to the base
case of an inductive argument. Next, we need to show that P is preserved by each
loop iteration � this corresponds to an induction step. Speci�cally, we assume that
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package The_Stack
--# own State : Stack_Type; -- abstract variable
--# initializes State;
is

--# type Stack_Type is abstract;

--# function Not_Full(S : Stack_Type) return Boolean;
--# function Not_Empty(S : Stack_Type) return Boolean;
--# function Append(S : Stack_Type; X : Integer) return Stack_Type;

procedure Push(X : in Integer);
--# global in out State;
--# derives State from State, X;
--# pre Not_Full(State);
--# post State = Append(State~, X);

procedure Pop(X : out Integer);
--# global in out State;
--# derives State, X from State;
--# pre Not_Empty(State);
--# post State~ = Append(State, X);

end The_Stack;

Fig. 2. A SPARK package speci�cation of a stack

P ∧ b holds at the beginning of the loop body and we show that P holds after
executing the body.
This reasoning approach can be applied to other forms of loops as illustrated by

the SPARK function Value_Present of Figure 1. The contract for this function has
a default precondition of true and the postcondition requires that the return value is
true if and only there is an index M for array S such that the value in S at position M is
equal to the input parameter X. In SPARK, loop invariants are written as assertions
and can be placed anywhere in the body of the loop such that each path along a
complete repetition of the loop passes through the assertion. In Value_Present,
if S(1) = X, then the loop is exited before control passes through the position of
the loop invariant; the invariant is not needed to establish the postcondition. If
not S(1) = X, then iteration of the loop continues, and the loop invariant provides
information that the value of X does not occur in the portion of the array explored
thus far; this information is necessary to establish the postcondition when the of X
is not found in the array.

JH comment: The following issues remain: Loop invariants and variant func-
tions, and how these are a�ected by break, continue, and the presence of side
e�ects in the loop test. Measure functions for recursions. Contrast VDM's use
of (well-founded) relations.

2.4 Module Interfaces

Structuring constructs such as modules (e.g., in Modula-3), packages (e.g., in Ada),
and classes (e.g., in Java and C++) are used to aggregate subprograms and state
that have related functionality. In our discussions, we will adopt the term module

as a generic term for such constructs. Well-designed programming languages in-
clude features that support information hiding. These features allow developers to
expose subprogram type-signatures and portions module state to clients while hid-
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package body The_Stack
--# own State is S, Pointer; -- refinement definition
is

Stack_Size : constant := 100;
type Pointer_Range is range 0 .. Stack_Size;
subtype Index_Range is Pointer_Range range 1..Stack_Size;
type Vector is array(Index_Range) of Integer;
S : Vector;
Pointer : Pointer_Range;

procedure Push(X : in Integer)
--# global in out S, Pointer;
--# derives S from S, Pointer, X &
--# Pointer from Pointer;
--# pre Pointer < Stack_Size;
--# post Pointer = Pointer~ + 1 and
--# S = S~[Pointer => X];
is
begin

Pointer := Pointer + 1;
S(Pointer) := X;

end Push;

procedure Pop(X : out Integer)
--# global in S; in out Pointer;
--# derives Pointer from Pointer &
--# X from S, Pointer;
--# pre Pointer /= 0;
--# post Pointer = Pointer~ - 1 and
--# X = S(Pointer~);
is
begin

X := S(Pointer);
Pointer := Pointer - 1;

end Pop;

begin -- initialization
Pointer := 0;
S := Vector’(Index_Range => 0);

end The_Stack;

Fig. 3. A SPARK package body implementing a stack

ing implementation details upon which module clients should not depend [Parnas
1972].
For example, Ada provides language features to separate module de�nitions

