
In Proceedings of the Twenty-First National Conference on Artificial Intelligence (AAAI-06),
Boston, MA, July 2006.

Automatic Heuristic Construction in a Complete General Game Player ∗

Gregory Kuhlmann, Kurt Dresner and Peter Stone
Department of Computer Sciences, The University of Texas at Austin

1 University Station C0500, Austin, Texas 78712-1188
{kuhlmann,kdresner,pstone}@cs.utexas.edu

Abstract

Computer game players are typically designed to play a sin-
gle game: today’s best chess-playing programs cannot play
checkers, or even tic-tac-toe. General Game Playing is the
problem of designing an agent capable of playing many dif-
ferent previously unseen games. The first AAAI General
Game Playing Competition was held at AAAI 2005 in or-
der to promote research in this area. In this article, we survey
some of the issues involved in creating a general game play-
ing system and introduce our entry to that event. The main
feature of our approach is a novel method for automatically
constructing effective search heuristics based on the formal
game description. Our agent is fully implemented and tested
in a range of different games.

Introduction
Creating programs that can play games such as chess, check-
ers, and backgammon, at a high level has long been a chal-
lenge and benchmark for AI. While several game-playing
systems developed in the past, such as Deep Blue (Camp-
bell, Jr., & Hsu 2002), Chinook (Schaeffer et al. 1992), and
TD-gammon (Tesauro 1994) have demonstrated competitive
play against human players, such systems are limited in that
they play only one particular game and they typically must
be supplied with game-specific knowledge. While their per-
formance is impressive, it is difficult to to determine if their
success is due to the particular game-playing technique or
due to the human game analysis.

A general game playing agent must be able to take as in-
put a description of a game’s rules and proceed to play with-
out any human input. Doing so requires the integration of
several AI components, including theorem proving, feature
discovery, heuristic search, and potentially learning.

This paper presents a complete and fully autonomous gen-
eral game playing agent designed to participate in the first
AAAI General Game Playing (GGP) Competition which
was held at the AAAI 2005 in Pittsburgh (Genesereth &
Love 2005). The main contribution is a novel method for
automatically constructing effective search heuristics based
on the formal game description. Our agent is fully imple-
mented and tested on several different games.

General Game Playing
The General Game Playing problem is the challenge of cre-
ating a system capable of playing games with which it has

∗This work was supported by DARPA grant HR0011-04-1-
0035, DARPA/AFRL grant FA8750-05-2-0283 and NSF CAREER
award IIS-0237699.
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

had no prior experience. The definition of a “game” can
be quite broad, ranging from single-state matrix games such
as the Prisoner’s Dilemma to complex, dynamic tasks like
robot soccer. A general game playing scenario is specified
by three main components: (1) the class of games to be con-
sidered, (2) the domain knowledge prior to the start of the
game, and (3) the performance measure.

First, in this paper, we restrict our attention to the class of
games that were considered in the 2005 AAAI GGP com-
petition, namely discrete state, deterministic, perfect infor-
mation games. The games may be single or multi-player
and they may be turn-taking or simultaneous decision. By
deterministic, we mean that given a state of the game, and
a joint set of actions taken by all players, the next state is
uniquely determined. Go and Othello are examples of games
from this class. However, Backgammon is not, because dice
rolls are nondeterministic. In a perfect information game,
the complete state of the game is known by all participants.
Chess and Checkers qualify as perfect information games,
because the state of the game is completely captured by the
positions of the pieces on the board, which is in plain sight.
In contrast, games such as Poker and Battleship do not qual-
ify as perfect information games because players hide part
of the game state from their opponents.

Second, in addition to the set of games to be considered,
a general game playing scenario is parameterized by the
amount and type of domain knowledge given to the players
prior to the start of the game. For example, in the Learning
Machine Challenge sponsored by Ai in January of 2002, the
players were told nothing more than the set of legal moves.
In the scenario adopted in this work, players are given a for-
mal description of the rules of the game. For our purposes,
the game description, at a minimum, must contain sufficient
information to allow the agent to simulate the game on its
own. Our approach can take advantage of certain kinds of
structure in the game description, as we will demonstrate.

Third, we must specify how agent performance is to be
measured. In our setup, an agent is evaluated based on the
number of points earned in a single shot game against com-
peting agents. The identities of the opponents are hidden.

