
In Proceedings of the 31st Conference on Artificial Intelligence (AAAI 2017),
San Francisco, CA, USA February 2017

Grounded Action Transformation for Robot Learning in Simulation

Josiah P. Hanna and Peter Stone
Dept. of Computer Science

The University of Texas at Austin
Austin, TX 78712 USA

{jphanna,pstone}@cs.utexas.edu

Abstract
Robot learning in simulation is a promising alternative to
the prohibitive sample cost of learning in the physical world.
Unfortunately, policies learned in simulation often perform
worse than hand-coded policies when applied on the physi-
cal robot. Grounded simulation learning (GSL) promises to
address this issue by altering the simulator to better match
the real world. This paper proposes a new algorithm for GSL
– Grounded Action Transformation – and applies it to learn-
ing of humanoid bipedal locomotion. Our approach results in
a 43.27% improvement in forward walk velocity compared
to a state-of-the art hand-coded walk. We further evaluate
our methodology in controlled experiments using a second,
higher-fidelity simulator in place of the real world. Our results
contribute to a deeper understanding of grounded simulation
learning and demonstrate its effectiveness for learning robot
control policies.

Introduction
Manually designing control policies for every possible sit-
uation a robot could encounter is impractical. Reinforce-
ment learning (RL) provides a promising alternative to hand-
coding skills. Recent applications of RL to high dimensional
control tasks have seen impressive successes within simula-
tion (Schulman et al. 2015; Lillicrap et al. 2015). Unfortu-
nately, a large gap exists between what is possible in simula-
tion and the reality of robot learning. State-of-the-art learning
methods require thousands of episodes of experience which
is impractical for a physical robot. Aside from the time it
would take, collecting the required training data may lead to
substantial wear on the robot. Furthermore, as the robot ex-
plores different policies it may execute unsafe actions which
could damage the robot.

An alternative to learning directly on the robot is learn-
ing in simulation (Cutler and How 2015; Koos, Mouret, and
Doncieux 2010). Simulation is a valuable tool for robotics
research as execution of a robotic skill in simulation is com-
paratively easier than real world execution. However, the
value of simulation learning is limited by the inherent inaccu-
racy of simulators in modeling the dynamics of the physical
world (Kober, Bagnell, and Peters 2013). As a result, learn-
ing that takes place in a simulator is unlikely to improve real
world performance.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Grounded Simulation Learning (GSL) is a framework for
learning with a simulator in which the simulator is modified
with data from the physical robot, learning takes place in
simulation, the new policy is evaluated on the robot, and data
from the new policy is used to further modify the simulator
(Farchy et al. 2013). The paper introducing GSL demonstrates
the effectiveness of the method in a single, limited experi-
ment, by increasing the forward walking velocity of a slow,
stable bipedal walk by 26.7%.

This paper introduces a new algorithm – Grounded Action
Transformation (GAT) – for simulator grounding within the
GSL framework. The algorithm is fully implemented and
evaluated using a high-fidelity simulator as a surrogate for
the real world. The results of this study contribute to a deeper
understanding of transfer from simulation methods and the
effectiveness of GAT. In contrast to prior work, our real-world
evaluation of GAT starts from a state-of-the-art walk engine as
the base policy, and nonetheless is able to improve the walk
velocity by over 43%, leading to what may be the fastest
known walk on the SoftBank NAO robot.

Background
Preliminaries
We formalize robot skill learning as a reinforcement learning
(RL) problem (Sutton and Barto 1998). At discrete time-step
t the robot takes action At ∼ π(·|St) according to a policy,
π, which is a distribution over actions, At ∈ A, conditioned
on the current state, St ∈ S. The environment, E, responds
with St+1 ∼ P (·|St, At) according to the dynamics, P :
S × A× S → R≥0 which is a probability density function
over next states conditioned on the current state and action.
A trajectory of length L is a sequence of states and actions,
τ := S0, A0, ..., SL, AL. We also define a cost function, c,
which assigns a scalar cost to each (s, a) pair. We denote the
value of policy, π, as J(π) := Eτ∼Pr(·|π)

[∑L
t=0 c(St, At)

]
where Pr(τ |π) is the probability of τ when selecting actions
according to π.