(called packages in Ada) into package speci�cations that are visible to clients and
package bodies that are not visible to clients. Figure 2 displays an Ada package
speci�cation supplemented with SPARK annotations for a simple stack data struc-
ture. The Ada code provides types signatures for the Push and Pop � the package
subprograms that are visible to clients. An Ada package speci�cation can also pro-
vide types and variables that are visible to clients (this is not illustrated in the
Stack example). Figure 3 displays an Ada package body that includes de�nitions
for constants, types, variables, and procedure implementations that are hidden from
clients.
The Ada features that clearly separate module interfaces from implementations

improve upon many other languages that omit such features. The type signatures in
package speci�cations already provide a simple form of functional behavior speci�-
cation. SPARK supplements Ada package speci�cations and bodies with a number
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of other forms of behavioral information. The Stack implementation in (Figure 3)
includes variables S and Pointer as pieces of local state that are hidden from clients.
Constructing detailed speci�cations of module functional behavior while avoiding
exposure of implementation details that should remain hidden is one of the chal-
lenging aspects of module interface behavioral speci�cation. This is challenging
because behavioral speci�cations are often most naturally and most easily speci�ed
in terms of the concrete data structures present in the module implementation. A
key aspect of module interface speci�cation language design is the inclusion of �exi-
ble abstraction mechanisms that allow speci�ers to build appropriate abstract data
elements and functional speci�cations that can be related (through some re�nement
notion) to concrete data and functional behavior that must be hidden from module
clients.
To enable reasoning about Stack behavior while hiding details of implementation,

it is necessary to expose the fact that state does exist in the module implementation
and that procedures in the public interface of Stack may change the hidden state.
A SPARK own variable declaration (top of (Figure 2) indicates that the package
contains hidden state. The single own variable named State abstracts the two
variables S and Pointer in the package body. The SPARK initializes annotation
in the package speci�cation indicates that the package body (in an initialization
block � bottom of Figure 3 provides the initial value of each of the hidden state
variables. The next section of SPARK annotations in Figure 2 declares that the
type of the own variables is abstract (not de�ned in the speci�cation).

GTL comment: Need to relate the above to other languages, e.g., model �elds
in JML. This should be a survey of concepts with SPARK used to illustrate,
not just an explanation of SPARK.

The foundation of SPARK subprogram behavioral speci�cations are declarations
that specify frame conditions � indicating what portions of the program state are
read or written by each subprogram. Each SPARK procedure obviously may ref-
erence or update the state associated with its parameters. SPARK procedure con-
tracts also use global annotations to indicate the global variables that the proce-
dure references or updates. Moreover, each procedure parameter and global must
be annotated with a mode in, out, or in out to indicate if a variable is read-only,
write-only, or may be both read and written, respectively. For example, on the
Push procedure, the input parameter X is read only, and the only global state that
the procedure touches in the state abstracted by the own variable State. Together,
the mode annotations on parameters and globals specify the inputs and outputs
of the procedure. Frame conditions limit the scope of program state that must
be mentioned in a subprograms speci�cation; if a variable is not mentioned by a
subprogram's frame condition speci�cation, one may assume that the variable has
the same value before and after calls to the subprogram and that di�erences in
the variable's value have no e�ect on the subprograms behavior. We discuss frame
condtions in more detail in Section 4.1.
The next step in specifying a subprogram's functional behavior in SPARK in-

volves using SPARK derives annotations to specify how information �ows from
inputs to outputs � this provides a simple abstraction of the program's functional
computation. The derives annotations on the Push procedure specify that the �-
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nal (post-state) value of the output parameter State is derived from the initial
(pre-state) values of the input parameters X and State. SPARK information �ow
relations where originally proposed by Bergeretti and Carré [?] to assess the degree
of coupling between program components, but they have recently used as part of a
broader framework for developing certi�ed information assurance applications [?].
In addition to checking that a procedure implementation's information �ow con-
forms to the contract information given by derives clauses, the SPARK Examiner,
the static analysis tool associated with SPARK, checks for a variety of simple in-
formation �ow properties useful for high assurance contexts. These include: all out
variables must be assigned along each control-�ow path in the procedure, variables
must be assigned before they are referenced, each in variable must be referenced in
the procedure body, etc.