The key question that our work seeks to address is: In the
general game playing scenario described above, how can we
leverage the formal game description to improve agent per-
formance? Before we answer this question, we will describe
one concrete instance of this scenario, namely the AAAI
GGP competition. The AAAI GGP scenario was the main
motivating scenario for our agent development and is the
scenario in which all of our empirical results are reported.



The AAAI GGP Competition

The first annual AAAI General Game Playing Competition
was held at the 2005 AAAI conference in Pittsburgh (Gene-
sereth & Love 2005). Nine teams participated in that event.
In each of three main rounds, game playing agents were di-
vided into groups to compete in both two- and three-player
games. The games included a three player version of Chi-
nese Checkers, a variant of Othello called “Nothello”, and in
the final round, a simultaneous decision racing game called
“Racetrack Corridor.” The complete details of the competi-
tion are available online1.

In the competition setup, each player runs as an indepen-
dent server process. At the start of a game, a process called
the Game Manager connects to each player and sends the
game description along with time limits called the start clock
and play clock. Players have the duration of the start clock to
analyze the game description before the game begins. Each
turn, players get the duration of the play clock to choose
and announce their moves. After each turn, the Game Man-
ager informs the players of the moves made by each player.
The game continues until a terminal state is reached. No hu-
man intervention is permitted at any point: the general game
player must be a complete and fully autonomous agent.

Game Description Language

The Game Description Language (GDL), used in the com-
petition, is a first-order logical description language based
on KIF (Genesereth 1991). In GDL, games are modeled
as state machines in which a state is the set of true facts
at a given time. Using a theorem prover, an agent can de-
rive its legal moves, the next state given the moves of all
players, and whether or not it has won. Each of these op-
erations requires theorem proving; simulating games can be
costly. One of the research challenges of GGP is to find effi-
cient methods for reasoning about games described in first-
order languages. Part of the description for a game called
“Minichess” is shown in Figure 1. A GGP agent must be
able to play any game, given such a description. We illus-
trate the features of GDL through this example.

First, GDL declares the game’s roles (line 1). The Game
Manager assigns each game playing agent a role to play.
“Minichess” has two roles, white and black, making it
a two player game. Next, the initial state of the game is
defined (2–7). Each functional term inside an init rela-
tion is true in the initial state. Besides init, none of the
tokens in these lines are GDL keywords. The predicates
cell, control and step are all game-specific. Even the
numbers do not have any external meaning. If any of these
tokens were to be replaced by a different token throughout
the description, the meaning would not change. This lack
of commitment to any lexical semantics will be important
when we discuss our approach to feature discovery.

GDL also defines the set of legal moves available to each
role through legal rules (8–15). The <= symbol is the
reverse implication operator. Tokens beginning with a ques-
tion mark are variables. The true relation is affirmative if
its argument can be satisfied in the current state. Each player

1http://games.stanford.edu/results.html

1. (role white) (role black)

2. (init (cell a 1 b)) (init (cell a 2 b))

3. (init (cell a 3 b)) (init (cell a 4 bk))

...

4. (init (cell d 1 wr)) (init (cell d 2 b))

5. (init (cell d 3 b)) (init (cell d 4 b))

6. (init (control white))

7. (init (step 1))

...

8. (<= (legal white (move wk ?u ?v ?x ?y))

9. (true (control white))

10. (true (cell ?u ?v wk))

11. (kingmove ?u ?v ?x ?y)

12. (true (cell ?x ?y b))

13. (not (restricted ?x ?y)))

14. (<= (legal white noop)

15. (true (control black)))

...

16. (<= (next (cell ?x ?y ?p))

17. (does ?player (move ?p ?u ?v ?x ?y)))

18. (<= (next (step ?y))

19. (true (step ?x))

20. (succ ?x ?y))

...

21. (succ 1 2) (succ 2 3) ... (succ 9 10)

22. (nextcol a b) (nextcol b c) (nextcol c d)

...

23. (<= (goal white 100)

24. checkmate)

25. (<= (goal black 100)

26. (not checkmate))

...

27. (<= terminal

28. (true (step 10)))

29. (<= terminal

30. stuck)

Figure 1: Partial game description for “Minichess”, GDL key-
words shown in bold.

must have at least one legal move in each nonterminal state
for the game to be valid. The second rule (14–15) demon-
strates how turn-taking is simulated in GDL by requiring a
player to execute a null action in certain states.

