Automated Design of Robust Mechanisms

Michael Albert¹, Vincent Conitzer¹, Peter Stone²

¹Duke University, ²University of Texas at Austin

3rd Workshop on Algorithmic Game Theory and Data Science June 26th, 2017

Previously appeared in AAAI17

< □ > < @ > < 注 > < 注 > □ ≥

Introduction	Background	Robust Mechanism Design	Experiments	Conclusion
●00	00000	00000000	0000	00
Introducti	on - Reven	ue Efficient Mecha	nisms	

- Standard mechanisms do very well with large numbers of bidders
 - VCG mechanism with n + 1 bidders ≥ optimal revenue mechanism with n bidders, for IID bidders (Bulow and Klemperer 1996)

• For "thin" markets, must use knowledge of the distribution of bidders

• Generalized second price auction with reserves (Myerson 1981)

- Thin markets are a large concern
 - Sponsored search with rare keywords or ad quality ratings
 - Of 19,688 reverse auctions by four governmental organizations in 2012, one-third had only a single bidder (GOA 2013)

Introductio		un Efficient Macha		
Introduction	Background	Robust Mechanism Design	Experiments	Conclusion

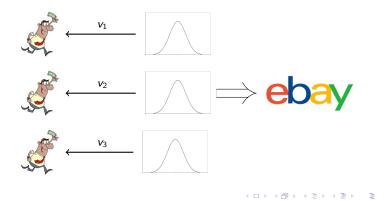
- Standard mechanisms do very well with large numbers of bidders
 - VCG mechanism with n + 1 bidders ≥ optimal revenue mechanism with n bidders, for IID bidders (Bulow and Klemperer 1996)
- For "thin" markets, must use knowledge of the distribution of bidders
 - Generalized second price auction with reserves (Myerson 1981)
- Thin markets are a large concern
 - Sponsored search with rare keywords or ad quality ratings
 - Of 19,688 reverse auctions by four governmental organizations in 2012, one-third had only a single bidder (GOA 2013)

Introductio		un Efficient Macha		
Introduction	Background	Robust Mechanism Design	Experiments	Conclusion

- Standard mechanisms do very well with large numbers of bidders
 - VCG mechanism with n + 1 bidders ≥ optimal revenue mechanism with n bidders, for IID bidders (Bulow and Klemperer 1996)
- For "thin" markets, must use knowledge of the distribution of bidders
 - Generalized second price auction with reserves (Myerson 1981)
- Thin markets are a large concern
 - Sponsored search with rare keywords or ad quality ratings
 - Of 19,688 reverse auctions by four governmental organizations in 2012, *one-third had only a single bidder* (GOA 2013)

Introduction	Background	Robust Mechanism Design	Experiments	Conclusion
○●○	00000	00000000	0000	00
Introduct	ion - Correl	ated Distributions		

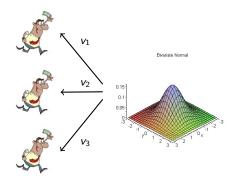
• A common assumption in mechanism design is independent bidder valuations



Included and a	C			
000				
Introduction	Background	Robust Mechanism Design	Experiments	Conclusion

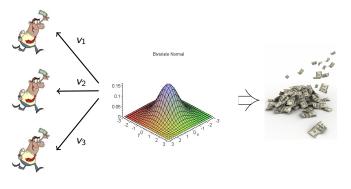
Introduction - Correlated Distributions

- This is not accurate for many settings
 - Oil drilling rights
 - Sponsored search auctions
 - Anything with resale value



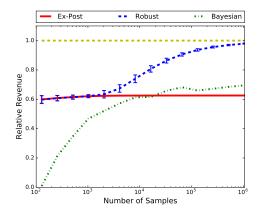
Introduction	Background	Robust Mechanism Design	Experiments	Conclusion
000	00000	00000000	0000	00
Introduct	tion Correl	ated Distributions		

• Cremer and McLean (1985) demonstrates that full surplus extraction as revenue is possible for correlated valuation settings!



Introduction	Background	Robust Mechanism Design	Experiments	Conclusion
00●	00000	00000000	0000	00
Contributio	ons			

How do we efficiently and robustly use distribution information?