We assume π is parameterized by a vector θ and denote the
parameterized policy as πθ. Since θ determines the policy
distribution we overload notation by referring to πθ as θ.
Given initial parameters θ0, the goal of policy improvement
is to find θ′ such that J(θ′) < J(θ0). In this work, θ is a
deterministic policy that maps state observations to an action

vector at. Each component of at, ait, is the desired joint
angle for degree-of-freedom i. At each time-step, t, θ selects
at according to the robot’s configuration in joint space, xt,
high level intention commands (e.g., walk forward at 75% of
maximum velocity), ωt, and a sensor vector, ψt, of inertial
measurement (IMU) and foot sensor readings. The state of
the robot can be fully described as st = 〈xt, ẋt, ẍt,ωt,ψt〉
where ẋt and ẍt are the time derivatives of xt. Since the robot
only observes xt, ωt, and ψt, E is partially observable. Note
that while the high level intention commands are determined
by the robot, from the point-of-view of θ, these directional
commands are state features.

In this paper, learning takes place in a simulator which is
an environment, Esim, that models E. Specifically Esim has
the same state-action space as E but inevitably a different dy-
namics distribution, Psim. In many robotics settings, c is user
defined and thus is identical for E and Esim. However, the
different dynamics distribution mean that for any policy, θ,
J(θ) 6= Jsim(θ) since θ induces a different trajectory distri-
bution in E than in Esim. Thus θ′ with Jsim(θ′) < Jsim(θ0)
does not imply J(θ′) < J(θ0) – in fact J(θ′) could even be
worse than J(θ0). In practice and in the literature, learning
in a simulator frequently leads to catastrophic degradation
of J . This paper explores methods for learning in Esim that
result in lower policy cost.

Related Work
This section surveys previous research in simulation-transfer
methods. Our work also relates to model-based reinforcement
learning, however, we restrict our attention here to methods
directly concerned with learning in simulation.

One approach to simulation-transfer is using experience in
simulation to reduce learning time on the physical robot.
Cutler et al. (2014) use lower fidelity simulators to nar-
row the action search space for faster learning in higher
fidelity simulators or the real world. Cully et al. (2015) use
a simulator to estimate fitness values for low-dimensional
robot behaviors which gives the robot prior knowledge
of how to adapt its behavior if it becomes damaged dur-
ing real world operation. Cutler et al. (2015) use expe-
rience in simulation to estimate a prior for a Gaussian
process model to be used with the PILCO learning algo-
rithm (Deisenroth and Rasmussen 2011). Rusu et al. (2016a;
2016b) introduce progressive neural network policies which
are initially trained in simulation before a final period of learn-
ing in the true environment. In contrast to these methods, our
method performs all learning in a grounded simulator and
only uses the physical robot for policy evaluation.

Another class of simulation-transfer methods optimize
an objective besides Jsim in simulation. Rajeswaran et al.
(2016) use a set of different simulators to learn robust policies
that can perform well in a variety of environments. Koos et
al. (2010) use multi-objective optimization to find policies
that trade off between optimizing Jsim(π) and transferability.
Iocchi et al. (2007) compute a correction function from J(π)
such that Jsim(π) = J(π) and then optimize the corrected
objective. In contrast, we directly optimize Jsim within a
modified simulator.

Christiano et al. (2016) turn simulation policies into real

world policies by transforming policy actions so that they
produce the same effect that they did in simulation. This
approach is complementary to ours although it also requires
a simulator which can be reset to an arbitrary state during
policy execution.

Grounded Simulation Learning
In this section we introduce the Grounded Simulation Learn-
ing (GSL) framework as presented by Farchy et al. (2013).
GSL improves robot learning in simulation by using state
transition data from the physical system to modify Esim such
that the modified Esim is a higher fidelity model of E. The
process of making the simulator more like the real world is
referred to as grounding.

The GSL framework assumes the following:

1. There is an imperfect simulator, Esim = 〈S,A, Psim, c〉,
that models the environment of interest, E. Further-
more, Esim must be modifiable. A modifiable simulator
has parameterized transition probabilities Pφ(·|s, a) :=
Psim(·|s, a;φ) where the vector φ can be changed to pro-
duce, in effect, a different simulator.

2. Additionally, GSL assumes the physical robot can record a
data set, D of trajectories when executing any policy θ.

3. Finally, GSL requires a policy improvement routine,
optimize, that searches for θ which decreases Jsim(θ).
The optimize routine returns a set of candidate policies,
Πc to evaluate on the physical robot.