The state transition function is defined using the next

keyword (16–20). Transition rules are used to find the next
state, given the current state and the actions of all players.
The does predicate is true if the given player selected the
given action in the current state. Finally, GDL defines rules
to determine when the game state is terminal (27–30).
When the game ends, each player receives the reward de-
fined by the game’s goal rules (23–26).

A game description may define additional relations to
simplify the conditions of other rules and support numeri-
cal relationships. For instance, the succ relation (21) de-
fines how the game’s step counter is incremented, and the
nextcol relation (22) orders the columns of the chess
board. As we will discuss, identifying these kinds of nu-
merical relationships is extremely valuable, as they serve as
a bridge between logical and numerical representations.



Approach

In our game playing scenario, in which an agent may look
ahead by simulating moves, an obvious choice of approach
is search. Most existing game playing systems for the types
of game that we consider are based upon the Minimax search
algorithm. Well-known examples include Chinook (Schaef-
fer et al. 1992) for Checkers and Deep Blue (Campbell, Jr.,
& Hsu 2002) for Chess. Even learning-based systems such
as TD-gammon (Tesauro 1994) incorporate search for action
selection. However, unless the state space is small enough
to be searched exhaustively, the agent must use a heuristic
evaluation function to evaluate non-terminal nodes and thus
bound search depth. Such evaluation functions are highly
game-specific, and much of the human effort in developing
game playing systems is spent on manually tuning them.

In a general game playing setting, the evaluation function
cannot be provided by a human. Because each lookahead re-
quires costly theorem proving, exhaustive search is not a vi-
able option. To make reasoning as efficient as we could, our
agent uses a Prolog-style interpreter for theorem proving. In
early testing, we found that this was significantly faster than
other kinds of resolution. Even so, all but the smallest game
trees are beyond the reach of exhaustive search.

To overcome these issues, we developed a method for
generating heuristic evaluation functions automatically. We
construct heuristics from features identified in the game de-
scription. Candidate heuristics are evaluated in parallel dur-
ing action selection to find the best move. We discuss the
details of our search algorithm in the next section before
moving on to the heuristic construction algorithm.

Search Algorithm

The search algorithm employed by our player is based on
alpha-beta pruning (Knuth & Moore 1975). Without a
heuristic, the terminal nodes of the game tree are visited
in a depth-first search order. For heuristic search, we use
iterative deepening (Korf 1985) to bound the search depth.
We include two general-purpose enhancements: transposi-
tion tables, which cache the value of states encountered pre-
viously in the search; and the history heuristic, which re-
orders children based on their values found in lower-depth
searches. Other general techniques exist, but the combina-
tion of these two enhancements accounts for most of the
search space cutoff when combined with additional tech-
niques (Schaeffer 1989). We extended this basic minimax
search algorithm to allow simultaneous decision games and
games with more than two players.

Although our implementation was designed to work for
the broadest possible set of games, we made one important
simplifying assumption. We assume that each player in the
game can be placed into one of two sets: teammates and
opponents. Thus, every player is either with us or against
us. Our simple but strict definition of a teammate is a player
that always receives the same reward that we do. We deter-
mine which team a player is on through internal simulation
(see below). By treating somewhat cooperative players as
opponents, we avoid the need to maintain a separate utility
function for each team, which can be expensive since stan-
dard alpha-beta pruning can no longer be used.

Our player uses the same search procedure for turn-taking
and simultaneous decision games. The procedure also ap-
plies to games with a mix of the two. At a turn-taking node,
if the move is being made by a teammate, it is treated as a
maximization node. If it is an opponent’s turn to move, it is
a minimization node. This type of search is an instance of
the paranoid algorithm (Sturtevant & Korf 2000). If it is a
simultaneous move node, because of the unpredictability of
our opponents, we assume that our opponents choose their
moves uniformly at random. We choose our action from the
joint action of our team that maximizes our expected reward,
based on that assumption. If we have prior knowledge of the
opponent, either from past games or earlier moves in the cur-
rent game, opponent modeling methods could be applied at
this point, as could game theoretic reasoning.