(ロ)
(日)

Introduction	Background	Robust Mechanism Design	Experiments	Conclusion
000	●0000		0000	00
Problem	Description			

• A monopolistic seller with one item

5/23

• A single bidder with type $\theta \in \Theta$ and valuation $v(\theta)$

• An external signal $\omega \in \Omega$ and distribution $\pi(\theta, \omega)$

Introduction	Background	Robust Mechanism Design	Experiments	Conclusion
000	●0000		0000	00
Problem	Description			

• A monopolistic seller with one item

• A single bidder with type $\theta \in \Theta$ and valuation $v(\theta)$

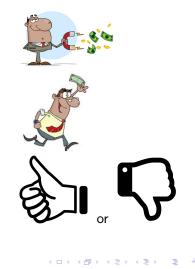
• An external signal $\omega \in \Omega$ and distribution $\pi(\theta, \omega)$

Introduction	Background	Robust Mechanism Design	Experiments	Conclusion
000	●0000		0000	00
Problem	Description			

• A monopolistic seller with one item

• A single bidder with type $\theta \in \Theta$ and valuation $v(\theta)$

• An external signal $\omega \in \Omega$ and distribution $\pi(\theta, \omega)$



Introduction	Background	Robust Mechanism Design	Experiments	Conclusion
	00000			

Definition: Ex-Post Individual Rationality (IR)

A mechanism (\mathbf{p}, \mathbf{x}) is *ex-post individually rational (IR)* if:

 $\forall \theta \in \Theta, \omega \in \Omega : U(\theta, \theta, \omega) \ge 0$

Introduction	Background	Robust Mechanism Design	Experiments	Conclusion
	00000			

Definition: Ex-Post Individual Rationality (IR)

A mechanism (\mathbf{p}, \mathbf{x}) is *ex-post individually rational (IR)* if:

 $\forall \theta \in \Theta, \omega \in \Omega : U(\theta, \theta, \omega) \ge 0$

Definition: Bayesian Individual Rationality (IR)

A mechanism (\mathbf{p}, \mathbf{x}) is Bayesian (or ex-interim) individually rational (IR) if:

$$orall heta \in \Theta: \sum_{\omega \in \Omega} oldsymbol{\pi}(\omega| heta) U(heta, heta, \omega) \geq 0$$

イロト 不得下 イヨト イヨト 二日

6/23

Introduction	Background	Robust Mechanism Design	Experiments	Conclusion
	00000			

Definition: Ex-Post Individual Rationality (IR)

A mechanism (\mathbf{p}, \mathbf{x}) is *ex-post individually rational (IR)* if:

$$\forall \theta \in \Theta, \omega \in \Omega : U(\theta, \theta, \omega) \ge 0$$

Definition: Bayesian Individual Rationality (IR)

A mechanism (\mathbf{p}, \mathbf{x}) is Bayesian (or ex-interim) individually rational (IR) if:

$$orall heta \in \Theta: \sum_{\omega \in \Omega} oldsymbol{\pi}(\omega| heta) U(heta, heta, \omega) \geq 0$$

Ex-Post IR Mechanisms \subset Bayesian IR Mechanisms

Introduction	Background	Robust Mechanism Design	Experiments	Conclusion
	00000			

Definition: Ex-Post Incentive Compatibility (IC)

A mechanism (\mathbf{p}, \mathbf{x}) is ex-post incentive compatible (IC) if:

 $\forall \theta, \theta' \in \Theta, \omega \in \Omega : U(\theta, \theta, \omega) \ge U(\theta, \theta', \omega)$

Definition: Bayesian Incentive Compatibility (IC)

A mechanism (\mathbf{p}, \mathbf{x}) is Bayesian incentive compatible (IC) if:

$$orall heta, heta' \in \Theta: \sum_{\omega \in \Omega} oldsymbol{\pi}(\omega| heta) U(heta, heta, \omega) \geq \sum_{\omega \in \Omega} oldsymbol{\pi}(\omega| heta) U(heta, heta', \omega)$$

Ex-Post IC Mechanisms \subset Bayesian IC Mechanisms

Introduction	Background	Robust Mechanism Design	Experiments	Conclusion
	00000			

Definition: Optimal Ex-Post Mechanisms

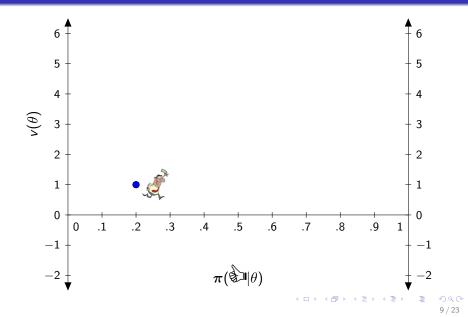
A mechanism (p, x) is an *optimal ex-post mechanism* if under the constraint of ex-post individual rationality and ex-post incentive compatibility it maximizes the following:

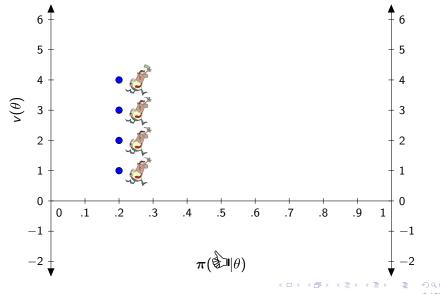
$$\sum_{\theta,\omega} \mathbf{x}(\theta,\omega) \boldsymbol{\pi}(\theta,\omega) \tag{1}$$

Definition: Optimal Bayesian Mechanism

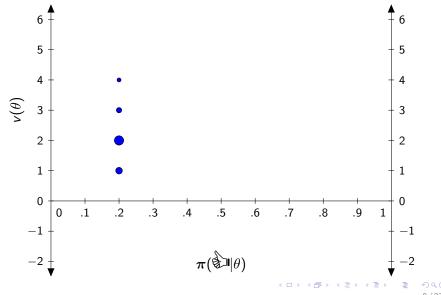
A mechanism that maximizes (1) under the constraint of Bayesian individual rationality and Bayesian incentive compatibility is an *optimal Bayesian mechanism*.

Ex-Post Revenue \leq *Bayesian Revenue*

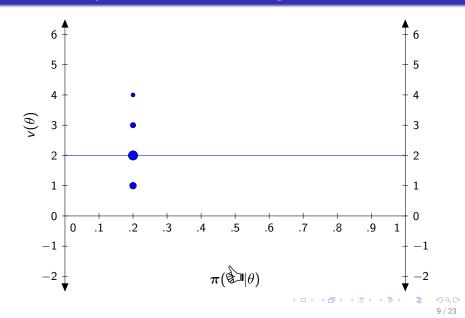


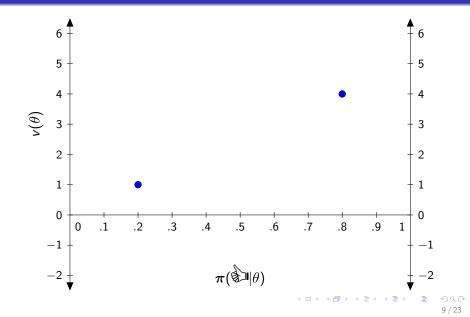


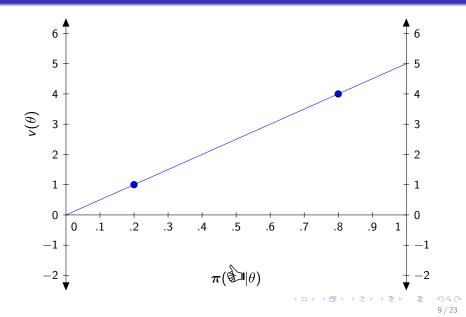
9/23



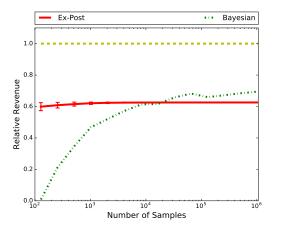
9/23

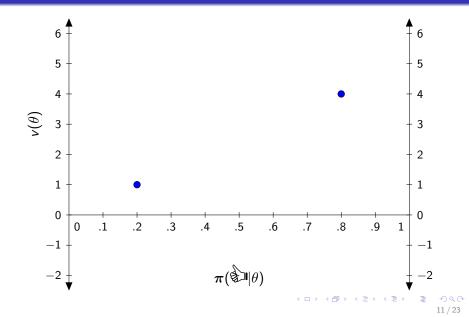


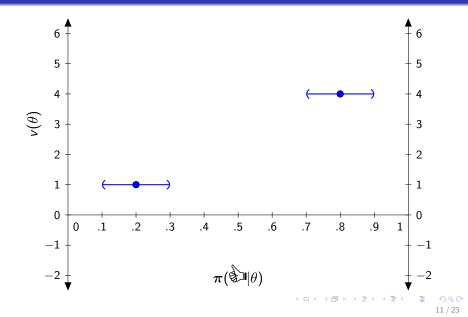


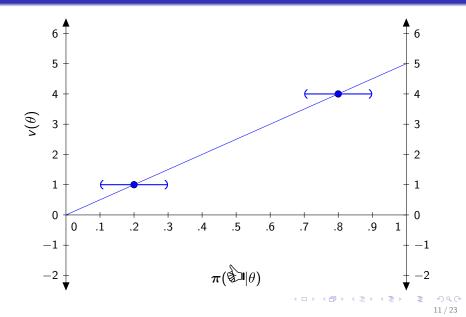


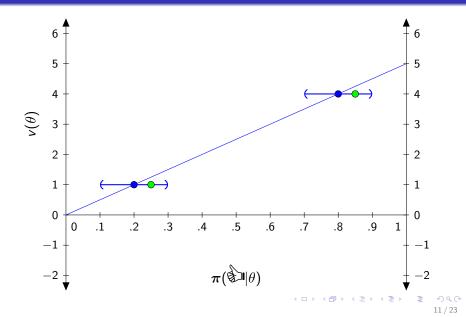
What if the distribution isn't well known?

