
Enforcing Liveness in Autonomous Traffic Management

Tsz-Chiu Au
Dept. of Computer Science

The University of Texas at Austin
Austin, Texas 78712, U.S.A.

chiu@cs.utexas.edu

Neda Shahidi
Dept. of Electrical & Computer Engineering

The University of Texas at Austin
Austin, Texas 78712, U.S.A.

neda@mail.utexas.edu

Peter Stone
Dept. of Computer Science

The University of Texas at Austin
Austin, Texas 78712, U.S.A.

pstone@cs.utexas.edu

Abstract
Looking ahead to the time when autonomous cars will be
common, Dresner and Stone proposed a multiagent systems-
based intersection control protocol called Autonomous Inter-
section Management (AIM). They showed that by leveraging
the capacities of autonomous vehicles it is possible to dramat-
ically reduce the time wasted in traffic, and therefore also fuel
consumption and air pollution. The proposed protocol, how-
ever, handles reservation requests one at a time and does not
prioritize reservations according to their relative priorities and
waiting times, causing potentially large inequalities in grant-
ing reservations. For example, at an intersection between a
main street and an alley, vehicles from the alley can take an
excessively long time to get reservations to enter the intersec-
tion, causing a waste of time and fuel. The same is true in
a network of intersections, in which gridlock may occur and
cause traffic congestion. In this paper, we introduce the batch
processing of reservations in AIM to enforce liveness proper-
ties in intersections and analyze the conditions under which
no vehicle will get stuck in traffic. Our experimental results
show that our prioritizing schemes outperform previous inter-
section control protocols in unbalanced traffic.

Introduction
Modern transportation is overly dependent on fossil fuel
which is not only a finite resource but also a major source
of greenhouse gas and air pollutants. Unfortunately, an ideal
replacement for fossil fuel is not readily available yet. As
demand for transport keeps increasing, an efficient trans-
portation system is extremely important for the long-term
sustainability of our society. Dresner and Stone (2008) pro-
posed a novel intersection control mechanism called Au-
tonomous Intersection Management (AIM), and in particu-
lar described a First Come, First Served (FCFS) policy to
direct autonomous vehicles through an intersection. They
showed that by leveraging the capacity of computerized
driving systems FCFS significantly outperforms traditional
traffic signals and stop signs, resulting in fuel savings since
vehicles are less likely to stop and wait to enter intersections.

FCFS, however, fails to properly handle unbalanced
traffic—the traffic on a main road is much heavier than the
traffic on a crossing road—since vehicles from the cross-
ing road can be blocked by the traffic on the main road.

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

As shown in Figure 1(a), vehicles from the side road (the
vertical direction) have difficulty in getting reservations to
enter the intersection due to the heavy traffic on the main
street (the horizontal direction). In the worst case, the ve-
hicles from the side road will be denied from entering the
intersection indefinitely, causing starvation (Dijkstra 1971).

(a) Unbalanced traffic (b) Gridlock

Figure 1: Starvation due to unbalanced traffic and gridlock.

Unbalanced traffic is common as many intersections in
cities are junctions connecting alleys or side roads to main
streets. Traffic signals can smoothly and fairly handle this
type of traffic but is an order of magnitude less efficient than
FCFS (Dresner and Stone 2008). In this paper, we intro-
duce a new intersection control policy called the batch pol-
icy, which is not only as efficient as FCFS but also able to
prevent inequalities in granting reservations in unbalanced
traffic. We further show that a modified version of the batch
policy can enforce the liveness property of an intersection—
every vehicle waiting at the intersection is guaranteed to en-
ter the intersection eventually.