Let d(p, q) be a measure of similarity between probabilities
p and q. GSL grounds Esim by finding φ? such that:

φ? = argmin
φ

∑
τ∈D

d (Pr(τ |θ), P rsim(τ |θ,φ)) (1)

where Pr(τ |θ) is the probability of observing trajectory
τ on the physical robot and Prsim(τ |θ,φ) is the probability
of τ in the simulator with dynamics parameterized by φ. For
instance, if d(p, q) := log p − log q for two probabilities p
and q then φ? minimizes the Kullback-Leibler divergence
between Pr(·|θ) and Prsim(·|θ,φ?).

Assuming GSL can solve (1), the framework is as follows:

1. Execute policy θ0 on the physical robot to collect a data
set of trajectories, D.

2. Use D to find φ? that satisfies Equation 1.

3. Use optimize with Jsim and Pφ? to learn a set of can-
didate policies Πc in simulation which are expected to
perform well on the physical robot.

4. Evaluate each proposed θc ∈ Πc on the physical robot and
return the policy, θ1, with minimal J .

GSL can be applied iteratively with θ1 being used to collect
more trajectories to ground the simulator again before learn-
ing θ2. The re-grounding step is necessary since changes
to θ result in changes to the distribution of states that the
robot observes. When this happens, a simulator that has been
modified with data from the state distribution of θ0 may be a
poor model under the state distribution of θ1.

Farchy et al. proposed a GSL algorithm, which we refer
to as GUIDED GSL. GUIDED GSL blends simulator modifica-
tion with human guided policy optimization. This algorithm
demonstrated the efficacy of GSL in optimizing forward walk
velocity of a bipedal robot. The robot in that research began
learning with a slow but stable walk policy. Four iterations
of GUIDED GSL led to an improvement of over 26% on this
baseline walk. Two limitations of GUIDED GSL are that:

1. It makes the assumption that actions in simulation achieve
their desired effect instantaneously.

2. It required a human expert to manually select which com-
ponents of θ were allowed to change between iterations of
the optimize routine.
In this work, we introduce an enhanced GSL methodology

that eliminates both assumptions and optimizes one of the
fastest available NAO walk engines.

Robot Platform and Task
Before presenting GAT, our new GSL algorithm, we describe
the robot platform, initial walk policy, and simulators which
we use for evaluation. While our method is applicable to other
robots, tasks, and simulators we describe these components
first in order to ground the algorithm’s presentation.

Robot Platform: Our target task is bipedal walking us-
ing the SoftBank NAO.1 The NAO is a humanoid robot with
25 degrees of freedom (See Figure 2a). For walking, our
NAO uses an open source walk engine developed at the Uni-
versity of New South Wales (UNSW) (Ashar et al. 2015;
Hall et al. 2016). This walk engine has been used by at least
one team in each of the past three RoboCup Standard Plat-
form League (SPL) championship games in which teams
of five NAOs compete in soccer matches. To the best of our
knowledge, it is one of the fastest open source walks avail-
able.2 The walk is a zero moment point walk based on an
inverted pendulum model. The walk is closed loop, using
the inertial measurement (IMU) sensors and a learned ankle
control policy to improve stability. The UNSW walk engine
has 15 parameters that determine features of the walk (e.g.,
step height, pendulum model height). The values of the pa-
rameters from the open source release constitute θ0. For full
information on the UNSW walk see (Hengst 2014).

Simulators: We use two different simulators in this work.
The first is the open source SimSpark simulator.3 The sim-
ulator simulates realistic physics with the Open Dynamics
Engine.4 This simulator was also used in the work introduc-
ing GSL (Farchy et al. 2013). We also use the Gazebo simu-
lator5 provided by the Open Source Robotics Foundation.6

1https://www.ald.softbankrobotics.com/en
2While other regular RoboCup participants also have competi-

tive walks, we are not aware of any published result that confirms
a speed as much as 42% faster than UNSW’s, as we achieve in this
paper.

3http://simspark.sourceforge.net
4http://www.ode.org/
5http://gazebosim.org/
6http://www.osrfoundation.org/

Gazebo is an open source simulator that is commonly used
in robotics research. SimSpark enables fast simulation but
is a lower fidelity model of the real world. Gazebo enables
high fidelity simulation with an additional computational
cost. In one of our experiments we consider the more realistic
Gazebo environment as E and SimSpark as Esim. The main
difference between these simulators and the physical robot is
how actions change the robot’s configuration. In SimSpark,
actions achieve the desired command angle almost instanta-
neously. On the physical robot there is a delay. Gazebo also
models joints as more reactive than the real world although
less reactive than in SimSpark.

