
To appear in The Twenty-First National Conference on Artificial Intelligence (AAAI),
Boston, Massachusetts, July 2006.

Keeping in Touch: Maintaining Biconnected Structure by Homogeneous Robots

Mazda Ahmadi and Peter Stone
Department of Computer Sciences
The University of Texas at Austin

1 University Station C0500, Austin, TX 78712-0233
Email:fmazda,pstoneg@cs.utexas.edu

http://www.cs.utexas.edu/˜{mazda,pstone}

Abstract

For many distributed autonomous robotic systems, it is impor-
tant to maintain communication connectivity among the robots.
That is, each robot must be able to communicate with each other
robot, perhaps through a series of other robots. Ideally, this prop-
erty should be robust to the removal of any single robot from the
system. In (Ahmadi & Stone 2006a) we define a property of a
team’s communication graph that ensures this property, called
biconnectivity. In that paper, a distributed algorithm to check if
a team of robots is biconnected and its correctness proof arealso
presented. In this paper we provide distributed algorithmsto add
and remove robots to/from a multi-robot team while maintain-
ing the biconnected property. These two algorithms are imple-
mented and tested in the Player/Stage simulator.

Introduction
Many applications of distributed autonomous robotic systems
can benefit from, or even may require, the team of robots stay-
ing within communication connectivity. For example, con-
sider the problem of multirobot surveillance (Parker 2002;
Ahmadi & Stone 2006b), in which a team of robots must col-
laboratively patrol a given area. If any two robots can directly
communicate at all times, the robots can coordinate for effi-
cient behavior. This condition holds trivially in environments
that are smaller than the robots’ communication range. How-
ever in larger environments, the robots must actively maintain
physical locations such that any two robots can communicate
— possibly through a series of other robots. Otherwise, the
robots may lose track of each others’ activities and become
miscoordinated. Furthermore, since robots are relativelyunre-
liable and/or may need to change tasks (for example if a robot
is suddenly called by a human user to perform some other task),
in a stable multirobot surveillance system, if one of the robots
leaves or crashes, the rest should still be able to communicate.
Some examples of other tasks that could benefit from any pair
of robots being able to communicate with each other, are space
and underwater exploration, search and rescue, and cleaning
robots.

We say that robotR1 is connectedto robotR2 if there is a
series of robots, each within communication range of the pre-
vious, which can pass a message fromR1 toR2. It is not possi-
ble to maintain connectivity in the face of arbitrary numbers of
robot departures: if there are any two robots that are not within
communication of one another and all other robots simultane-
ously depart, the system becomes disconnected. Thus we focus

Copyright c
 2006, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

on the property of remaining robust to any single failure under
the assumption that the team can readjust its positioning inre-
sponse to a departure more quickly than a second departure
will occur. In order for the team to stay connected, even in
the face of any single departure, it must be the case that every
robot is connected to each other robot either directly or viatwo
distinct paths that don’t share any robots in common. We call
this propertybiconnectivity: the removal of any one robot from
the system does not disconnect the remaining robots from each
other.

We tackle the problem of maintaing biconnectivity for mul-
tirobot systems by dividing it into three main steps: (1) Check-
ing whether a team of robots iscurrently biconnected, (2)
Maintaining biconnectivity should a robot be removed from (or
added to) the team, and (3) Constructing a biconnected multi-
robot structure from scratch. To be applicable for teams of au-
tonomous robots, all algorithms must be fully distributed.

Algorithms and analysis of step 1 are presented in detail
in (Ahmadi & Stone 2006a). In this paper, we review the
main ideas for that step. The main contribution of this paper
is our approach to Step 2 assuming each robot works within a
region and does not go out of its assigned region. Step 3—
constructing a biconnected multirobot structure—remainsas
future work. Note that it is possible to achieve step 3, even
if inelegantly, by having the robots move back to a base and
disperse from there whenever they find that they are no longer
biconnected.