GTL comment: Need to relate the above to other languages and literature.

Figure 2 illustrates procedure contracts for Push and Pop that include pre/post-
conditions stated in terms of the State data abstraction. To capture the function-
ality of the Push/Pop procedures without referring to the hidden implementation
state, speci�cation functions Not_Full Not_Empty, and Append. Figure 3 illustrates
contracts for corresponding procedure implementations. The relationship between
package speci�cation contracts and package body contracts are discussed in Sec-
tion 2.6.

2.5 Module Invariants

Single-state predicates that must hold for all states, or all states visible to clients,
typically relating states of the module's variables.
Hidden vs. public invariants.

2.6 Data Abstraction

Section 2.4 discussed the need to keep module implementation details hidden as
module interface speci�cation are constructed. Data abstraction plays a key role in
enabling speci�cations to be stated independently of concrete data in implementa-
tions.
Figure 2 illustrated SPARK's notion of own variable to de�ne a speci�cation

variable State that abstracts the concrete variables used to represent a stack. The
top of Figure 3 illustrates a SPARK data re�nement de�nition specifying that the
abstract own variable state is re�ned to the concrete variables S and Pointer.
The contracts for each procedure in the package body must now be restated in

terms of the concrete variables that form the hidden implementation of the stack.
For derives clauses, the SPARK Examiner checks that each derives clause of a
procedure implementation re�nes the derives clause of the corresponding procedure
speci�cation according to own variable re�nement de�nition. For example, in the
Push procedure implementation, since S derives from S, Pointer, X applying the
abstraction function corresponding to the inverse of own variable re�nement (which
would map both S and Pointer to State) yields an abstract re�nement clause stating
that State derives from State and X. As expected, the abstraction step introduces
imprecision: declaring State derives from State and X admits the possibility of,
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e.g., Pointer deriving from S and X, but this information �ow relationship is not
present in the procedure implementation contract.
The pre/postconditions of the procedure implementations also refer to concrete

data representation. The SPARK Examiner cannot automatically verify the cor-
respondence between the abstract speci�cation and concrete implementation pre/-
postconditions; the correspondence must be proved manually in the SPARK Proof
Checker. The de�nition of the abstract functions Not_Full, Not_Empty, and Append
must be speci�ed via axioms in the proof checker language.

GTL comment: We should relate the above to the literature...

2.7 Enabling Modular/Compositional Reasoning

Explaining how many of the concepts above come together to enable compositional
reasoning.
Problems, including re-entrance.
Solutions: prohibiting re-entrance (as in Anna or Spark/Ada), or allowing this

with speci�cation constructs such as �inv� in Spec#, valid() functions (in ESC/-
Modula-3), dynamic frames, and in Parkinson's work.

3. EXCEPTIONAL BEHAVIOR

An exception is a way of returning from a function (or procedure, method) that
is di�erent than the normal return. This corresponds to throwing an exception in
Java, C++, or C#. Exceptions of this type are handled by try-catch statements in
Java.
We can distinguish three kinds of exceptional behavior (cf., [Goodenough 1975;

Leino and Schulte 2004]):

(1) Problems of the underlying runtime environment, for instance, out-of-memory
errors, stack over�ow, type errors (caused by failing to recompile code after
changes). In Java, these exceptions are of type Error. These problems can
typically not be foreseen or controlled by the program. Dealing with such
issues is a matter of robustness (rather than correctness), and not in the scope
of this paper.

(2) Unsatis�ed preconditions of operations, for instance, null-pointer exceptions,
index-out-of-bounds errors, illegal casts, arithmetic over�ow, division by zero,
etc. In Java, these exceptions are of type RuntimeException. Since almost all
operations in a program are partial, these expections can occur at almost any
program instruction. They are typically considered errors in the program.

(3) Foreseeable problems with operations that do not always work, for instance,
I/O, table look-up, etc. These exceptions are used instead of special return
values to signal an unsuccessful operation.