Starvation at one intersection may potentially develop into
a network blockage called gridlock (Cervero 1986), like
one in Figure 1(b). When gridlock occurs, the impact is no
longer limited to one intersection, as many vehicles at differ-
ent parts of the traffic network are involved. Gridlock occurs
in all parts of the world. For instance, the “Great Chinese
gridlock of 2010” in Hebei province, China, is considered
the worst traffic jam in the history—the 60-mile jam lasted
for 10 days. Thus it is very important that transportation sys-
tems guarantee no vehicle gets stuck in traffic and every ve-
hicle eventually reaches its destination (the liveness property
of transportation systems). Although the liveness of individ-
ual intersection controllers, as guaranteed by policies such

chiu
Text Box
To appear in the Proceedings of the Twenty-Fifth Conference on Artificial Intelligence (AAAI-11), August 2011



as our batch policy, is necessary for preventing gridlock in
a network, it is not by itself sufficient. We therefore analyze
liveness properties in a road network and present the suffi-
cient conditions for liveness of a simplified version of a road
network. This analysis can shed light on what is needed to
prevent starvation at the full network level.

Autonomous Intersection Management
The AIM protocol is based on a reservation paradigm, in
which vehicles “call ahead” to reserve space-time in the in-
tersection (Dresner and Stone 2008). The system assumes
that computer programs called driver agents control the ve-
hicles, while an arbiter agent called an intersection manager
(IM) is placed at each intersection. The driver agents at-
tempt to reserve a block of space-time in the intersection.
The intersection manager decides whether to grant or reject
requested reservations according to an intersection control
policy. In brief, the paradigm proceeds as follows.
• An approaching vehicle announces its impending arrival

to the IM. The vehicle indicates its predicted arrival time,
velocity, acceleration, and arrival and departure lanes.

• The IM simulates the vehicle’s path through the intersec-
tion, checking for conflicts with the paths of any previ-
ously processed vehicles.

• If there are no conflicts, the IM issues a reservation. It
then becomes the vehicle’s responsibility to arrive at, and
travel through, the intersection as specified.

• The car may only enter the intersection once it has suc-
cessfully obtained a reservation.

The prototype intersection control policy called First Come,
First Served (FCFS) operates by dividing the intersection
into a grid of reservation tiles. When a vehicle approaches
the intersection, the intersection manager uses the data in the
reservation request regarding the time and velocity of arrival,
vehicle size, etc. to simulate the intended journey across the
intersection. At each simulated time step, the policy deter-
mines which reservation tiles will be occupied by the vehi-
cle. If the vehicle’s space-time request has no conflict, the
reservation is successful; otherwise, the reservation request
will be rejected.

Empirical results in simulation demonstrated that the pro-
posed reservation system with FCFS can dramatically im-
prove the intersection efficiency when compared to tradi-
tional intersection control mechanisms (Dresner and Stone
2008). Overall, by allowing for much finer-grained coordi-
nation, the simulation-based reservation system can dramat-
ically reduce per-car delay by two orders of magnitude in
comparison to traffic signals and stop signs. This reduction
of delays can translate into less traffic congestion (Au and
Stone 2010; Quinlan et al. 2010), which in turn leads to bet-
ter fuel efficiency and lower emissions.

One potential weakness of FCFS is that it handles reser-
vation requests separately and does not take the history of
vehicles’ requests into account. Thus a car that is waiting on
a side road may always find that a car from the main road
has already requested a tile in the intersection that it needs.
Though in balanced traffic, such a situation rarely occurs,
in unbalanced traffic it occurs frequently. In the worst case,
the cars on the side road are prevented from entering the

Timeline

(in second)

Request

Deadline

Target Batch

420 6 8 1410 12

r1 r2 r3 r4 r5

Batch Interval

Next Processing

Time

Com. Delay

Figure 2: The batch policy.

main road indefinitely. A main contribution of this paper is
a method for addressing this problem.

Batch Processing of Requests
FCFS processes a request message immediately upon re-
ceiving it and sends out a confirmation message or a reject
message in response to the request within a few millisec-
onds. While this approach can handle messages quickly with
a small footprint in terms of system memory and computing
power, it leaves little room for optimizing the ordering of
requests and the allocation of resources. Thus, we propose a
new intersection management policy called batch policy that
puts the request messages on hold upon receiving them and
then process several requests at once with a better ordering.