Identifying Syntactic Structures

The first step toward constructing a heuristic evaluation
function is to identify useful structures in the game descrip-
tion. Useful structures include time counters, game boards,
movable pieces, commodities, etc. Our agent identifies
these structures by syntactically matching game description
clauses to a set of template patterns. Although the syntax
of these templates are specific to GDL, they are conceptu-
ally general, and the template matching procedure could be
applied to other languages. Still, we include the idiosyn-
crasies of GDL in our discussion both to make the procedure
concrete and to aid future competition participants. Specifi-
cally, we describe our agent’s identification of five structural
game elements: successor relations, counters, boards, mark-
ers, pieces, and quantities.

As mentioned above, other than keywords, GDL tokens
have no pre-defined meaning to the player. In fact, during
the competition, the tokens were scrambled to prevent the
use of lexical clues. Therefore, all structures are detected by
their syntactic structure alone. For example, one of the most
basic structures our agent looks for is a successor relation.
This type of relation induces a total ordering over a set of
objects. We have already seen two examples in lines 21–22
of Figure 1. In a competition setting, the same successor
relations may be look something like the following:
(tcsh pico cpio) (tcsh cpio grep) ... (tcsh echo ping)

(quiet q w) (quiet w e) (quiet e r) (quiet r t)

Our system can still identify these relations as successors
because order is a structural, rather than lexical, property.
When a successor relation is detected, the objects in its do-
main can be compared to one another and, in some cases,
incremented, decremented, added and subtracted. Identify-
ing such structures is very important. If, for example, the
agent could not identify them in “Minichess,” it would have
no way to know that step 8 comes after step 7 or that column
a is next to column b, both of which are useful.

A game description may include several successor rela-
tions, which the agent uses to identify additional structures
such as a counter. A counter is a functional term in the
game’s state that increments each time step. Our agent iden-
tifies it by looking for a rule that matches the template:

(<= (next (<counter> ?<var1>))

(true (<counter> ?<var2>))

(<successor> ?<var2> ?<var1>))



where <counter> is the identified function, and
<successor> is some successor relation. The order of
the antecedents is not important. The step function in
“Minichess” is an example of a time step counter, as can
be seen in lines 18–20 of Figure 1.

Our game player identifies counters for several reasons.
First, if the counter terminates the game in a fixed number
of steps, it may be removed during internal simulation to in-
crease the chances of encountering a goal state. More impor-
tantly, in some games, leaving the counter in the state rep-
resentation causes state aliasing, making search inefficient.
Therefore, the function is removed before caching a state’s
value in the transposition table.

Another example of a structure that our player attempts
to identify is a board. A board is a two dimensional grid of
cells that change state, such as a chess or checkers board.
When the agent receives the game description, it assumes
every ternary function in the state is a board. However, one
of the board’s arguments must correspond to the cell’s state,
which can never have two different values simultaneously
— two of its arguments are inputs and the third is an output.
We verify this property using internal simulation.

According to our definition of a board, a candidate is re-
jected if it ever has two objects in the same place. Although
such a board may be valid, we choose to eliminate it to pre-
vent false positives. “Minichess” has one board: the cell
function. If a board’s input arguments are ordered by some
successor relation, then we say that the board is ordered.

Once a board is identified, our player looks for additional
related structures such as markers, which are objects that
occupy the cells of the board. If a marker is in only one
cell at a time, we distinguish it as a piece. For example, in
“Minichess”, the white rook, wr, and the black king bk are
pieces. However, games like Othello where, for instance, a
black object may be in multiple places, have only markers.

Our player also identifies additional structures that do not
involve boards or pieces. These structures are functions in
the state that may quantify an amount of something, such as
money in Monopoly. These are identified as those relations
having ordered output arguments. We discuss the distinction
between input and output arguments in the next section.

Internal Simulation

We have mentioned several situations in which we needed
to prove an invariant about states of the game. For instance,
we need to prove an invariant about terminal states to di-
vide the game’s roles into teams. We also need to prove
invariants about the input and output modes of relations to
identify boards, markers and pieces. Rather than proving
these invariants formally, which would be time-consuming,
our agent uses an approximate method to become reasonably
certain that they hold. The agent uses its theorem prover to
simulate a game of random players, during which, the agent
checks whether or not its currently hypothesized invariants
hold. To demonstrate, we trace the process of identifying the
board and pieces in the “Minichess” example.

The agent assumes that cell is a board because it is the
only ternary function in the state. From just checking the
initial state, the agent is able to determine that the only can-

didate mode is (cell + + -), where + signifies an input
argument and - signifies an output argument. This turns out
to be the right answer and no further refinement is necessary.