For the purposes of this paper, we assume that robots have
constant and identical communication ranges. This assumption
applies in the case of homogeneous robot teams (or at least
teams with homogeneous transmitters) such that the range is
not dependent on a robot’s battery level. This assumption al-
lows us to assume the connection graph among robots is undi-
rected: if robot A can send a message to robot B, then the re-
verse is also true. Extension of this work to the case where
robots have heterogeneous communication capabilities is also
a part of our future work plans.

The rest of the paper is organized as follows. First, we
present related work, followed by the graph theory background
and assumptions about the investigated multirobot systems.
The next section presents an overview of the distributed algo-
rithms to detect if the robots are biconnected. Next, the algo-
rithms to add or remove robots to/from the biconnected struc-
ture are provided, followed by empirical results and a conclu-
sion.



Related Work
In recent years, the problem of maintaining connectivity with
ad-hoc networks has been studied extensively in the field of
mobile robotics. However, to the best of our knowledge, none
of the previous methods ensure connectivity in the face of robot
failures.

Assuming robots do not fail, some of the previous methods
focus on creating connected structures. Howard et al. (Howard,
Matadd, & Sukhatme 2002) provide useful heuristics for creat-
ing connected structure. However their method is not robustto
robot removal and furthermore it is centralized. Nguyen et al.
(Nguyenet al. 2003) make the robots follow a leader robot in
a line, thus making a connected structure.

The methods that do consider the possibility of robots fail-
ure do not ensure connectivity. Ulam and Arkin (Ulam & Arkin
2004) provide four different methods of restoring connectivity
in the event of robot failure in multirobot teams. Although in-
spiring, their results show that none of the methods ensure con-
nectivity. In the method presented by Vazquez and Malcolm
(Vazquez & Malcolm 2004), each robot tries to be neighbor of
at least one other robot, which does not necessarily result in a
connected structure.

Anderson et al. (Anderson, Simmons, & Goldberg 2003)
construct and maintain a connected structure using a central
entity which is assumed to be able to communicate with any
robot. All of our algorithms are distributed, and we consider it
impractical to assume that there is a center that can communi-
cate with any robot.

Although we are not aware of any previous use of bicon-
nected structures for multirobot systems, biconnected graphs
are an old concept in graph theory. Typical related work in
graph theory is on algorithms to find a biconnected component
in a graph with optimal time complexity, in dynamic graphs, or
in a restricted subclass of all graphs (e.g. (Westbrook & Tarjan
1992)). In all these cases, the algorithms are either centralized,
or if distributed, each node has full knowledge of the whole
graph. Some work in distributed computing is closer in spirit
to our work, however a main difference between their prob-
lem statement and ours is that in distributed computing (e.g.
(Swaminathan & Goldman 1994)), any node can send a mes-
sage to any other node. That is, the nodes are not restricted to
send messages only through the existing edges of the graph.

Preliminaries
We first provide some graph definitions and theorems which
will be used later in the paper. For basic graph definitions, such
as vertex, edge, neighbor, path and loop please see (Diestel
1997). Later in the section, definitions and assumptions which
are specific to our multirobot system will be presented.
Definition 1. Internally vertex-disjoint paths. Two paths be-
tweenv1 are v2 are internally vertex-disjoint if they have no
vertices in common exceptv1 andv2.
Definition 2. Biconnected graph.If in graphG, after remov-
ing any vertex, it is possible to find a path from any vertex to
any other one, the graphG is said to be biconnected.

Definition 3. Doubly connected vertices. In graphG, we say
vertexv1 andv2 are doubly-connected iff there are two or more
internally vertex-disjoint paths betweenv1 andv2.

Lemma 1. Undirected graphG(V;E) is biconnected if and
only if any two verticesv1; v2 2 V are doubly-connected.

Proof. It is a special case of Menger’s Theorem (See Theorem
3.3.1 of (Diestel 1997)).

Note that in undirected graphs one vertex being doubly-
connected to all other vertices is not a sufficient conditionfor
the graph to be biconnected. For an example see Figure 1
wherev is doubly-connected to all other vertices, but remov-
ing v makes the graph disconnected. In the following theorem
we show that in an undirected graph if there are two vertices
that are doubly-connected to all other vertices, then the graph
is biconnected.
Theorem 1. Undirected graphG(V;E) is biconnected if and
only if there exists two distinct verticesv1; v2 2 V such that
bothv1 andv2 are doubly-connected to any other vertex inV .