Grounded Action Transformation
We now introduce our principle algorithmic contribution, GSL
with Grounded Action Transformation (GAT) which improves
the grounding step (step 2) of the GSL framework. GAT im-
proves grounding by correcting differences in the effects of
actions between E and Esim. GSL with GAT is presented in
Algorithm 1.

The GSL framework grounds the simulator by finding φ?

that satisfies (1). Since it is often easier to minimize error in
the one step dynamics distribution than error in the trajectory
distributions, GAT uses:

φ? = argmin
φ

∑
τi∈D

L∑
t=0

d(P (sit+1|sit,ait), Pφ(sit+1|sit,ait))

(2)
as a surrogate loss function which can be minimized with
transitions observed in D. GSL with GAT begins by collecting
the dataset D (Algorithm 1, line 4).

Physics-based simulators (such as SimSpark and Gazebo)
have a large number of parameters determining the physics of
the simulated environment (e.g., friction coefficients). How-
ever, using these parameters as φ is not amenable to numer-
ical optimization of (2). To find φ? efficiently, GAT uses a
parameterized action transformation function which takes
the agent’s state and action as input and outputs a new action
which – when taken in simulation – will result in the robot
transitioning to the same next state it would have in E. We
denote this function, gφ : S ×A → A; the parameters of g
serve as φ under the GSL framework. GAT constructs g with
parameterized models of the robot’s dynamics and the simu-
lator’s inverse dynamics. Assuming the simulated robot can
record a dataset Dsim of experience like the physical robot,
GAT reduces (2) to a supervised learning problem.

GAT defines g := gφ by a deterministic forward model of
the robot’s dynamics, f and a deterministic model of the sim-
ulator’s inverse dynamics, f−1

sim. The function, f maps (st,at)
to the maximum likelihood estimate of xt+1 under P . The
function f−1

sim maps (st, st+1) to the action that is most likely
to produce this transition in simulation. When executing θ in
simulation, the robot selects at ∼ πθ(·|st) and then uses f
to predict what the resulting configuration, xt+1, would be
in E. Then at is replaced with ât := f−1

sim(st, f(st,at)). The
result is that the robot achieves the exact xt+1 it would have
on the physical robot.7

7GAT subsumes GUIDED GSL which makes the additional as-

Algorithm 1 Grounded Action Transformation (GAT) Pseudo
code. Input: An initial policy, θ, the environment, E, a simulator,
Esim, smoothing parameter α, and a policy improvement method,
optimize. The function rolloutN(θ, N) executes N trajectories
with θ and returns the observed state transition data. The functions
trainForwardModel and trainInverseModel estimate models
of the forward and inverse dynamics respectively.

1: function GAT
2: θ0 ← θ
3: Drobot ← RolloutN(E,θ0, N)
4: Dsim ← RolloutN(Esim,θ0, N)
5: f ← trainForwardModel(Drobot)

6: f−1
sim ← trainInverseModel(Dsim)

7: g(s, a)← αf−1
sim(s, f(s, a)) + (1− α) · at

8: Π← optimize(Esim,θ, g)
9: return argminθ∈Π J(θ)

10: end function

In practice f and f−1
sim are represented with supervised

regression models and learned from D and Dsim respectively
(Algorithm 1 lines 5-6). The approximation of g introduces
noise into the robot’s motion. To ensure stable motions, GAT
uses a smoothing parameter α. The action transformation
function (Algorithm 1 line 8) is then defined as:

g(st,at) := αf−1
sim(st, f(st,at)) + (1− α)at

.
In our experiments, we set α as high as possible sub-

ject to the walk remaining stable. Figure 1 illustrates the
GAT-modified Esim. GAT then proceeds to improve θ with
optimize within the grounded simulator (lines 8-9).