Most speci�cation languages ignore category 1 because it is beyond the semantics
of the program (e.g., Java, JML, Spec#). That is, any operation may throw an
exception of this category, without explicit permission to do so. Corresponding ver-
i�cation systems do not impose proof obligations to prevent this kind of exception
[Poetzsch-He�ter 1997; Leino and Schulte 2004].
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Di�erent languages interpret category 2 di�erently. For instance, in JML, a
method that throws a NullPointerException is not necessarily incorrect. It depends
on the speci�cation of the method whether or not this kind of exception is permitted.
By contrast, Spec# considers exceptions of this category as errors and imposes proof
obligations to prevent them.
Exceptions of category 3 are permitted by most languages. Some languages such

as Java and Spec# require them to be declared as part of the method signature,
whereas others such as C# and Ei�el do not.
Languages that view exceptions as one possible method result usually permit

ways to specify when this result may occur and what may be assumed in case it
actually does. The most basic form of these speci�cations contains exceptional pre-
and postconditions (e.g., in Spec#). JML permits whole exceptional speci�cation
cases including assignable clauses, etc. Ei�el does not permit the speci�cation of
exceptional behavior.
Reasoning about exceptions is challenging for several reasons. First, exceptions of

category 1 and 2 may occur (almost) anytime, so considering all the possible control
�ows leads to an extremely high complexity. Second, in the presence of side e�ects,
it is usually unclear what an exception handler may assume about the state of
the program (see JacobsMuellerPiessens07), for instance, which invariants may be
assumed to hold. For checked exceptions, the exceptional postcondition provides
this information, but for unchecked exceptions, one may only assume properties
that hold throughout the code that potentially throws an exception (e.g., the try
block) and on properties the exception handler can test at runtime. So very often,
there is no safe way to recover from an unchecked exception.
In the descriptions of how to specify each kind of property, we will:

�Show an example to facilitate comparisons (ideally the same example in various
languages).

�Describe ways (mention tools) to check/verify such speci�cations.
�Mention or describe the underlying theory (�rst order logic, set theory, etc.), if
there is any.

�Refer to any major case studies.

3.1 What to Specify

When to specify exceptional behavior vs. using preconditions to rule out exceptions.

3.2 Speci�cation Constructs for Exceptions

Ways to specify that exceptions must or may be thrown.
Speci�cation cases for specifying di�erent behaviors.

4. HEAP MANIPULATION

In order to handle heap data structures, a speci�cation technique must be able to
describe (a) the topology of a data structure and (b) the e�ects that methods have
on heap data structures. We illustrate these two aspects using a Java class Node
with �elds a and b of type Node.
A speci�cation of the topology of a data structure typically answers the following

questions:
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�What is the shape of the implemented data structure? For example, instances of
Node could represent a doubly-linked list (with a and b pointing to the predecessor
and successor node, respectively) or a binary tree (with a and b pointing to the
left and right child node, respectively). Information about the shape is typically
needed to prove functional correctness of a data structure, for instance, deletion
of a node works di�erently for lists and trees.

�Does the data structure contain cycles? For example, our nodes could form a
cyclic or an acyclic list. Information about cyclicity is, for instance, needed to
prove termination or deadlock-freedom of list traversals.

�Which objects of a data structure are potentially shared? For example, for a
tree structure, we want to express that the left and right subtrees are disjoint.
Similarly, we might want to express that two instances of a class List do not
share any nodes. Information about sharing is needed to reason about the e�ects
of modi�cations, for instance, to prove that modifying the nodes of one list does
not a�ect any other list.

A speci�cation of the e�ects of the methods of a data structure may include:

�Write e�ects: which parts of the heap are potentially modi�ed by a method. This
information is needed to determine which properties of the heap are a�ected by
a method.

�Read e�ects: which parts of the heap are potentially read by a method. This
information is, for instance, needed if methods are allowed to occur in contracts
like in Ei�el, JML, and Spec#.