The central component of the batch policy is a sorted
queue of request messages that acts as a buffer for tem-
porarily storing the incoming request messages. As an ex-
ample, suppose a vehicle sends a request message r at
time 1 second, as shown in Figure 2. The request mes-
sage contains 5 proposals, each of which is a tuple ri =
(tarrival,varrival , larrival , lexit), where tarrival is the arrival time,
varrival is the arrival velocity, larrival is the arrival lane from
which the vehicle arrives at the intersection, and lexit is the
exit lane from which the vehicle leaves the intersection. The
intersection manager can choose at most one of the propos-
als to grant a reservation. These proposals, except r1, will
be put in the queue, which is sorted by the proposed arrival
times, and they will be processed by the intersection man-
ager at a future time called the next processing time. r1 is
not put in the queue because its proposed arrival time is be-
fore the request deadline, which is equal to the sum of the
next processing time and the computation and communica-
tion delay (the com. delay in Figure 2). The com. delay is
a small time delay due to the IM’s processing of the request
messages at the next processing time and the communication
delay between IM and the vehicle. r1 is considered late be-
cause the arrival time of r1 may has passed after the request
deadline. The intersection manager processes late proposals
like r1 immediately, to see if it is possible to grant the reser-
vation between the reservations that were granted at the last
processing time. If not, a reject message is sent.

The request handling procedure processes request mes-
sages in the queue at the next processing time. The proce-
dure first identifies the target batch of request messages on
the queue, which is the set of all request messages whose
proposed arrival times are before tdeadline + tbatch, where
tdeadline is the request deadline and tbatch is the batch interval



which is 6 seconds in Figure 2. The request messages in the
target batch will be removed from the queue and reordered
by a cost function, which is f (wait) = a× (wait)b, where
a and b are constants and wait is the estimated amount of
time the vehicle has been waiting to enter the intersection.
The procedure grants reservations according to the new or-
der and then rejects the requests from the vehicles that have
no reservation and no remaining request messages on the
queue. Finally, both the next processing time and the request
deadline are increased by time tproc, which is called the pro-
cessing interval and is the time between the batch processing
of requests.

Enforcing Liveness in AIM
The reordering of request messages is based on the “cost”
of denying vehicles’ reservations. Basically, the longer a ve-
hicle is waiting to enter the intersection, the higher the cost
is. If a vehicle has been waiting to enter an intersection for
a very long time, the batch policy will regard its requests as
top priority and consider granting reservations to this vehi-
cle before other vehicles. This reordering strategy, however,
does not guarantee that requests with the highest cost in a
batch always get a reservation. It is possible that some of the
existing reservations from the previous batches have taken
reservation tiles that are needed by the request. If this oc-
curs every time a vehicle makes a request, the vehicle will
be stalled at the intersection indefinitely.

We say an intersection is live if every vehicle waiting to
enter the intersection can eventually enter and then leave the
intersection. We modify the batch policy to guarantee the
liveness—vehicles can eventually get a reservation. The idea
is that when the policy processes the request messages of a
batch, if it finds that there is a request message r whose cost
is larger than a threshold, it should not grant any reservation
to any other vehicles whose paths intersects the path of the
vehicle of r, until the vehicle of r gets a reservation. We say
r is locked and call this modified policy the batch policy with
locking.
Theorem 1 When an intersection manager in AIM uses the
batch policy with locking, a vehicle will eventually get a
reservation if every vehicle resends a request message after
receiving a reject message. 1

Enforcing Liveness in Road Networks
Achieving liveness at all individual intersections, however,
is not sufficient to guarantee the liveness of an entire road
network. For instance, the gridlock in Figure 1(b) cannot be
avoided solely by preventing vehicles from waiting to enter
the intersections indefinitely. In this section, we examine the
sufficient condition for liveness of road networks.

Discretized Road Network
Let us analyze the liveness property in a discrete version of
a road network as shown in Figure 3. A discretized road net-
work is a finite, connected, directed graph G = (P,E), where

1The proofs of all theorems in this paper are available in
an online appendix at http://www.cs.utexas.edu/˜aim/
papers/AAAI2011-Au-proofs.pdf.