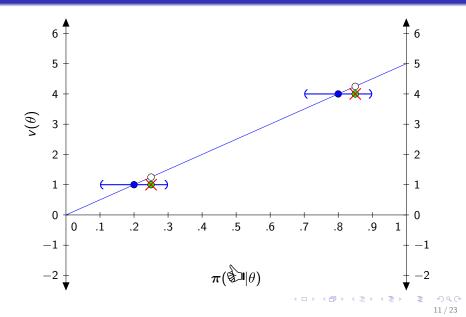


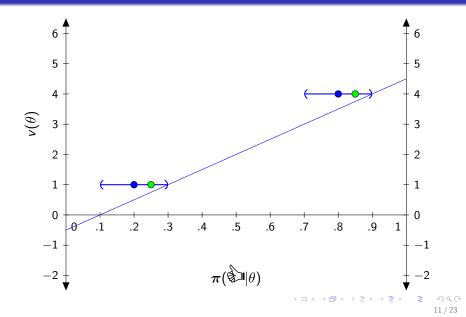


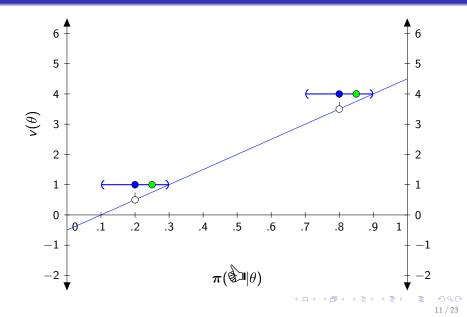












Introduction	Background	Robust Mechanism Design	Experiments	Conclusion
		0000000		
Consister	nt Distributi	ons		

Consistent Distributions

Definition: Set of Consistent Distributions

Let P(A) be the set of probability distributions over A. Then the space of all probability distributions over $\Theta \times \Omega$ can be represented as $P(\Theta \times \Omega)$. A subset $\mathcal{P}(\hat{\pi}) \subseteq P(\Theta \times \Omega)$ is a *consistent set of distributions* for the estimated distribution $\hat{\pi}$ if the true distribution, π , is guaranteed to be in $\mathcal{P}(\hat{\pi})$ and $\hat{\pi} \in \mathcal{P}(\hat{\pi})$.