Proof. For a proof see (Ahmadi & Stone 2006a).

We look at
v

Figure 1:V is doubly-connected to all other
vertices, but the graph is not biconnected.

our multirobot
system as a
graph, such that
its vertices are
robots and edge(v1v2) exists in
the graph iff the
robot corresponding tov1 can communicate directly to the
robot corresponding tov2 (i.e.v1 andv2 are in communication
range of each other). A formal definition of robot graph
follows.
Definition 4. Robot graph RG(V;E) is a graph, where its
vertices (V ) are the robots and(v1; v2) 2 E iff corresponding
robots tov1 is a neighbor of corresponding robot tov2. Size ofV (i.e. number of robots in the multirobot team) is calledn in
this paper.
Assumption 1. Robots are aware of the maximum number of
robots in the system, which can be considerably higher than
the actual number of robots. The maximum number is calledN throughout the paper.
Assumption 2. Robots have identical communication capabil-
ities.

As a result of the above assumption, the neighbor property
is symmetric, and the robot graph is undirected.
Definition 5. Connected.We say robotR1 and robotR2 are
connected, when in the corresponding robot graph, there is a
path betweenR1 andR2.
Assumption 3. Each robot has a unique and ordered ID. For
robot X its ID is called X.id.

Next, the definition and assumption regarding the communi-
cation between robots is provided.
Definition 6. Message, stamped message. For our purposes,
a message, which is used for robot communication, is a string
in format(T; (S)), whereT indicates the type of the message,
andS is a list of robotstamps. Message(T; (S)) is said to be
stampedby robot R iffR:id 2 (S). RobotR stamps message(T; (S)) by generating new message(T; (S;R:id)).
Assumption 4. When called for by the protocol, robots relay
messages to one another. Robots start processing received mes-
sages, as soon as they get them. The maximum period from the
time that robotR1 receives messageX, until its neighbor robotR2 receives the processed (possibly stamped) version of mes-
sageX fromR1 is 
 seconds.



Algorithms to Check Biconnectivity
As mentioned in the introduction, checking for biconnectivity
is the first step towards the overall goal of achieving and main-
taining a biconnected multirobot structure. It is an important
step, because the robots must be able to detect if they are not
biconnected, so that they can take remedial actions to restore
biconnectivitybefore they loseconnectivity. The remedial ac-
tions could be as simple as all robots moving back to a base
and dispersing from there.

Note that the biconnected property is a global property of the
multirobot system: robots cannot determine whether or not it
holds from purely local information. For example see Figure1,
where the graph is not biconnected, and the robots associated
with the nodes on the right side of the graph need global infor-
mation about the nodes on the left side to know that the whole
structure is not biconnected.

In our approach, each robotR, maintains two lists:� CRR (connected robots): the list of robots that are con-
nected toR.� DCRR (doubly-connected robots): the robots doubly-
connected toR.

Each robotR first fills the CRR list, then using that, theDCRR list is computed. Finally with the help of theDCRR
list, it detects if the robot graph is biconnected.

In the rest of this section, we first provide an algorithm
(CR-FILL ) for filling CRR, then another algorithm (DCR-FILL )
is presented which fills theDCRR lists with the help of
the already computedCRR lists. Afterwards an algorithm
which checks the biconnectivity with the help of the computedDCRR lists is provided. All these algorithms are distributed
and each robot runs them independently.

CR-FILL

In this subsection, we provide an algorithm for filling theCRR
list. That is for robotR, it finds the robots that are connected
to it.

The basic idea is for the robots to stamp and pass messages
in the system. In this way, if there is a path ofr0 ! r1 !r2 ! R, betweenr0 andR, robotR will receive a message
that is stamped byr0; r1 andr2. Thus it will know that it is
connected to those robots, and will add them to theCRR list.