�Allocation and de-allocation e�ects: which objects are allocated or de-allocated
by a method. Information about allocation is, for instance, needed to prove
that the result of a method is di�erent from all existing objects. De-allocation
information is needed to verify programs with explicit memory management.

�Locking information: which locks are acquired or released by a method. This
information is needed to prove the absence of data races and deadlocks.

challenges: abstraction (information hiding, subclasses) support reasoning (log-
ics) strong support for framing
One of the most important reasoning steps that any speci�cation of heap opera-

tions must support is framing, that is, proving that certain heap properties are not
a�ected by a heap operation. Hoare's original invariance rule illustrates framing

{P}C {Q}
{P ∧R}C {Q ∧R} provided e�ects of C are disjoint from FV(R)

Here, R is the frame. The rule says that an assertion about some state that is
unmodi�ed by C can be preserved. However, with the addition of the heap the
sidecondition becomes more troublesome: the disjointness of the e�ects of C and
the assertion R becomes more di�cult to specify. We need to be able to specify
that the shapes that C changes are disjoint from the shapes that R depends upon.
The existing approaches can be grouped into three major categories (for specify-

ing topology):
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Fig. 4.

(1) Approaches based on predicate logic. Languages in this category speci�y heap
manipulation in terms of a heap model that is given in predicate logic. Ex-
amples are dynamic frames and regional logic (the above paper by Kuncak et
al. also falls into this category.) Structures are described by de�ning func-
tions or regions and using them to express disjointness, inclusion, etc. of object
structures. Framing is done by showing disjointness of read and write e�ects.

(2) Approaches based on specialized logics. Languages in this category are based
on logics with special primitives for heap properties. The most important rep-
resentative of this category is separation logic with its separating conjunction.
Separating conjunction can express disjointness of structures and, therefore,
also acyclicity. Framing is done with a special frame rule.

(3) Approaches based on type systes. Languages in this category use types to
describe and check heap structures. The most prominent representative of this
category is ownership. The described structures are hierchies of objects with
certain encapsulation policies. Framing is usually done by specifying read and
write e�ects in terms of ownership trees. There are other candidates in this
category such as alias types by Morrisett et al.

There are several approaches that are hybrids in the above classi�cation. For
instance, Spec# describes structures and applies framing using ownership (3), but
encodes ownership in a heap model in predicate logic (1). Implicit dynamic frames
by Smans et al. combine 1 and 2. The above paper by Moller and Schwartzbach
seems to combine 2 and 3 (graph types and assertions containing routing expres-
sions).

MJP comment: Some thoughts

Properties of a linked list based stack
(1) It is a list (2) Its values are non-null object-references. (3) How do we describe

two stacks are disjoint (4) The same object reference can be stored in two stacks.
Initial Outline:

In the descriptions of how to specify each kind of property, we will:

�Show an example to facilitate comparisons (ideally the same example in various
languages).

�Describe ways (mention tools) to check/verify such speci�cations.

�Mention or describe the underlying theory (�rst order logic, set theory, etc.)

�Refer to any major case studies.

4.1 Framing

Notations for frame conditions, speci�cation of side e�ects on arguments, etc.

4.2 Alias Control, Ownership, and Separation

Notations for controlling or limiting aliasing (e.g., ownership types).
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Ideas behind separation logic. Concepts and basic notations.
How to use separation logic in speci�cations.
Comparison of separation logic and other notations for framing, alias control,

and ownership. (such as a specialized type system, like an ownership type system,
the Kassios dynamic-frames approach or the Boogie methodology used in Spec#).