Introduction	Background	Robust Mechanism Design	Experiments	Conclusion
000	00000	000●0000	0000	00
Robust II	R and IC			

Definition: Robust Individual Rationality

A mechanism is *robust individually rational* for estimated bidder distribution $\hat{\pi}$ and consistent set of distributions $\mathcal{P}(\hat{\pi})$ if for all $\theta \in \Theta$ and $\pi \in \mathcal{P}(\hat{\pi})$,

$$\sum_{\omega\in\Omega}oldsymbol{\pi}(\omega| heta)U(heta,oldsymbol{\pi}, heta,oldsymbol{\omega})\geq 0$$

Introduction	Background	Robust Mechanism Design	Experiments	Conclusion
000	00000	000●0000	0000	00
Robust I	R and IC			

Definition: Robust Individual Rationality

A mechanism is *robust individually rational* for estimated bidder distribution $\hat{\pi}$ and consistent set of distributions $\mathcal{P}(\hat{\pi})$ if for all $\theta \in \Theta$ and $\pi \in \mathcal{P}(\hat{\pi})$,

$$\sum_{\omega\in\Omega}oldsymbol{\pi}(\omega| heta)U(heta,oldsymbol{\pi}, heta,oldsymbol{\omega})\geq 0$$

Definition: Robust Incentive Compatibility

A mechanism is *robust incentive compatible* for estimated bidder distribution $\hat{\pi}$ and consistent set of distributions $\mathcal{P}(\hat{\pi})$ if for all $\theta, \theta' \in \Theta$ and $\pi, \pi' \in \mathcal{P}(\hat{\pi})$,

$$\sum_{\omega\in\Omega} \pi(\omega| heta) U(heta,\pi, heta,\pi,\omega) \geq \sum_{\omega\in\Omega} \pi(\omega| heta) U(heta,\pi, heta',\pi',\omega)$$

Introduction	Background	Robust Mechanism Design	Experiments	Conclusion
000	00000	000●0000	0000	00
Robust IR	and IC			

Heirarchy of Individual Rationality

Ex-Post $IR \subseteq Robust IR \subseteq Bayesian IR$

Heirarchy of Incentive Compatibility

Ex-Post IC \subseteq *Robust IC* \subseteq *Bayesian IC*

Introduction	Background	Robust Mechanism Design	Experiments	Conclusion
		00000000		

Definition: Optimal Restricted Robust Mechanism

The optimal restricted robust mechanism given an estimated distribution $\hat{\pi}$ and a consistent set of distributions $\mathcal{P}(\hat{\pi})$ is a mechanism dependent only on the reported type and exernal signal that maximizes the following objective:

$$\sum_{ heta,\omega} \hat{\boldsymbol{\pi}}(heta,\omega) \boldsymbol{x}(heta,\omega)$$

while satisfying robust IC and IR with respect to $\mathcal{P}(\hat{\pi})$.

Introduction	Background	Robust Mechanism Design	Experiments	Conclusion
		00000000		

Definition: Optimal Restricted Robust Mechanism

The optimal restricted robust mechanism given an estimated distribution $\hat{\pi}$ and a consistent set of distributions $\mathcal{P}(\hat{\pi})$ is a mechanism dependent only on the reported type and exernal signal that maximizes the following objective:

$$\sum_{ heta,\omega} \hat{\boldsymbol{\pi}}(heta,\omega) \boldsymbol{x}(heta,\omega)$$

while satisfying robust IC and IR with respect to $\mathcal{P}(\hat{\pi})$.

Heirarchy of Revenue

Ex-Post Mechanism \leq Robust Mechanism \leq Bayesian Mechanism

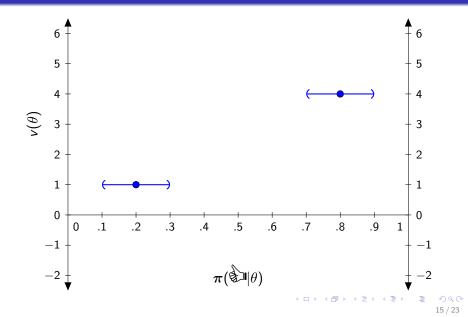
Introduction	Background	Robust Mechanism Design	Experiments	Conclusion
000	00000	00000●00	0000	00
Polynom	ial Time Alg	orithm		

Assumption: Polyhedral Consistent Set

ъ

The set $\mathcal{P}(\hat{\pi})$ can be characterized as an *n*-polyhedron, where *n* is polynomial in the number of bidder types and external signals.