Our agent also initially assumes that every object appear-
ing in the output argument of the function is a piece. There-
fore, in the example, wr, bk and b are all initially pieces.
From checking the initial state, the agent eliminates b as a
piece because it is in more than one place at a time. Further
simulation of the game never rejects wr or bk as pieces.

As for the teams, our player assumes that black and
white are on the same team. Once the first terminal state
is reached during simulation, though, this hypothesis is re-
jected. “Minichess” is a zero sum game without any condi-
tions for a tie, and therefore would never assign equal reward
to the two roles. After the first simulated game, black and
white are separated into two teams.

“Minichess” is an easy case in that the correct hypotheses
are reached very quickly. Other games may require more
simulation. In the games that we have encountered thus far,
however, teams were identified after at most 2 games and
boards and pieces stabilized after roughly 3 time steps.

In the competition, our agent ran the internal simulation
for the first 10% of the start clock, with a minimum of 50
states visited. For a typical game, this amount of simula-
tion was more than sufficient to establish a high degree of
confidence in the agent’s hypotheses.

From Syntactic Structures to Features

The structures identified in the previously described pro-
cesses suggest several interesting features. We use feature to
mean a numerical value, calculated from the game state, that
has potential to be correlated with the outcome of the game.
If the dimensions of the board are ordered, then our agent
computes the x and y coordinates of each piece as the nat-
ural numbers associated with the input arguments’ indices
in their corresponding successor relations. For example, the
coordinates of wr in the initial state of the “Minichess” ex-
ample are (3, 0). From these coordinates, the agent can also
calculate the Manhattan distances between pieces.

If a board is not ordered, it may still produce useful fea-
tures, including the number of occurrences of each marker.
In addition, the agent generates features corresponding to
the values of each quantifiable amount. A complete list of
features generated by the player is shown in Table 1.

Identified Structure Generated Features

Ordered Board w/ Pieces Each piece’s X coordinate

Each piece’s Y coordinate

Manhattan distance between each pair of pieces

Sum of pair-wise Manhattan distances

Board w/o Pieces Number of markers of each type

Quantity Amount

Table 1: Generated features for identified structures.

From Features to Heuristics

From the set of generated features, our game player cre-
ates heuristics to guide search. In traditional single-game-
playing systems, multiple features are manually weighted



and combined to create a single evaluation function. Be-
cause the games to be played are not known to the designer,
that option is not available to agents in the general game
playing scenario. While it may be possible to learn the eval-
uation function, as is done by TD-gammon, doing this effi-
ciently in the general case remains an open problem.

Instead of constructing a single heuristic function, our
agent constructs a set of candidate heuristics, each being
the maximization or minimization of a single feature. By
including both, the agent can handle games with counterin-
tuitive goal conditions. As it turned out, “Nothello” gave us
a great example of such a game during the competition. In
“Nothello”, the player with the fewest markers at the end of
the game wins. Because the agent generates a heuristic to
minimize the number of its own markers, it had a candidate
heuristic that matched well with the game’s goal.

We implement the candidate heuristics as board evalua-
tion functions that linearly map the feature’s value to an ex-
pected reward between R− + 1 and R+

− 1, where R− and
R+ are the minimum and maximum goal values achievable
by the player, as described by the goal predicate. The val-
ues of the maximizing and minimizing heuristic functions
are calculated respectively as follows:

H(s) = 1 + R
− + (R+

− R
−

− 2) ∗ V (s)

H(s) = 1 + R
− + (R+

− R
−

− 2) ∗ [1 − V (s)]

where H(s) is the value of heuristic H in state s and V (s)
is the value of the feature, scaled from 0 to 1. We scale the
heuristic function in this way so that a definite loss is always
worse than any approximated value, and likewise, a definite
win is always better than an unknown outcome.

Distributed Search

Not all of the heuristics that the player generates from the
game description are particularly good for that game. Nor is
the best choice of heuristic necessarily the same throughout
the course of the game. Rather than attempting to extract
hints about the goal from the goal conditions in the game
description, which could be arbitrarily complex, we evaluate
the candidate heuristics online using distributed search.