Figure 3: A discretized road network. The white squares are
the sources and the black squares are the destinations. The
vehicles at the solid blue circles form a soft gridlock for de-
terministic controllers since they are blocked in their direc-
tion of movement (bold arrows).

P is a finite set of nodes called positions and E ⊆ P× P
is the set of directed edges among positions. Let next(p)
be the set of next positions of the position p, such that
next(p) = {p′ : (p, p′) ∈ E}.

Each discretized road network has a non-empty set Psrc ⊂
P of positions called sources at which vehicles enter the
network. At each time step, a source p ∈ Psrc, if unoccu-
pied, “spawns” a new vehicle with a probability ρp. The
source of a vehicle ν is denoted by src(ν). Each discretized
road network also has a non-empty set Pdst ⊂ P of posi-
tions called destinations at which vehicles leave the net-
work. If a vehicle moves into a destination position, the ve-
hicle will be removed from the network at the end of the
time step. The body of G is a subgraph (P′,E ′) where P′ =
P\(Psrc∪Pdst) and E ′ = {(p1, p2)∈ E : p1, p2 ∈ P′}. We as-
sume 1) (Psrc∩Pdst) = /0; 2) the in-degrees of sources and the
out-degrees of destinations are zeros; 3) the out-degrees of
sources and the in-degrees of destinations are non-zeros; 4)
next(p)⊆ P′ for all p ∈ Psrc; and 5) {p′ : p ∈ next(p′)} ⊆ P′
for all p ∈ Pdst.

Each vehicle ν occupies exactly one position pos(ν),
and each position p can be occupied by at most one vehi-
cle veh(p). If p is unoccupied, veh(p) = /0. Let next(ν) =
next(pos(ν)) be the set of next positions of ν . Vehicles at
Pdst leave the road network at the end of a time step, thus all
destinations are unoccupied at the beginning of a time step.
When a vehicle ν is spawned, a destination dst(ν) ∈ Pdst is
assigned to ν such that the goal of ν is to reach dst(ν).

Some positions such as those in an intersection do not
allow vehicles to freely enter them, because the traffic on
these positions are controlled by traffic control mechanisms
such as traffic signals, stop signs, and the AIM protocol.
We say these positions are managed, while those that are
not controlled by any traffic control mechanisms are un-
managed. All vehicles have the right of way to enter un-



managed positions at all times, but that is not necessarily
true for managed positions—the traffic control mechanism
must assign the right of way of the managed position to a
vehicle at time t to allow the vehicle to move into the po-
sition. Every managed position p is associated with a set
permitted(p, t) = {ν1,ν2, . . . ,νn} of permitted vehicles at
every time step t, which means that the vehicle νi has the
right of way to enter p at time t. A traffic control mechanism
is simply a protocol that assigns vehicles to permitted(p, t).
For example, if a green signal lets all vehicles on the east-
bound road to enter the intersection, permitted(p, t) will
contain all vehicles on the eastbound road for all p in the
intersection and all t at which the signal is green.

At the beginning of a time step t, a vehicle ν must choose
one of its next position p ∈ next(ν) as its chosen next posi-
tion, denoted by chosenν(t). Two or more vehicles can have
the right of way to enter the same position p at the same
time t. If these vehicles choose to move into p at t, only one
of them will move into p and the others will not move. For-
mally, suppose there exists a set Vp(t) = {ν1, ν2, . . . , νn} of
vehicles (n≥ 2) such that 1) νi has the right of way to enter a
position p at time t and 2) chosenν1(t)= chosenν2(t)= . . .=
chosenνn(t) = p. We say the vehicles in Vp(t) are competing
with each other at p at time t. All the competitions at p over
time are governed by a coordination mechanism Λp, which
decides which competing vehicle in Vp(t) can move into p at
the end of the time step and the remaining vehicles in Vp(t)
cannot move. We denote the winner of the competition by
Λp(Vp(t)).