Polynomial Time Algorithm



Introduction	Background	Robust Mechanism Design	Experiments	Conclusion
		00000000		
Polynom	ial Time Alo	orithm		

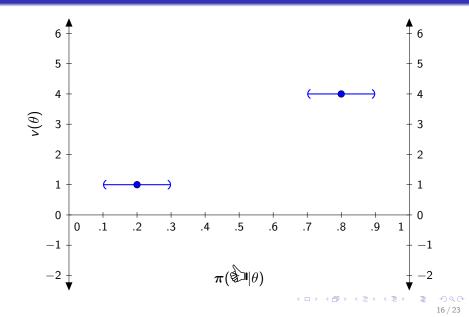
Assumption: Polyhedral Consistent Set

ъ

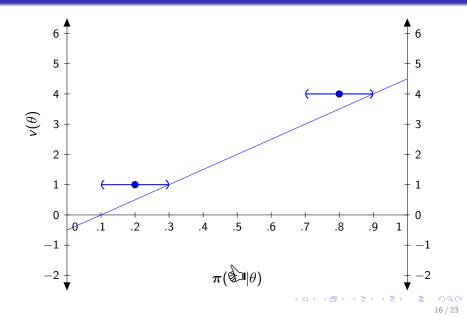
The set $\mathcal{P}(\hat{\pi})$ can be characterized as an *n*-polyhedron, where *n* is polynomial in the number of bidder types and external signals.

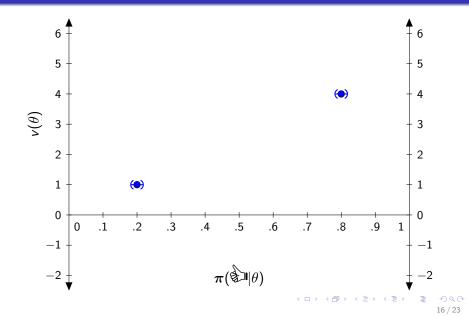
Theorem: Polynomial Complexity of the Optimal Restricted Robust Mechanism

If $\mathcal{P}(\hat{\pi})$ satisfies the above assumption, the optimal restricted robust mechanism can be calculated in time polynomial in the number of types of the bidder and external signal.

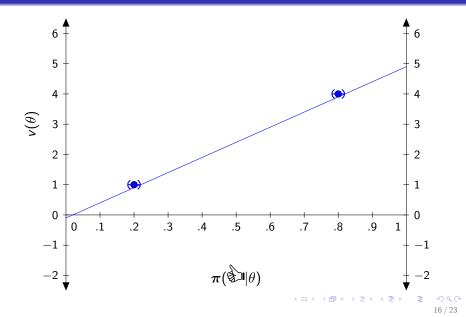


Introduction	Background	Robust Mechanism Design	Experiments	Conclusion
		00000000		

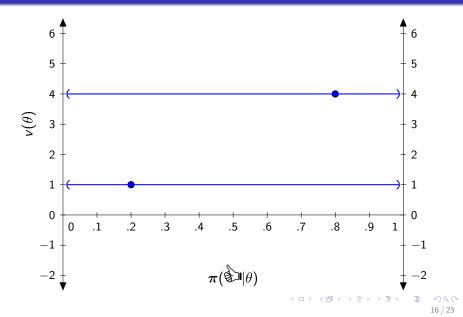


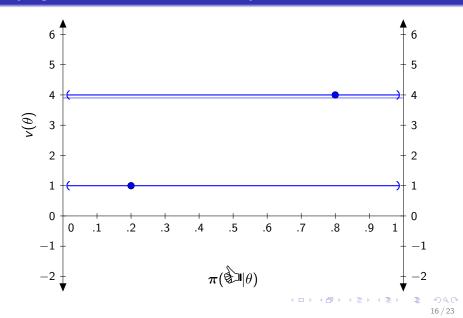


Introduction	Background	Robust Mechanism Design	Experiments	Conclusion
		00000000		



Introduction	Background	Robust Mechanism Design	Experiments	Conclusion
		00000000		





Introduction	Background	Robust Mechanism Design	Experiments	Conclusion
000	00000	0000000●	0000	00
ϵ -Robust	Mechanism	Design		

Robust is not sufficient

 All results and intuition for restricted robust mechanism design carries over to restricted ε-robust mechanism design

Introduction	Background	Robust Mechanism Design	Experiments	Conclusion
000	00000	0000000●	0000	00
ϵ -Robust	Mechanism	Design		

Robust is not sufficient

Definition: Set of ϵ -Consistent Distributions

A subset $\mathcal{P}_{\epsilon}(\hat{\pi}) \subseteq P(\Theta \times \Omega)$ is an ϵ -consistent set of distributions for the estimated distribution $\hat{\pi}$ if the true distribution, π , is in $\mathcal{P}_{\epsilon}(\hat{\pi})$ with probability $1 - \epsilon$ and $\hat{\pi} \in \mathcal{P}_{\epsilon}(\hat{\pi})$.