A helper algorithm must run continuously on all the robots
to help theCR-FILL andDCR-FILL (to be presented in the next
section) algorithms. With that algorithm, all robots continually
stamp and pass biconnected type messages that they receive.
Any robotr, which receives(\CR"; (S)), checks the content
of S, and if r:id =2 S it stamps the message and send it out.
That is, it sends message(\CR"; (S; r:id)). If r:id 2 S, it
does not send any message because stamping and sending it
would lead to a duplicate ID in(S;R:id). For an overview of
this algorithm see Algorithm 1.

Algorithm 1 Message passing algorithm which robots contin-
ually run

1: upon receiving a message of form(\CR"; (S)) do
2: if R:id =2 (S) then robot R broadcast message(\CR"; (S;R:id)).
3: end upon

The implementation details of theCR-FILL algorithm, which
involves when to send the initiating message, and when to set
theCRR to empty is provided in (Ahmadi & Stone 2006a).
It can be proven that theCR-FILL algorithm can be completed
within 3N
 seconds (recall thatN is the maximum number of
robots).

DCR-FILL

In this subsection,DCR-FILL , an algorithm to fill theDCR lists
is presented. It is assumed that the message passing algorithm
(Algorithm 1) is running continually by all robots.

The basic idea for fillingDCRR for robotR is to find the
robots that are in a common loop withR. When the robot
graph is undirected (Assumption 2), there is a loop including
bothR andR0 iff two internally vertex-disjoint paths (Defini-
tion 1) exist betweenR andR0. In this case,R andR0 are
doubly-connected (Definition 3). According to Algorithm 1,
robots pass stamped messages around. When robotR receives
a message that has been stamped by itself (i.e.R), it knows the
robots that have stamped the message after theR stamps are in
a common loop withR, and should be added toDCRR.

Robot (r) starts by broadcasting message(\DCR"; (R:id)),
which will be heard by all of its neighbor robots. Upon receiv-
ing message(\DCR"; (S)), if this is the first time to receive a
“DCR” message, it resetsDCRr to empty (initializing). Then
it checks the content of(S). If its own ID is in the stamp part
of the message(S), it can represent(S) as(S1; r:id; S2). If S2
includes more than one vertex, it means that there is a loop and
the robot adds all the IDs inS2 to DCRr. If S2 includes only
one vertex, it means that the robot has gotten back a message
from a robot that it has just sent a message to, and should be ig-
nored. Algorithm 2 presents the pseudocode of this algorithm.

Algorithm 2 Pseudocode forDCR-FILL algorithm

1: Time0: robotR broadcasts(\DCR"; (R:id)).
2: upon receiving a message of form(\DCR"; (S)) do
3: if this is the first time to receive a “DCR” messagethen
4: resetDCRR to empty
5: end if
6: if R:id 2 (S) then
7: split (S) to (S1; R:id; S2)
8: if size(S2) > 1 then add the IDs inS2 toDCRR
9: end if

10: end upon

We claim for robotR, theDCR-FILL algorithm sets the cor-
rectDCRR list within n
 seconds.

Theorem 2. For any robotR, the DCR-FILL algorithm finds
the full list of doubly-connected robots (DCRR) withinn
 sec-
onds.

Proof. See (Ahmadi & Stone 2006a)

Biconnectivity Check
After running CR-FILL and DCR-FILL consecutively, theCR
andDCR lists will be accurate. Notice that both algorithms
for filling the CR andDCR lists finish within a known time
limit. Thus the robots should wait3N
 seconds, and afterwardsCR andDCR lists will be accurate. For robotr if CRr andDCRr are equal, it means thatr is doubly-connected to all the



robots that it is connected to. By Theorem 1, we know if there
are two robotsr1 andr2 that are doubly-connected to all other
robots, then the robot graph is biconnected. Also, we know by
Lemma 1 that if there is a robot that is not doubly-connected
to all other robots, the robot graph is not biconnected. Thus
if the robot and one of its neighbors is doubly-connected to
all other robots, the robot knows that the robot graph is bicon-
nected. Also if the robot or one of its neighbors is not doubly-
connected to all other robots, it will know that the robot graph
is not biconnected.