In summary, a vehicle ν at pos(ν) chooses a next posi-
tion p ∈ next(ν) at the beginning of a time step t, and ν

can move into p by the end of t if and only if the follow-
ing three conditions are satisfied: 1) p is unoccupied; 2) ν

has the right of way of p at time t (either p is unmanaged
or ν ∈ permitted(p, t); and 3) either ν has no competing ve-
hicle or the coordination mechanism Λp at p chooses ν to
move into p (i.e., Λp(Vp(t)) = ν). If ν cannot move into p,
ν will remain at pos(ν) at the end of the time step.

Gridlock
Let us precisely define what gridlock is. We say a vehicle
ν is completely blocked if all positions of ν in next(ν) are
occupied. A hard gridlock in a road network G = (P,E) is
a connected subgraph (P′,E ′) of G, where P′ 6= /0 and E ′ =
{(p1, p2) : p1, p2 ∈ P′ and p2 ∈ next(p1)}, that satisfies the
following two conditions: 1) all positions in P′ are occupied;
and 2) next(p)⊆P′ for all p∈P′; In essence, a hard gridlock
is a set of vehicles that are completely blocked by each other.

Theorem 2 If the body of a discretized road network G is
strongly connected (every position is reachable from every
other position), there can be no hard gridlock in G.

Theorem 2 implies that hard gridlocks do not frequently
occur in the real world since most real road networks are
strongly connected. But hard gridlock is by no means the
only type of gridlock. In fact, a vehicle cannot move as long
as the next position the vehicle intends to move into is occu-
pied. A soft gridlock for deterministic controllers (SGDC) at
time t is a cycle 〈p1, p2, . . . , pn〉 of n positions (n ≥ 2) in G

such that 1) pi is occupied by ν at time t for 1 ≤ i ≤ n; and
2) chosenνi(t) = pi+1 for 1 ≤ i < n and chosenνn(t) = p1.
Basically a SGDC is a ring of vehicles that choose to follow
one another at time t. Figure 3 shows an instance of SGDC.

Soft gridlock is much “weaker” than hard gridlock, be-
cause vehicles are not necessarily stuck forever, as some ve-
hicles can choose a different next position in the future. We
say a vehicle’s controller is stochastic if it may choose dif-
ferent next positions in next(p) at different times for a given
position p. A stochastic controller may potentially break a
SGDC, unless all next positions that are possibly chosen by
the vehicles are already occupied. Hence we define another
version of soft gridlock based on stochastic controllers. We
say a next position p ∈ next(ν) is relevant if ν will possi-
bly choose p in the next time step. Irrelevant next positions
are those that are not chosen by the vehicle. One possible
reason for a position to be irrelevant is that it is not on any
route to its destination. Let Πν(p)⊆ next(ν) be the set of all
relevant next positions when ν is located at p = pos(ν). A
vehicle ν is essentially blocked if all positions in Πν(p) are
occupied. A soft gridlock for stochastic controllers (SGSC)
is a connected subgraph (P′,E ′) of G, where P′ 6= /0 and
E ′ = {(p1, p2) : p1, p2 ∈ P′ and p2 ∈ next(p1)}, such that 1)
all positions in P′ are occupied; and 2) Πveh(p)(p) ⊆ P′ for
all p∈P′. As in hard gridlocks, vehicles in a SGSC are stuck
forever since they are always blocked by some other vehicles
no matter what the next position their stochastic controllers
choose.

Liveness
Obviously vehicles in a SGDC cannot move if all vehicle
controllers are deterministic (i.e., there is exactly one rele-
vant next position p′ ∈ Πν(p) and chosenν(t) = p′ when-
ever ν is located at p). But the lack of SGDCs at all times
is not sufficient to guarantee all vehicles with deterministic
controllers can move towards their destinations; a few more
conditions are needed in order to provide such a guarantee.