GAT Implementation
In this work, GAT uses two neural networks to approximate
f and f−1

sim. Each function is a three layer network with 200
hidden units in the first layer and 180 hidden units in the
second. During simulator modification, the f network re-
ceives st and at as input and the f−1

sim network receives st
and the output of f as input. The final output from f−1

sim is
the replacement action ât. While at is a vector of desired
joint angles, the action input to f and action output of f−1

sim

is encoded as a desired change in xt which was found to
improve prediction. We follow Fu et al. (2015) by having
f predict the joint acceleration caused by executing at in
st instead of directly predicting st+1. The accelerations can
then be integrated and added to st+1 to produce the resulting
next state. Additionally, f and f−1

sim regress to the sine and
cosine of the target angular accelerations and then pass the
outputs through the arctan function to produce the final an-
gular acceleration. Passing the network outputs through the

sumption f−1
sim (st,xt+1) = xt+1, in other words that requesting

joint angles means the robot achieves those joint angles at the next
time-step. GAT removes all human guidance from policy optimiza-
tion. GAT also removes the need for human expertise in selecting
the components of θ which are allowed to change during policy
optimization.

Figure 1: An illustration of the modifiable simulator GAT induces.
At each time-step the robot takes an action, at, and passes at to a
modification function, g. The modification function uses a determin-
istic model of the real robot’s dynamics, f , to predict the effect of
executing at on the physical robot. Then, a model of the simulated
robot’s inverse dynamics uses the prediction, x̂t, to predict the ac-
tion ât which will achieve x̂t in simulation. Finally, ât is passed
to the environment, Esim and the resulting state transition will be
similar to the transition that would have occurred in E.

arctan function ensures f and f−1
sim produce valid joint angles.

The true state, st, is estimated by concatenating joint con-
figurations xt,xt−1, ..xt−4 and past actions at−1, ...,at−4.
The state estimate 〈xt, ...,xt−4,at−1, ...,at−4〉 improves the
predictions of f and f−1

sim because it implicitly captures the
unobserved ẋt and ẍt state variables. The length of the con-
figuration history was chosen to balance predictive accuracy
with keeping the number of inputs to the networks small.
Both networks are trained with backpropagation.

Empirical Results
Experimental Set-up
We evaluate GAT on the task of bipedal robot walking. The
walk takes a target forward velocity parameter in the range
[0, 1]. We set this parameter to 0.75 which we found led to
the fastest walk that was reliably stable. The robot walks
forward towards a target at this velocity. If the robot’s angle
to the target becomes greater than five degrees it turns back
towards the target while continuing to walk forward. In all
environments, J(θ) is the negative of the average forward
walk velocity while executing θ. On the physical robot a
trajectory terminates once the robot has walked four meters
or falls. A trajectory generated with θ0 lasts ≈ 20.5 seconds
on the robot. In simulation a trajectory terminates after a
fixed time interval (7.5 seconds in SimSpark and 10 seconds
in Gazebo) or when the robot falls. Previous work has shown
that when using a model estimated from data it is better to use
shorter action trajectories to avoid overfitting to an inaccurate
model (Jiang et al. 2015). Even for identical st and at, st+1

in Esim will most likely be different than st+1 in E. This
error compounds over the course of a trajectory since state
error at st is propagated forward into st+1. This observation
motivates using shorter trajectory lengths as simulator fidelity
decreases.

Optimizing θ We use the Covariance Matrix Adaption-
Evolutionary Strategy (CMA-ES) algorithm (Hansen 2006)
as the optimize routine. CMA-ES is a policy search method
which samples a population of candidate θ from a Gaussian
distribution over parameters. The top k parameter vectors

(a) A Softbank NAO Robot (b) A simulated NAO in Gazebo (c) A simulated NAO in SimSpark

Figure 2: The three robotic environments used in this work. The Softbank NAO is our target physical robot. The NAO is simulated in the
Gazebo and SimSpark simulators.

are used to update the sampling distribution so that the mean
is closer to an optimal policy. We modify Jsim(θ) for the
optimization by adding a cost of 15 for any trajectory in
which the robot falls. The added penalty encourages CMA-ES
to strongly favor stable policies over faster, less stable ones.
To clarify terminology, a generation refers to a single update
of CMA-ES; an iteration refers to a complete cycle of GAT.

SimSpark to Gazebo: Since a large number of trials are
difficult to obtain on a physical robot, we present a study
of GAT using Gazebo as a surrogate for the real world. In
this setting we evaluate the effectiveness of GAT compared to
learning with no grounding and grounding Esim by injecting
noise into the robot’s actions. Adding an “envelope” of noise
has been used before to minimize simulation bias by prevent-
ing the policy improvement algorithm from overfitting to the
simulator’s dynamics (Jakobi, Husbands, and Harvey 1995).
We refer to this baseline as Noise-Envelope. Since GAT with
function approximation introduces noise into the robot’s ac-
tions we wish to verify that GAT offers benefits over such
methods. Noise-Envelope adds standard Gaussian noise to
the robot’s actions within the ungrounded simulator. We also
attempted to evaluate GUIDED GSL but preliminary experi-
ments showed that the assumption that actions achieve their
desired effect instantaneously did not hold for this setting.