The overview of the biconnectivity check algorithm is shown
in Algorithm 3. The initiator robot (which can be any
robot who wants to check biconnectivity) starts by sending a
(“ CHECK-REQUEST”,()) message to its neighbors to ask them
to check if they are doubly-connected to other robots or not.
Upon receiving a (“CHECK-REQUEST”,()) the other robots run
biconnectivity check (unless they are already running it) as
non-initiators (skipping line 3 of Algorithm 3). Note that mul-
tiple robots can run the biconnectivity check algorithm in par-
allel.

If the robot is doubly-connected to all other robots, it sends
the message (“DC-TRUE”, ()) to all its neighbor robots, and a
(“ DC-FALSE”,()) message otherwise. If the robot is doubly-
connected to all other robots and receives a (“DC-TRUE”, ())
message, it knows that the robot graph is biconnected. Other-
wise (if it is not biconnected to all other robots, or receives a
(“ DC-FALSE”, ()) message) it knows that the robot graph is not
biconnected. Since the initiator and its neighbors should run
the biconnectivity check, the total time needed for the bicon-
nectivity check to complete is6N
+ 2
 seconds.

Note that
 is ideally on the order of milliseconds, though
in practice it may be difficult to guarantee such small bounded
transmission times. In such cases, the algorithms as is may be-
come impractical for large teams of fast-moving (so that con-
nectivity changes quickly) robots. Space and time complexity
of the biconnectivity check is ofO(n) for each received mes-
sage. In the worst case, each robot should deal with(n � 1)!
messages in each time period, but the worst case does not hap-
pen in real applications. For a realistic scenario with35 robots,
each robot on average has to deal with69 messages in each
time period. (Ahmadi & Stone 2006a)

Algorithm 3 Pseudocode for biconnectivity check algorithm.
It returnstrue if the robot graph is biconnected, andfalseoth-
erwise.
1: run CR-FILL andDCR-FILL in parallel, and wait3N
 sec-

onds for them to be finished.
2: if (initiator) then send message (“CHECK-REQUEST”,())
3: if size(DCRR) = size(CRR) then
4: send message (“DC-TRUE”,())
5: else
6: send message (“DC-FALSE”,())
7: return false;
8: end if
9: if a message of form (“DC-FALSE”, ()) is receivedthen

return false;
10: if a message of form (“DC-TRUE”, ()) is receivedthen
11: if size(DCRR) = size(CRR) then return true;
12: end if

Adding and Removing Robots from a
Biconnected Structure

In the previous section a fully distributed algorithm for check-
ing whether a team of robots is biconnected is presented. As
presented in the introduction, that is the first of the three steps to
realizing the overall goal of achieving and maintaining commu-
nication connectivity in a team of robots. This section presents
how a team canmaintainbiconnectivity when team members
are added or removed.

Here we assume that each robot works within a region
(which can change over time) and does not go out of its as-
signed region. This is a common practice in many multirobot
systems which use task allocation techniques for coordination
(e.g.(Ahmadi & Stone 2006b)). Two robots are considered
neighbors if they can communicate from anywhere in their as-
signed regions.

We further assume that robots send the position information
of their assigned regions to other robots, but because of local-
ization errors and communication delays, the position informa-
tion of other robots’ regions, especially those at a far distance,
may not be accurate.

Adding Robots to a Biconnected Structure
In this section the problem of adding robots to a biconnected
structure is considered. Assuming each robot is able to cover a
limited sized region, the goal of the robots is to cooperatively
cover as much area as possible while staying biconnected.

If S is a biconnected multirobot structure, and robotR wants
to join the structure, it needs to choose a region that would
make it the neighbor of two other robots. The next theorem
shows by doing so, it will be doubly connected to all other
robots, and the robot graph remains biconnected.

Theorem 3. If graph G(V;E) is biconnected, then graphG0(V 0; E0) is also biconnected ifV 0 = V + fv1g andE0 in-
cludes all the edges inE plus at least two edges that connectv1 to two of the vertices ofV .

Proof. Assume that inG0, v1 is neighbor ofvi andvj . There
are two paths ofviv1 andvi � vjv1 betweenvi andv1, sovi
andv1 are doubly connected. SinceG is biconnected,vi is also
doubly connected to all the other vertices inV 0. Same argu-
ment holds forvj , and there are two vertices (vi andvj) that
are doubly connected to all other vertices inV 0. Thus based on
Theorem 1 the graphG0 is biconnected.