A traffic control mechanism Ψp for a position p is open
if whenever a vehicle ν repeatedly chooses to move into p
when p is unoccupied, Ψp will eventually give ν the right
of way to enter p. More precisely, for any infinite sequence
〈t1, t2, . . .〉 of times there exists an integer n ≥ 1 such that
if p is unoccupied at ti and chosenν(ti) = p for 1 ≤ i ≤ n,
then ν ∈ permitted(p, tn). Traffic signals, stop signs, and
the AIM protocol (with the batch processing of requests) are
open traffic control mechanisms.

A coordination mechanism Λp at a position p is fair if
whenever a vehicle ν repeatedly chooses p as its chosen next
position, ν will eventually move into p. More precisely, for
any infinite sequence 〈t1, t2, . . .〉 of times there exists an in-
teger n ≥ 1 such that if chosenν(ti) = p for 1 ≤ i ≤ n then
pos(ν) = p at time tn. An example of a fair coordination
mechanism is one that chooses the vehicle that has spent the
longest time waiting to enter the position.

When a vehicle ν with a deterministic controller is
spawned it has already chosen the path towards its des-
tination. Let 〈p1, p2, . . . , pn〉 be the chosen path, where
p1 = src(ν) and pn = dst(ν), such that the controller of ν

only chooses the positions on this path to move into (i.e.,



Πν(pi) = {pi+1} for 1 ≤ i < n). We assume chosen paths
are finite.

Theorem 3 Every spawned vehicle will eventually reach its
destination if 1) all vehicle controllers are deterministic; 2)
all traffic control mechanisms are open; 3) all coordination
mechanisms are fair; and 4) there is no SGDC at any time.

We say a road network G is live if every spawned vehicle
will eventually reach its destination. Even if a SGDC does
occur at a certain time, a road network may still be live if
vehicle controllers are stochastic. Hence, we relax the con-
ditions in Theorem 3 by allowing stochastic controllers and
SGDCs, as long as these SGDCs do not constitute a SGSC.

A controller of a vehicle ν is progressive if the visited
positions of the vehicle always constitute a prefix of a non-
cyclic path from the source to the destination. A controller
of ν is opportunistic if whenever a relevant next position p∈
Πν(pos(ν)) of ν is unoccupied repeatedly, ν will eventually
choose p.

Theorem 4 Every spawned vehicle will eventually reach its
destination if 1) all traffic control mechanisms are open; 2)
all coordination mechanisms are fair; 3) there is no SGSC at
any time; and 4) all vehicle controllers are progressive and
opportunistic.

Assume all controllers are progressive (otherwise, a ve-
hicle may wander around the network and never reach its
destination). Theorem 4 suggests that one way to prevent
starvation in a road network is to 1) use open traffic con-
trol mechanisms such as the batch policy with locking; 2)
devise a mechanism to prevent SGSC from occurring; and
3) establish laws to enforce that autonomous vehicles coor-
dinate with other vehicles in a fair manner and will choose
different routes if they get stuck for too long. Even though
our analysis is based on discretized road network which is
different from road network in the real world, our analysis
should teach us what is needed in order to avoid starvation
in realistic scenarios.

Experiments
The theoretical results in the previous section present suffi-
cient conditions for liveness of a network of intersections,
using an abstract road model. One of the important condi-
tions is that the individual intersections in the network be
live themselves. The batch policy presented in the first part
of this paper is the first intersection control policy in AIM
that is guaranteed to satisfy this condition. In this section,
we report on experiments designed to test the empirical per-
formance of the batch policy. If its liveness came at a signif-
icant practical cost, it would not be a promising replacement
for FCFS. Fortunately, we find that it both significantly im-
proves performance in unbalanced traffic, as it was designed
to do, and also performs roughly as well as, and in some
cases significantly better than, FCFS in balanced traffic.
Unbalanced Traffic. We conducted an experiment on an in-
tersection between a main road and a side road, where the
main road has much higher traffic than the side road. Each of
the roads has three lanes, and the vehicles on the main road
go straight through the intersection without turning while