5. OBJECT ORIENTATION

Object-oriented programming (OOP) presents many challenging problems for spec-
i�cation and veri�cation. We have already discussed issues related to abstract data
type speci�cation and heap manipulation, both of which are prominent features
of OOP. The other essential characteristic of OOP is the use of subtyping and
dynamic dispatch.
In type systems, subtype polymorphism is a kind of constrained, ad-hoc poly-

morphism [Wadler and Blott 1989]. Subtype polymorphism allows variables and
expressions to denote values of several di�erent but related types at runtime; for
example, a variable coll of static type Collection might denote an object of some
Collection subtype such as Stack, Set, or Bag. Subtyping in this sense is a purely
type theoretic property that requires that each instance of a subtype can be manip-
ulated as if it were an instance of its supertypes without type errors. For example,
if the type system allows a method call such as coll.add(e), then since coll de-
notes an object of some subtype of Collection the call must not produce a runtime
type error. Cardelli published an in�uential study of the conditions for type check-
ing OOP [Cardelli 1988]. Cardelli's subtyping rules prevent type errors, and can
be extended to languages with more features, such as multiple dispatch [Castagna
1995].
Dynamic dispatch is a semantic feature of OO langauges that allows a method

call, such as coll.add(e), to have di�erent e�ects depending on the runtime type of
the receiver object, coll. The programming language dynamically determines what
implementation to run for such a call based on the runtime type of the receiver.
The selected implementation may be provided or inherited by coll's static type,
Collection, or may be an overriding method in a subtype of Collection. So in
general, the executed implementation might be one of any number of di�erent
implementations, some of which might not have been imagined when the call was
written. This use of subtype polymorphism is at the core of most object-oriented
design patterns [Gamma et al. 1995].
However, it is not only the implementation to be executed that is not known stat-

ically (in general), but without some methodological convention, such as behavioral
subtyping, even the speci�cation of the method that will be executed will not be
known statically. This presents a problem for static veri�cation. One approach to
solving this probem is to describe what a method call does for each possible subtype
of the receiver's type. However, such a case analysis would be di�cult to maintain,
as each time a new subtype was added to the program the case analysis code would
have to be extended.
A more modular approach is to follow the analogy of object-oriented type systems

and impose restrictions on the behavior of subtypes: this methodology is known as
behavioral subtyping [America 1987; Bruce and Wegner 1990; Dhara and Leavens
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1996; Leavens and Dhara 2000; Leavens and Weihl 1995; Leavens 2006; Liskov
1988; Liskov and Wing 1994; Meyer 1997]. Using behavioral subtyping, one can
use the speci�cation of a supertype's objects to soundly reason about the behavior
of all possible subtype objects. Put the other way around, subtype objects must
behave according to the instance speci�cation of each of their supertypes, when
they are manipulated using that supertype's interface [Liskov 1988]. Just as a type
system that ensures subtyping ensures that no runtime type errors occur when
calling methods using dynamic dispatch, using behavioral subtyping ensures that
no surprising behavior occurs when calling methods using dynamic dispatch.
A simple way of enforcing behavioral subtyping is to impose the following three

rules for every supertype C and subtype D [America 1987; Liskov and Wing 1994]:

(1) For each instance method D.m that overrides a method C.m, the precondition
of C.m must imply the precondition of D.m. That is, overriding methods may
weaken preconditions.

(2) For each instance method D.m that overrides a method C.m, the frame of
D.m must be a subset of the frame of C.m. That is, overriding methods may
strengthen frame conditions.

(3) For each instance method D.m that overrides a method C.m, the postcondition
of D.m must imply the postcondition of C.m. That is, overriding methods may
strengthen postconditions.

(4) The invariant for D objects must imply the invariant for C objects. That is,
subtypes may strengthen invariants.

Rules 1�3 allow one to reason about a call to o.m using the speci�cation for m
in o's static type C. By rule 1, establishing the precondition of C.m before the
call guarantees that also the precondition of the method selected at runtime, D.m,
holds. By rule 2, D.m can only modify locations that C.m's speci�cation allows
to be changed; thus one can safely conclude that if C.m's speci�cation leaves the
value of some location x unchanged, then D.m also does. By rule 3, one may
assume C.m's postcondition after the call because D.m establishes a postcondition
that is at least as strong. Rule 4 is necessary to handle inheritance. A method
implementation C.m may assume C's invariant. By rule 4, this assumption is
still justi�ed when m is inherited by a subtype D. Rule 4 also applies to other
consistency criteria of objects such as history constraints [Liskov and Wing 1994].
One way to summarize these rules is to say that all overriding subtype methods