See Figure 2(b), where robot x is added to the biconnected
structure of Figure 2(a). Since x is a neighbor of both a and
b, based on Theorem 3 the new structure is also biconnected.
Note that in the figure, each region is represented by a node.

When robotR wants to join a biconnected structure, from
among the locations that will be a neighbor to two or more
robots, robotR should choose the one that isbestbased on a
task-specific evaluation function. For our evaluation criterion,
where the multirobot system should cover as much surface as
possible, the new robot should choose a region that has the min-
imum intersection with the other robots’ assigned regions while
being the neighbor of at least two robots. Computing which re-
gion has the minimum intersection with all the other regions
even for the case where the regions are all exactly known is a
time consuming process. Instead we use a heuristic to find a
near-optimal position for the region of the newly added robot.



Specifically, the new robot picks the candidate position that
maximizes the sum of thedistancesto the two closest robots’
regions, where distance between two regions is defined as the
distance between the regions’ centers. Thecenterof a region is
defined as the point-wise average of the points in that region1

A prerequisite of the above mentioned method of choosing
a region is for the new robot to know the position of the center
of the other robots’ regions. Recall that we have assumed that
each robot has an approximation of other robots’ region (which
has gained through communication). The new robot starts by
sending a position request to other robots, and they respond
with the approximate position of the center of the regions of
all robots. Using the approximation of the center points of all
robots’ regions, the new robot chooses a region that maximizes
the sum of the distances to the two closest robots’(nr1 andnr2)
regions. The new robot goes directly towardsnr1. After get-
ting close tonr1, it again requests position information to get
the region positions ofnr1 andnr2 more accurately. Note thatnr1 is expected to have more current and accurate information
about the positions of its own and its neighbors’ assigned re-
gion than a robot located far away using delayed and noisy in-
formation. Afterwards it chooses its exact region positionsuch
that it is a neighbor of bothnr1 andnr2 and maximizes the
heuristic distance-based criterion provided above.

c

b
a

d
e

(a)

x

c

b
a

d
e

(b)

b
a

d
e

(c)

b
a

d
e

(d)

Figure 2: (a) An initial biconnected structure (b) Additionof
robot x to the team (c) Robot c leaves the structure. The arrows
show the direction that the other robots need to move in orderto
restore a biconnected structure. (d) newly constructed structure
after removal of c from the initial structure.

Removing Robots from a Biconnected Structure
After removal of a robot, the newly generated multirobot struc-
ture may no longer be biconnected. In this section, an outline
of a distributed algorithm for the robots to maintain the bicon-
nected structure after removal of a robot is provided.

After removal of a robotr from a biconnected structure, if
ex-neighbors ofr are doubly connected, the newly generated
structure is also biconnected. The following theorem provides
a more formal description.

Theorem 4. LetG(V;E) be a biconnected graph, andr 2 V
be a vertex of the graph. GraphG0(V 0; E0) is constructed fromG by removing vertexr. LetGr(Vr; Er) be a subgraph ofG,
whereVr are the neighbors ofr, andEr is the set of edges that
are inE between the vertices ofVr. If Gr is biconnected, then
graphG0 is also biconnected.

1Theoretically it is possible that the center of a region is not in the
region, which does not cause any problems.

Proof. AssumingGr is biconnected, we prove any two ver-
tices vi; vj 2 V 0 that are doubly connected inG, are also
doubly connected inG0. If none of the two vertex-disjoint
paths betweenvi andvj includer, the proof is trivial. Since
the paths are vertex-disjoint, only one of them can include
r. Assume the two vertex-disjoint paths betweenvi and vj
are vi : : : f1 : : : r : : : l1 : : : vj and vi : : : f2 : : : l2 : : : vj , wheref1 andf2 are the first, andl1 and l2 are the last vertices re-
spectively fromVr in the respective paths. SinceGr is bicon-
nected, there is a loop which includesf1, f2, l1 andl2. In the
loop, there is a path (call itP1) betweenf1 and one ofl1 or l2
(without loss of generality assume it isl1) that does not includef2 or l2. Both f2 andl2 are in the loop but not in pathP1, so
there is a pathP2 between them (part of the loop) that is vertex-
disjoint fromP1. By substitutingP1 andP2 in the two paths
betweenvi andvj , the two vertex-disjoint paths which do not
includer are generated, and the theorem is proved.