We run 10 trials of each method. For GAT we collect 50
trajectories of robot experience to train f and 50 trajecto-
ries of simulated experience to train f−1

sim. For each method,
we optimize θ for 10 generations of the CMA-ES algorithm.
In each generation, 150 policies are sampled and evaluated
in simulation. CMA-ES estimates Jsim with 20 trajectories
from each policy. Overall, the CMA-ES optimization requires
30,000 simulated trajectories for each trial.

Table 1 gives the average improvement in stable walk
policies for each method and the number of trials in which a
method failed to produce a stable improvement. This table
only considers policies found after the first generation of
CMA-ES. The reason for this is that the policies in the first
generation were randomly sampled from an initial search
distribution. We consider learning to begin once CMA-ES
has used the Jsim values of the first generation to update the
search distribution. Using Jsim to identify θ which improve
J in the first generation is a policy evaluation problem while
improvement afterwards is a policy improvement problem.

Simulation to NAO Set-up: We evaluate GAT for transfer-
ring policies learned in Simspark or Gazebo to the physical
NAO. The data set D consists of 15 trajectories collected with
θ0 on the physical NAO. For each iteration, we optimize θ
for 10 generations of the CMA-ES algorithm. We evaluate
the best policy from each generation with 5 trajectories on
the physical robot. If the robot falls in any of the 5 trajec-
tories the policy is considered unstable. While the number
of evaluations is small, in practice stable policies had small
variance in walk velocity and unstable policies fell in almost
all trajectories.

One challenge in this setting is the simulators receive robot
actions at 50 Hz while the physical NAO receives robot ac-
tions at 100 Hz. The discrepancy in action frequency poses a
problem for using real world data to modify how joints move
in simulation. By skipping every other measurement to get
an effectively 50Hz data trace, we are able to model how the
physical robot’s joints move at the simulator’s frequency.

Experimental Results

SimSpark to Gazebo Results: Table 1 shows that GAT
maximizes improvement in J while minimizing iterations
without improvement. NOISE-ENVELOPE improves upon no
grounding in both improvement and number of iterations
without improvement. Adding noise to the simulator encour-
ages CMA-ES to propose robust policies which are more likely
to be stable. However, GAT further improves over NOISE-
ENVELOPE. This result demonstrates that action transforma-
tions are grounding the simulator in a more effective way
than simply injecting noise.

Table 1 also shows that on average GAT finds an improved
policy within the first few policy updates after grounding.
When learning with no grounding finds an improvement it
is also usually in an early generation of CMA-ES. As policy
improvement progresses, the best policies in each generation
begin to overfit to the dynamics of Esim. Without grounding
overfitting happens almost immediately. NOISE-ENVELOPE
is shown to be more robust to overfitting since any policy it
proposes achieved good cost in a noisy Esim. The grounding
done by GAT is inherently local to the trajectory distribution
of θ0. Thus as θ changes in policy improvement, the action
transformation function fails to produce a more realistic sim-
ulator. Noise modification methods can mitigate overfitting
by emphasizing robust policies although it is also limited in
finding as strong of an improvement as GAT.

Method % Improve Failures Best Gen.
No Ground 11.094 7 1.33

Noise-Envelope 18.93 5 6.6
GAT 22.48 1 2.67

Table 1: This table compares Grounded Action Transformation
(GAT) with baseline approaches for transferring learning between
SimSpark and Gazebo. The first column displays the average max-
imum improvement found by each method after the first policy
update made by CMA-ES. The second column is the number of
times a method failed to find a stable walk. The third column gives
the average generation of CMA-ES when the best policy was found.
No Ground refers to learning done in the unmodified simulator.

Method Velocity (cm/s) % Improve
θ0 19.52 0.0

GAT SimSpark θ1 26.27 34.58
GAT SimSpark θ2 27.97 43.27

GAT Gazebo θ1 26.89 37.76

Table 2: This table gives the maximum learned velocity and percent
improvement for each method starting from θ0 (top row).