must satisfy the speci�cation of each method that they override, which is necessary
for sound reasoning using a supertype's method speci�cation [Dhara and Leav-
ens 1996; Leavens and Weihl 1995]. However, the programming language and the
veri�cation logic guarantee additional properties for dynamically-dispatched calls,
which can be used to weaken the above rules and still maintain soundness [Chen
and Cheng 2000]. Weaker rules are bene�cial, since they allow more types to be be-
havioral subtypes and give developers more freedom in design and implementation
of subtypes.
The programming language guarantees that an overriding method in class D will

only be called when the receiver's class is D (or a subtype of D). In speci�cation
frameworks where the invariant of the receiver has to hold in the pre- and post-
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state of a call, this implies that one may assume the D-invariant of the receiver
to hold (which, according to rule 4 is stronger than the C-invariant). These two
properties allow for weaker versions of rules 1�3. For each instance method D.m
that overrides a method C.m:

(1) the precondition of C.m must imply the precondition of D.m, provided that the

receiver is of type D and the D-invariant of the receiver holds.
(2) the frame of D.m must be a subset of the frame condition of C.m, provided

that the receiver is of type D and the D-invariant of the receiver holds in the

pre- and post-state.
(3) the postcondition of D.m must imply the postcondition of C.m, provided that

the receiver is of type D and the D-invariant of the receiver holds in the pre-

and post-state.

For instance, the weaker version of rule 3 allows D.m to have a weaker postcondition
than C.m if this weaker postcondition together with the D-invariant implies the
postcondition of C.m.
The knowledge that the receiver is of class D is not only useful to assume D's

invariant, but for all speci�cation elements that may be re�ned in subclasses, such
as model �elds [Leino 1995; Leino and Müller 2006; Müller 2002] and pure methods
[Ádám Darvas and Müller 2005]. For instance, the possible values of a model �eld
may be restriced in subclasses. Thus, more precise type information for the receiver
provides more information about the values of its model �elds, which may help to
prove all four of the above rules.
Veri�cation logics guarantee that methods are called only in states in which their

preconditions hold. This enables a weaker version of the frame and postcondition
rules, which only require that a supertype's frame and postcondition are obeyed
when that supertype's precondition also held in the call's pre-state [Dhara and
Leavens 1996; Chen and Cheng 2000]:

(2) the frame of D.m must be a subset of the frame condition of C.m, provided
that the receiver is of type D, the D-invariant of the receiver holds in the pre-
and post-state, and C.m's precondition holds in the pre-state .

(3) the postcondition of D.m must imply the postcondition of C.m, provided that
the receiver is of type D, the D-invariant of the receiver holds in the pre- and
post-state, and C.m's precondition holds in the pre-state.

To simplify the application of the rules for behavioral subtyping, many speci�-
cation languages use speci�cation inheritance [Dhara and Leavens 1996; Leavens
2006]. Subtypes inherit the speci�cations of their supertypes and can re�ne the
inherited speci�cations by adding declarations. A simple way to de�ne the e�ective
speci�cation of a class is to combine the inherited and the declared speci�cation
as follows: The e�ective precondition of a method D.m is the disjunction of the
precondition declared for D.m and the preconditions of the methods it overrides.
Taking the disjunction guarantees that the e�ective precondition is weaker than
the preconditions of all overridden methods and, thus, that rule 1 is satis�ed. The
e�ective frame of D.m is the intersection of the frame declared for D.m and the
frame of the methods it overrides. Using this intersection guarantees that the e�ec-
tive frame is a subset of the frames of the methods it overrides, and thus that rule 2
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is satis�ed. The e�ective postcondition of D.m is the conjunction of the postcondi-
tion declared for D.m and the postconditions of the methods it overrides. Taking
the conjunction guarantees that the e�ective postcondition is stronger than the
postconditions of all overridden methods and thus that rule 3 is satis�ed. Finally,
the e�ective invariant of a class D is the conjunction of the invariant declared for
D and the invariants of D's supertypes. Taking the conjunction guarantees that
the e�ective invariant is stronger than the invariants of D's supertypes and thus
that rule 4 is satis�ed.