Using the above theorem we now show how to reconstruct
the biconnected structure after removal of a robot. We claimif
all robots moved units towards the ex-position ofr, no previ-
ously existent neighbor relationship is destroyed. The reason
is simple: if a group of points all move towards a base, the
distance between each two point decreases. Thus if movingd
units is enough for the neighbors ofr to become biconnected,
then all robots movingd distance units towards the ex-position
of r makes the robot graph biconnected again. See this process
from Figure 2(a) to Figure 2(c), and to the newly constructed
biconnected structure in Figure 2(d). Note that a cycle graph
is biconnected. In practice, usually the neighbors ofr form a
cycle by getting closer to the ex-position ofr.

When robotr is removed, its neighbors are notified (either
by an explicit message from the robot which is about to quit,
or by not hearing from it for several seconds). The neighbors
of r should decide how much they should get closer tor (d
distance units) in order to get connected. For that purpose each
robot stores the list of neighbors, and list of neighbors of neigh-
bors which can be computed during the message passing algo-
rithm. Thus when robotr is removed, all its neighbors know
that they are a neighbor of a removed robot, and furthermore
they know which robots are neighbors ofr. The robot with
the lowest ID between the neighbors of the removed robotr,
assumes theleadershipand computes thed value. For comput-
ing thed value, the leader robot starts fromd = 0 and increases
it in discrete steps until the subgraph of neighbors ofr after
movingd units towards ex-position ofr becomes biconnected.
For checking if the neighbor robots are biconnected, the leader
robot checks if two of the neighbor robots are doubly connected
to all other robots. Typically, there should only be a few robots
which are neighbor ofr, thus running this algorithm does not
take a long time.

After the leader robot has computed thed value, it sends
a movement message intended for all robots, the message is
(“ MOVE” (pos d) ()), wherepos is the ex-position ofr based
on the leader robot information. Each robot upon receiving a
(“ MOVE” (pos d) ()) message for the first time, sends out the
same message out, and movesd unit towardspos.

Since the leader robot does not have complete information
of other robots’ positions, the graph that it uses for checking
biconnectivity is not accurate, and thed value may not be cor-
rect. As a result, after the robots get closer tor for d units,



the leader robot checks if they are biconnected with the bicon-
nectivity check algorithm provided in the previous section. If
not biconnected, the leader robot setsd0 to a constant heuristic
positive value, and send a message to other robots to move an
additionald0 units towards the ex-position ofr. This process
continues until the leader robot knows that they are biconnected
based on the checking biconnected algorithm.

Experimental Results
In this section we investigate the effects of the provided algo-
rithms for maintaing biconnectivity on the total area that robots
are able to sense. The algorithms for maintaining biconnec-
tivity which also includes the checking biconnectivity algo-
rithm is implemented in the Player/Stage (Gerkey, Vaughan,
& Howard 2003) simulator. The environment is assumed to be
an open infinite environment (relative to sensing and commu-
nication ranges of the robots).

In all experiments, the robots assume responsibility for a cir-
cular region. The size of the circular regions are constant for
all robots. Combining the biconnected ideas with more elabo-
rate task assignment methods remains for future work. The
r
ratio is defined as the ratio between the communication range
and the size of the robots’ regions. Two different scenariosare
considered. In the first,
r ratio is set to 4, and in the second,
r ratio is 2. Notice that when the communication range is 2
times bigger than the robot regions, only adjacent robot regions
are considered neighbors.

In both experiments, the maximum number of robots in the
environment is 10. If the number of robots in the structure is
10, in an episode a robot is randomly chosen to be removed.
Also, if there is no robot left in the structure, a robot is added.
When there are 1 to 9 robots one robot is randomly added or
removed. There are five robots in the first episode.