Simulator to Physical NAO Results: Our final empirical
evaluation applies GAT to learning bipedal walks on a physi-
cal NAO. Table 2 gives the walk velocity of policies learned
in simulation with GAT. The physical robot walks at a ve-
locity of 19.52 cm/s with θ0. Two iterations of GAT with
SimSpark increased the walk velocity of the NAO to 27.97
cm/s — an improvement of 43.27% compared to θ0.8 GAT
with SimSpark and GAT with Gazebo both improved walk
velocity by over 30%. This result demonstrates generality of
our approach across different simulators.

As in the previous experiment, policy improvement with
CMA-ES required 30,000 trajectories per iteration to find the
10 policies that were evaluated on the robot. In contrast the
total number of trajectories executed on the physical robot is
65 (15 trajectories in D and 5 evaluations per θc ∈ Πc). This
result demonstrates GAT can use sample-intensive simulation
learning to optimize real world skills with a low number of
trajectories on the physical robot.

Farchy et al. demonstrated the benefits of re-grounding and
further optimizing θ. We reground using the 15 trajectories
collected with the best policy found by GAT with SimSpark
and optimize for a further 10 generations in simulation. The
second iteration results in a walk, θ2, which averages 27.97
cm/s for a total improvement of 43.27% over θ0.

Finally, we evaluate θ0 with 100% of maximum velocity
requested (i.e., the forward velocity request parameter set
to 1.0). The average velocity of this walk across five stable
trajectories is 24.3 cm / s. This result shows that GAT can
learn walk policies that outperform one of the best hand
coded walks available.

Discussion and Future Work
Our proposed algorithm, GAT, has some limitations that we
discuss here. The decision to learn an action modification

8A video of the learned walk policies is available at
https://www.cs.utexas.edu/users/AustinVilla/
?p=research/real_and_sim_walk_learning.

function, g, makes the assumption that ∀(st, at, st+1) that
could be observed on the physical robot there exists an action
ât that will produce the same transition when used in place
of at. We posit that this assumption is often true since ât can
usually be executed with more or less force in simulation to
achieve the desired response. However, this assumption is
likely to break down under contact dynamics where external
forces resist the robot’s actions. Other tasks may introduce
other forms of simulator bias that GAT is currently limited
in handling. An important direction for future work is to
characterize the settings where this approach is limited and
to identify alternatives.

We specify simulator grounding as a supervised learning
problem however the distribution of inputs to the learned
models, f and f−1

sim, during policy execution differ from the
training distributions. The distribution change is likely to
weaken the quality of action modification under g. To see
why the change happens consider that f is trained under
(st, at, st+1) sampled from executing θ on the real robot
while f−1

sim is trained on (st, at, st+1) sampled in simulation.
During simulator modification, both models are evaluated
on data sampled from the distribution of θ in the grounded
simulator. We have started to explore methods similar to the
Dataset Aggregation (DAgger) algorithm (Ross and Bagnell
2012) which collects new data to retrain f−1

sim as the state
distribution of θ in Esim changes with grounding.

Finally, this paper considers action modification but a
complementary approach could consider sensor modification.
Sensor modification would add another layer to the modified
simulator such that the environment returns a state and the
sensor modification function predicts what the robot would
observe in that state. The two methods have an interesting
interaction since sensor modification changes the action θ se-
lects while action modification changes the next state which
changes the observed sensor values as well.

Conclusion
This paper proposed and evaluated the Grounded Action
Transformation (GAT) algorithm for grounded simulation
learning. Our method led to a 43.27 % improvement in the
walk velocity of a state-of-the-art bipedal robot. We con-
ducted an empirical study that analyzed the benefits of GAT
compared to a pair of baseline simulation-transfer methods.
This experiment demonstrates GAT enhances learning in sim-
ulation in comparison to other methods.

Acknowledgments
We would like to thank Matthew Hausknecht, Patrick
MacAlpine, and Garrett Warnell for insightful discussions
and the anonymous reviewers for helpful comments. This
work has taken place in the Learning Agents Research Group
(LARG) at UT Austin. LARG research is supported in part
by NSF (CNS-1330072, CNS-1305287, IIS-1637736, IIS-
1651089), ONR (21C184-01), and AFOSR (FA9550-14-1-
0087). Josiah Hanna is supported by an NSF Graduate Re-
search Fellowship. Peter Stone serves on the Board of Direc-
tors of, Cogitai, Inc. The terms of this arrangement have been
reviewed and approved by the University of Texas at Austin
in accordance with its policy on objectivity in research.