In addition to the main game player (GP) process, our
player launches several remote slave (Slv) processes. In
each play clock, the main process informs each slave of the
current state, s, and assigns each one a heuristic, h, to use
for search. Occasionally, the slave processes respond with
their best action so far, ai. Before the play clock expires,
the game player evaluates the suggested actions, chooses the
“best” one, a∗, and sends it to the game manager (GM). This
procedure, with one slave, is illustrated in Figure 2.

The same heuristic may be assigned to multiple slaves
if the number of heuristics is smaller than the number of
slaves. This was typically the case during the competition,
with roughly two dozen heuristics and almost 200 slaves.
Although this redundancy typically leads to significant du-
plicated effort, ties between action scores are broken ran-
domly during search and thus the different processes end up
exploring different parts of the search space. Also, several
slaves perform exhaustive search using no heuristic. This
ensures optimal play near the end of the game.

aa a

aA’

h,s

Time

1 2 3

*

GM

GP

Slv

Play Clock

Figure 2: Messages between the Game Manager, Game Player,
and a Slave process during a single play clock.

Choosing from among the suggested actions is a signifi-
cant challenge, but one component of the strategy is clear: if
exhaustive search returns an action, the agent should always
choose it — the action is guaranteed to be optimal. Beyond
that, our agent prefers actions from deeper searches to those
from shallower ones, as deeper searches allow the agent to
better evaluate the long term effects of its actions. It is tricky,
however, to choose between actions nominated by different
heuristics. Doing so in a principled way, perhaps by tak-
ing into account the game’s goal condition, remains an open
challenge and is an important direction for future work.

Experimental Results
After a successful start enabling our agent to reach the finals
(3 teams out of the original 9), a networking glitch blocking
connectivity between the competition site and our servers
at home prevented our full participation in the finals. In
this section, we present controlled experiments isolating the
main contributions of this paper, namely the feature discov-
ery and automatic heuristic construction methods.

Without the feature discovery and automatic heuristic
construction techniques described above, a game player
could only resort to performing exhaustive search for the en-
tire game. While this strategy results in optimal play near the
end of the game, the consequences of mistakes made early
on would likely be irreparable. To measure the impact of our
contributions on the player’s performance, we conducted ex-
periments in which a player with a generated heuristic com-
petes with players performing exhaustive search.

To isolate the feature discovery and heuristic construc-
tion processes from the heuristic selection method, we do
not use distributed search to evaluate heuristics. Instead, we
choose a single heuristic for the player to use. Doing so em-
ulates what we would expect from an agent with our heuris-
tic construction method, but with a better heuristic evalua-
tion method. In all cases, we choose the heuristic from pre-
existing options based on our knowledge of the game, but
without revision or experimentation after the initial choice.

The exhaustive and heuristic players were pitted against
each other in 3 different games. The first game, “Nothello”,
which we introduced before, is a variant of Othello in which
each of the two players tries to end the game with fewer
markers than their opponent. A win earns a player 100
points and a draw is worth 50. The generated heuristic that
we chose was the one that minimized the number of markers
for our player. We hypothesized that minimizing a player’s
markers in the short term could be a win in the long run.

The second game, “Hallway”, is a two player game played
on a chess board. Each player controls a pawn that, starting
on opposite sides, must reach the other side before the op-



ponent to earn 100 points. During the game, a player may
place up to four walls to hinder their opponent’s progress.
If neither player reaches the other side in 200 time steps,
then the game is a draw and each player receives 50 points.
The heuristic we chose for “Hallway” maximized the x-
coordinate of our player’s piece. This heuristic encourages
the player to move closer to the opposite side of the board.

Lastly, “Farmers” is a three player commodities trading
game. The three agents each start with equal amounts of
money, and may use it to buy and sell cotton, cloth, wheat
and flour. By saving up for a farm or factory, a player may
produce additional commodities. Each time step, all play-
ers make their trading decisions simultaneously. When the
game ends ten steps later, the player with the most money
wins. If there is a tie, all players with the most money re-
ceive 100 points. The heuristic that was chosen for this game
was the one that maximizes the player’s own money. Both
of the heuristic player’s opponents used exhaustive search.