Speci�cation inheritance enforces behavioral subtyping [Dhara and Leavens 1996].
However, the above rules have been criticized to disguise speci�cation errors be-
cause failure to comply with the rules of behavioral subtyping is silently turned
into bogus speci�cations. Assume that an overridden supertype method has the
declared precondition p > 0 and the overriding subtype method requires p <= 0.
With speci�cation inheritance, however, the e�ective precondition of the overriding
method is true. Findler and Felleisen [Findler and Felleisen 2001] argue that this
is most likely a speci�cation error, which should be reported, since the disjunction
of these preconditions will silently accept calls that violate either the supertype's
precondition or the subtype's.

Despite this criticism, most existing speci�cation languages enforce behavioral
subtyping through speci�cation inheritance. JML [Leavens 2006; Leavens et al.
2008] de�nes e�ective preconditions and invariants as described above. For post-
conditions, JML exploits the second weakening of behavioral subtyping rule 3: in
the e�ective postcondition, the postcondition of a method C.m only has to hold
if the corresponding precondition held before the call. That is, the e�ective post-
condition is a conjunction of implications prec ⇒ postc rather than a conjunction
of postconditions postc. The rule for frame properties similary depends on which
precondition holds. Ei�el's rules are very similar to JML's, but in the e�ective post-
condition of a method D.m, the declared postcondition of D.m has to hold even if
the corresponding precondition did not hold before the call [Ei�el 2005]. The result-
ing e�ective postcondition has the form

∧
c(prec ⇒ postc)∧postD, which is stronger

than necessary for soundness. Spec# [Barnett et al. 2005] uses a stricter rule for
preconditions. Overriding methods must not change the inherited precondition.
When a method implements signatures from more than one supertype (interface),
the preconditions in these supertypes must be identical. The e�ective postcondition
of a method is simply the conjunction of all inherited and declared postconditions.
Thus with Spec#'s precondition rule, a quali�cation by preconditions is not use-
ful. Finally, in Spec# an overriding method must not declare additional modi�es
clauses. A larger modi�es clause would be unsound with Spec#'s precondition rule,
and a smaller modi�es clause, that is, strengthening of the frame properties, can
be achieved through additional postconditions.

[[Peter: I would have liked to illustrate the concepts with an example, but I did
not manage to come up with a natural example. And arti�cial examples do not
help much.]]

[[Peter: I did not show formulas because I did not want to introduce all the
required notations, but maybe we have to make the rules clear.]]

Even though behavioral subtyping is an important design principle for the safe
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use of subtyping and inheritance, there are implementations where a subclass re-
stricts or changes the behavior of its superclass. To support such implementations,
it has been proposed to distinguish between static and dynamic method speci�-
cations [Chin et al. 2008; Parkinson and Bierman 2008]. A static speci�cation

describes the behavior of a particular method implementation, whereas a dynamic

speci�cation describes the common behavior of all implementations of a method,
including overriding methods in subclasses. In other words, static speci�cations
are not inherited by subtypes and are not subject to behavioral subtyping. Hence,
static speci�cations are used to reason about statically-bound calls where the im-
plementation to be executed is known statically, for instance, Java's super calls;
dynamic speci�cations are used to reason about dynamically-dispatched calls.

6. CONCLUSIONS

Discuss the challenge of interactions between kinds of properties, such as between
functional (data) and sequencing (temporal logic) properties, and between func-
tional properties and resource properties.
Collect accomplishments and key ideas useful for the grand challenge.

6.1 Future Work

Describe research problems that need to be addressed in the context of the grand
challenge.
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