 All results and intuition for restricted robust mechanism design carries over to restricted ε-robust mechanism design

Introduction	Background	Robust Mechanism Design	Experiments	Conclusion
000	00000	0000000●	0000	00
ϵ -Robust	Mechanism	Design		

Robust is not sufficient

Definition: Set of ϵ -Consistent Distributions

A subset $\mathcal{P}_{\epsilon}(\hat{\pi}) \subseteq P(\Theta \times \Omega)$ is an ϵ -consistent set of distributions for the estimated distribution $\hat{\pi}$ if the true distribution, π , is in $\mathcal{P}_{\epsilon}(\hat{\pi})$ with probability $1 - \epsilon$ and $\hat{\pi} \in \mathcal{P}_{\epsilon}(\hat{\pi})$.

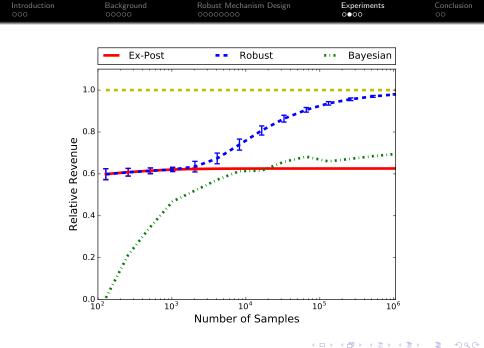
 All results and intuition for restricted robust mechanism design carries over to restricted ε-robust mechanism design

Introduction	Background	Robust Mechanism Design	Experiments	Conclusion
000	00000	00000000	●000	00
Experimen	ts			

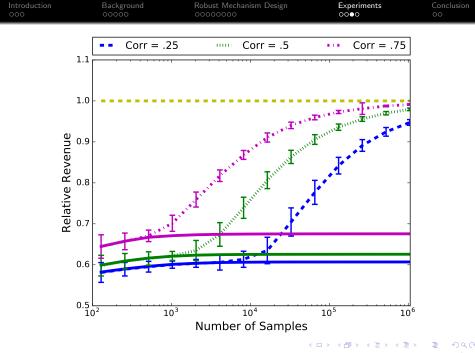
- True distribution is discretized bivariate normal distribution
- Sample from the true distribution N times
- Use Bayesian methods to estimate the distribution
- Calculate empirical confidence intervals for elements of the distribution
- Parameters unless otherwise specified:
 - Correlation = .5
 - $\epsilon = .05$
 - $\Theta = \{1, 2, ..., 10\}$

•
$$|\Omega| = 10$$

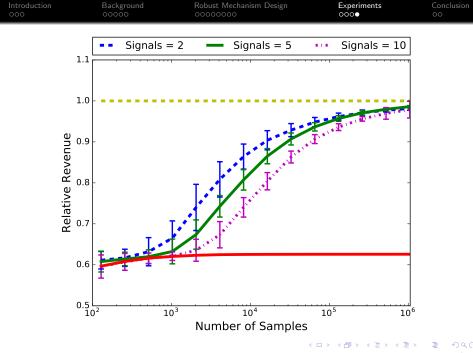
•
$$v(\theta) = \theta$$



19/23



20 / 23



21 / 23

Introduction	Background	Robust Mechanism Design	Experiments	Conclusion
000	00000	00000000	0000	●○
Related W	ork			

- Uncertainty in Mechanism Design (Lopomo, Rigotti, and Shannon 2009, 2011)
- Automated Mechanism Design (Conitzer and Sandholm 2002, 2004; Guo and Conitzer 2010; Sandholm and Likhodedov 2015)
- Robust Optimization (Bertsimas and Sim 2004; Aghassi and Bertsimas 2006)
- Learning Bidder Distribution (Elkind 2007, Fu et al 2014, Blume et. al. 2015, Morgenstern and Roughgarden 2015)
- Simple vs. Optimal Mechanisms (Bulow and Klemperer 1996; Hartline and Roughgarden 2009)

Introduction	Background	Robust Mechanism Design	Experiments	Conclusion
				0•

Thank you for listening to my presentation. Questions?