All three games were developed by the organizers of the
AAAI GGP competition and were not created to match
the constructed heuristics. For each game, we ran sev-
eral matches with start and play clocks of 60 seconds. We
recorded the number of games in which the agent using
the generated heuristic scored 100 points. The results are
shown in Table 2. In “Nothello”, our agent won all 15 of
its matches. The probability, p, that a random player would
perform as well as our agent is roughly 10−5. We calculated
this based on the prior probability of winning using random
moves, which was not quite 50% due to a small chance of
ties. We found this probability experimentally by running
500 matches with all players choosing random moves. The
p values for the remaining games were found similarly.

Game Wins Matches p

Nothello 15 15 10−5

Hallway 15 15 10−11

Farmers 11 25 0.234

Table 2: Results for the agent using a generated heuristic versus
one or more players using exhaustive search.

In the “Hallway” game, our agent again won all 15 of its
matches. In this case, the results are even more significant
because the prior probability of winning by chance is only
about 20%. Roughly 60% of random games end in a tie.

Finally, in “Farmers”, our agent performed better than
the prior expectation of 35.15%, but did not win enough
games for the results to be statistically significant. The agent
needed to win 14 of its 25 games for us to be at least 95%
confident that its success was not by chance. The automat-
ically generated heuristics were quite successful on the first
two games, and on the third game, did not hurt performance.

Related Work
Prior research on the feature discovery problem includes
Fawcett’s (1993) thesis work. Although Fawcett does not
construct of a completely general game player, the feature
discovery algorithm is applied in a game-playing setting.
Features for the game of Othello are generated from a game
description with syntax somewhat like GDL. Features are

discovered by applying transformation operators on existing
features, beginning with the goal condition itself, in a kind
of search through feature space. It is unclear how dependent
the method’s success is on the STRIPS-style domain theory,
but it may be possible to apply the same technique in GGP.

The most relevant work to general game playing is Bar-
ney Pell’s Metagamer (Pell 1993). This work addresses the
space of chess-like games, broad enough to include Check-
ers, Chinese Chess, Go and many more variants without
common names. Again, because the domain representation
was constructed as part of the work, it is not obvious that
the techniques could directly apply in the GGP setting. This
work also addresses the interesting problem of automatically
generating novel games from a distribution of possibilities

Finally, there is an interesting, commercially available
general game playing system called Zillions of Games 2.
Games are described using a higher-level language than
GDL. The system comes with several games and an agent
opponent to play against. As far as we are aware, though,
this agent is not able to perform feature discovery or heuris-
tic construction in a completely general way on its own.

Conclusion
We have introduced algorithms for discovering features in
a formal game description and generating heuristic evalua-
tion functions from them. These methods are integrated with
theorem proving and heuristic search algorithms into a com-
plete agent for general game playing. By building on these
techniques, we can continue to make progress toward the
ongoing general game playing challenge.

References
Campbell, M.; Jr., A. J. H.; and Hsu, F. H. 2002. Deep blue.
Artificial Intelligence 134(1–2):57–83.

Fawcett, T. E. 1993. Feature discovery for problem solving sys-
tems, PhD thesis, University of Massachusetts, Amherst.

Genesereth, M., and Love, N. 2005. General game playing:
Overview of the AAAI competition. AI Magazine 26(2).

Genesereth, M. 1991. Knowledge interchange format. In Prin-
ciples of Knowledge Representation and Reasoning: Proceedings
of the Second Intl. Conference (KR’91).

Knuth, D. E., and Moore, R. W. 1975. An analysis of alpha-beta
pruning. Artificial Intelligence 6(4):293–326.

Korf, R. E. 1985. Iterative deepening: An optimal admissable
tree search. Artificial Intelligence 27:97–109.

Pell, B. 1993. Strategy generation and evaluation for meta-game
playing. PhD thesis, University of Cambridge.

Schaeffer, J.; Culberson, J. C.; Treloar, N.; Knight, B.; Lu, P.;
and Szafron, D. 1992. A world championship caliber checkers
program. Artificial Intelligence 53(2-3):273–289.

Schaeffer, J. 1989. The history heuristic and alpha-beta search
enhancements in practice. IEEE Transactions on Pattern Analysis
and Machine Intelligence 11:1203–1212.

Sturtevant, N. R., and Korf, R. E. 2000. On pruning techniques
for multi-player games. In Procs. AAAI-00, 201–207.

Tesauro, G. 1994. Td-gammon, a self-teaching backgammon
program, achieves masterlevel play. Neural Computation 6:215–
219.

2http://www.zillions-of-games.com/