the vehicles on the side road can either turn left, turn right or
pass through the intersection. The vehicles are spawned at
the beginning of each lane according to a poisson distribu-
tion such that the traffic level λmain of the main road is varied
from 72 vehicles per hour per lane to 2200 vehicles per hour
per lane while the traffic level λside of the side road is held
constant. We ran three sets of experiments with different val-
ues of λside: 360, 540, and 720 vehicles/hour/lane. For each
set of experiments, we ran the simulation 100 times, and in
each run the total simulation time was 1 hour. FCFS has no
parameters. In the batch policy with locking, the coefficients
of the cost function are set to a = 1.0 and b = 2.0, the batch
interval is 3s, the processing interval is 0.5s, the com. delay
is 0.02s, and the locking threshold is 700 (which means that
the requests of a vehicle are locked when the waiting time
is larger than 26.5s). The delay of a vehicle is defined as the
amount of travel time incurred by the vehicle as the result of
passing through the intersection. We measured the average
delay of the vehicles by averaging the time difference of the
vehicles with and without other vehicles on the roads.

Figure 4 shows the results of the three sets of experiments.
Note that there are tiny error bars in the figure showing the
95% confidence intervals of the average delays in the 100
runs of the experiments. Contrary to the situation illustrated
in Figure 1(a), in our experiments, it is the vehicles on the
main road that are most affected by increased traffic rates.
The reason is that during the experiments, only the first car
in each lane was allowed to request a reservation. When cars
further back can also request reservations, we expect to see
higher delays on the side road. In our case, when λmain is
high and FCFS is used, the vehicles on the main road have
difficulty getting reservations due to a single vehicle on the
side road being able to block several on the main road. But
according to Figure 4, the delay of the vehicles on the main
road is reduced tremendously due to the use of the batch
policy, at the cost of a very small increase of the delays on
the side street. The batch policy is more effective when λmain

is large. When λside is 720, the batch policy cannot reduce
the delays to less than 10 seconds at very high λmain. But
still it offers a significant reduction in delay. Note that in all
cases, the increase of the delays of the vehicles on the side
street is relatively small.

To see the overall effect of the batch policy on the traf-
fic in all directions, we combined the data in Figure 4(b) and
computed the average delays of all vehicles on both the main
road and the side road. Figure 5 shows that the average de-
lay is about 3.6 times smaller when the batch policy is used
when λmain is high. This is mainly the result of the large de-
crease in the delays on the main road. Thus, the batch policy
is better than FCFS at intersections with unbalanced traffic
in terms of the overall traffic flow of the intersection.
Balanced Traffic. So far we showed that batch policy out-
perform FCFS at intersections with unbalanced traffic—the
traffic level of one road is much larger than the traffic level
of the other. If the batch policy is to be used, it is also impor-
tant that it works well in balanced traffic compared to FCFS.
Here we present the result of an experiment in which the
traffic levels of the roads of an intersection are the same. In
this experiment we varied the traffic level on all roads from



delay

Page 1

0 500 1000 1500 2000
0

2

4

6

8

10

12 Batch / Main Rd.
Batch / Side Rd.
FCFS / Main Rd. 
FCFS / Side Rd.

Traffic Level (veh. / hour / lane)

D
el

ay
 (

s )

(a) λside = 360

delay

Page 1

0 500 1000 1500 2000
0
5

10
15
20
25
30

Batch / Main Rd.
Batch / Side Rd.
FCFS / Main Rd. 
FCFS / Side Rd.