Each experiment consists of 100 episodes.S is defined as
the sum of the area that all the robots currently in the structure
can cover. For the case where
r ratio is 2, on average 73% ofS is covered, and for the case where
r ratio is 4, on average
91% ofS is covered. That is, the robots remain biconnected
while covering 73% and 91% of the total area that they could
cover not worrying about being connected.

To show the strength of the provided heuristic for choosing
the region of the newly added robot, for the case of
r = 2, we
also experimented with using the region with minimum inter-
section with other robots regions. Note that finding the region
with minimum intersection with other regions is only possi-
ble in simulation where the speed of the simulator can be de-
creased, and the algorithms are running centrally on a PC. If
robots use the region with minimum intersection with other
robots’ regions instead of the provided heuristic for choosing
the region of the newly added robot, for
r equal to 2, on av-
erage 75% ofS is covered. This result shows that using the
heuristic does not significantly affect performance.

Conclusion and Future Work
In this paper, we defined and argued the need for biconnected
multirobot structures. A distributed algorithm for checking bi-
connectivity is presented, proven correct, and analyzed theo-
retically. Algorithms to maintain a biconnected structurein the
event of addition or removal of a robot are presented and tested
in the Player/Stage simulator.

Opportunities for future work include relaxing our assump-
tion that robots have identical communication capabilities, thus

making the robot graph a directed graph; and creating algo-
rithms to construct a biconnected structure from scratch. Over-
all, the work presented in this paper makes important steps to-
wards enabling teams of distributed robots to reason about their
ability to remain in communication contact while executinga
joint task.

Acknowledgments
We would like to thank Kurt Dresner and Nick Jong for their
valuable comments on an earlier version of this paper. This
research was supported in part by NSF CAREER award IIS-
0237699 and ONR YIP award N00014-04-1-0545.

References
Ahmadi, M., and Stone, P. 2006a. Keeping in touch: A
distributed check for biconnected structure by homogeneous
robots. InThe 8th International Symposium on Distributed
Autonomous Robotic Systems.
Ahmadi, M., and Stone, P. 2006b. A multi-robot system for
continuous area sweeping tasks. InProceedings of Interna-
tional Conference on Robotics and Automation (ICRA), to ap-
pear.
Anderson, S.; Simmons, R.; and Goldberg, D. 2003. Main-
taining line of sight communications networks between plan-
etary rovers. InProceedings of the Conference on Intelligent
Robots and Systems (IROS).
Diestel, R. 1997.Graph Theory. New York: Springer.
Gerkey, B.; Vaughan, R.; and Howard, A. 2003. The
player/stage project: Tools for multi-robot and distributed
sensor systems. InProceedings of the International Confer-
ence on Advanced Robotics, 317–323.
Howard, A.; Matadd, M.; and Sukhatme, G. 2002. An in-
cremental self-deployment algorithm for mobile sensor net-
works. Autonomous Robots, Special Issue on Intelligent Em-
bedded Systems13(2):113–126.
Nguyen, H.; Pezeshkian, N.; Raymond, M.; Gupta, A.; and
Spector, J. 2003. Autonomous communication relays for tac-
tical robots. InProceedings of the International Conference
on Advanced Robotics (ICAR).
Parker, L. E. 2002. Distributed algorithms for multi-robot
observation of multiple moving targets.Autonomous Robots
12(3):231–255.
Swaminathan, B., and Goldman, K. J. 1994. An incremental
distributed algorithm for computing biconnected components
(extended abstract). InProceedings of the 8th International
Workshop on Distributed Algorithms.
Ulam, P., and Arkin, R. 2004. When good comms go bad:
Communications recovery for multi-robot teams. InProceed-
ings of 2004 IEEE International Conference on Robotics and
Automation.
Vazquez, J., and Malcolm, C. 2004. Distributed multirobot
exploration maintaining a mobile network. InProceedings
of Second IEEE International Conference on Intelligent Sys-
tems.
Westbrook, J., and Tarjan, R. E. 1992. Maintaining bridge-
connected and biconnected components on-line.Algorithmica
(Historical Archive)7(1):433–464.