Traffic Level (veh. / hour / lane)

D
el

ay
 (

s )

(b) λside = 540

delay

Page 1

0 500 1000 1500 2000
0

10

20

30

40 Batch / Main Rd.
Batch / Side Rd.
FCFS / Main Rd. 
FCFS / Side Rd.

Traffic Level (veh. / hour / lane)

D
el

ay
 (

s )

(c) λside = 720

Figure 4: Average delays of the vehicles versus traffic levels of the main road. The delays of the vehicles on the main road and
the side road are shown separately. The error bars on the data points indicate the 95% confidence intervals of the delays.

delay

Page 1

0 500 1000 1500 2000
0

5

10

15

20

25

30
Batch
FCFS

Traffic Level (veh. / hour / lane)

D
el

ay
 (

s )

Figure 5: Average delays of all vehicles (on the main and
side roads) vs. the traffic level of the main road. λside = 540.

delay

Page 1

0 500 1000 1500 2000
0

10

20

30

40

50

60
Batch
FCFS

Traffic Level (veh. / hour / lane)

D
el

ay
 (

s )

Figure 6: Average delays vs. traffic levels in balanced traffic.

72 to 2200 vehicles/hour/lane and ran the simulation for 1
hour. The parameters of the batch policy are the same as the
parameters in the previous sections. We repeated the simu-
lation 100 times and took the average of the delays of all ve-
hicles passing through the intersection. The average delays
were plotted against the traffic levels, as shown in Figure 6.

The performance of the batch policy is almost the same
as FCFS’s performance. This is expected since starvation as
shown in Figure 1(a) does not occur in balanced traffic, and
vehicles do not have to spend too much time to wait to enter
the intersection. Nonetheless, at intermediate traffic levels
(800 to 1400 vehicles/hour/lane), the delays from the batch
policy are a small but significant amount below the delays
from FCFS (the 95% confident intervals are not overlapped).
Hence, the batch policy are still able to reduce delays by re-
ordering the requests, even when few vehicles wait at the
intersection for a long time. At high traffic levels, the delays
from the batch policy are slightly but significantly higher
than FCFS. Perhaps this is because the batch policy process
requests only at certain times (defined by the processing in-
terval) thus there is an inherent delay due to batching.

Conclusions and Future Work
Recent developments in autonomous vehicles lead us to be-
lieve that autonomous vehicles will be widely adopted in the
future. Therefore, it is essential to develop multiagent tech-
niques to properly manage the traffic of autonomous vehi-
cles (Bazzan 2005). In this paper, we introduced a new in-
tersection control policy to prevent inequalities in granting
reservations due to the large discrepancy of traffic volume
among the incoming roads. Our experimental results show
that the new policy outperforms FCFS, the best autonomous
intersection control protocol in the literature, in unbalanced
traffic. We also introduced a modified scheme to guarantee
that all vehicles can get a reservation eventually as long as
they keep sending the request message after the rejection
of previous requests. We analyzed conditions for system-
wide liveness in a simplified road network and presented a
set of conditions on traffic control mechanisms and vehicle
controllers that is sufficient to prevent starvation. Our ongo-
ing research agenda includes merging these contributions in
traffic control system in a citywide network of intersections.
Acknowledgments. This work has taken place in the Learning
Agents Research Group (LARG) at UT Austin. LARG research
is supported in part by NSF (IIS-0917122), ONR (N00014-09-1-
0658), and the FHWA (DTFH61-07-H-00030).

References
Au, T.-C., and Stone, P. 2010. Motion planning algorithms
for autonomous intersection management. In AAAI 2010
Workshop on Bridging The Gap Between Task And Motion
Planning (BTAMP).
Bazzan, A. L. C. 2005. A distributed approach for coor-
dination of traffic signal agents. Autonomous Agents and
Multi-Agent Systems 10(2):131–164.
Cervero, R. 1986. Suburban Gridlock. Center for Urban
Policy Research.
Dijkstra, E. W. 1971. Hierarchical ordering of sequential
processes. Acta informatica 1(2):115–138.
Dresner, K., and Stone, P. 2008. A multiagent approach to
autonomous intersection management. Journal of Artificial
Intelligence Research (JAIR).
Quinlan, M.; Au, T.-C.; Zhu, J.; Stiurca, N.; and Stone,
P. 2010. Bringing simulation to life: A mixed reality au-
tonomous intersection. In IEEE/RSJ International confer-
ence on Intelligent Robots and Systems.