References
Ashar, J.; Ashmore, J.; Hall, B.; and Harris, S. e. a. 2015.
Robocup spl 2014 champion team paper. In RoboCup 2014:
Robot World Cup XVIII, volume 8992 of Lecture Notes in
Computer Science. Springer International Publishing. 70–81.
Christiano, P.; Shah, Z.; Mordatch, I.; Schneider, J.; Black-
well, T.; Tobin, J.; Abbeel, P.; and Zaremba, W. 2016. Trans-
fer from simulation to real world through learning deep in-
verse dynamics model. arXiv preprint arXiv:1610.03518.
Cully, A.; Clune, J.; Tarapore, D.; and Mouret, J.-B. 2015.
Robots that can adapt like animals. Nature.
Cutler, M., and How, J. P. 2015. Efficient reinforcement
learnng for robots using informative simulated priors. In
IEEE International Conference on Robotics and Automation,
ICRA.
Cutler, M.; Walsh, T. J.; and How, J. P. 2014. Reinforcement
learning with multi-fidelity simulators. In IEEE Conference
on Robotics and Automation, ICRA.
Deisenroth, M. P., and Rasmussen, C. E. 2011. Pilco: A
model-based and data-efficient approach to policy search. In
International Conference on Machine Learning, ICML.
Farchy, A.; Barrett, S.; MacAlpine, P.; and Stone, P. 2013.
Humanoid robots learning to walk faster: From the real world
to simulation and back. In Twelth International Conference
on Autonomous Agents and Multiagent Systems, AAMAS.
Fu, J.; Levine, S.; and Abbeel, P. 2015. One-shot learning
of manipulation skills with online dynamics adaptation and
neural network priors. In IEEE/RSJ International Conference
on Intelligent Robots and Systems.
Hall, B.; Harris, S.; Hengst, B.; Liu, R.; Ng, K.; Pagnucco,
M.; Pearson, L.; Sammut, C.; and Schmidt, P. 2016. Robocup
spl 2015 champion team paper.
Hansen, N. 2006. The CMA evolution strategy: a comparing
review. In Lozano, J.; Larranaga, P.; Inza, I.; and Bengoetxea,
E., eds., Towards a new evolutionary computation. Advances
on estimation of distribution algorithms. Springer. 75–102.
Hengst, B. 2014. runswift walk2014 report robocup standard
platform league. Technical report, The University of New
South Wales.
Iocchi, L.; Libera, F. D.; and Menegatti, E. 2007. Learning
humanoid soccer actions interleaving simulated and real data.
In Second Workshop on Humanoid Soccer Robots.
Jakobi, N.; Husbands, P.; and Harvey, I. 1995. Noise and the
reality gap: The use of simulation in evolutionary robotics. In
European Conference on Artificial Life, 704–720. Springer.
Jiang, N.; Kulesza, A.; Singh, S.; and Lewis, R. 2015. The
dependence of effective planning horizon on model accu-
racy. In International Conference on Autonomous Agents and
Multiagent Systems, AAMAS.
Kober, J.; Bagnell, J. A.; and Peters, J. 2013. Reinforcement
learning in robotics: A survey. The International Journal of
Robotics Research.
Koos, S.; Mouret, J.-B.; and Doncieux, S. 2010. Crossing the
reality gap in evolutionary robotics by promoting transferable
controllers. In Proceedings of the 12th annual conference on
Genetic and evolutionary computation, 119–126. ACM.

Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez, T.;
Tassa, Y.; Silver, D.; and Wierstra, D. 2015. Continuous con-
trol with deep reinforcement learning. CoRR abs/1509.02971.
Rajeswaran, A.; Ghotra, S.; Levine, S.; and Ravindran, B.
2016. Epopt: Learning robust neural network policies using
model ensembles. arXiv preprint arXiv:1610.01283.
Ross, S., and Bagnell, J. A. 2012. Agnostic system iden-
tification for model-based reinforcement learning. In 29th
International Conference on Machine Learning, ICML.
Rusu, A. A.; Rabinowitz, N. C.; Desjardins, G.; Soyer, H.;
Kirkpatrick, J.; Kavukcuoglu, K.; Pascanu, R.; and Hadsell,
R. 2016a. Progressive neural networks. arXiv preprint
arXiv:1606.04671.
Rusu, A. A.; Vecerik, M.; Rothörl, T.; Heess, N.; Pascanu, R.;
and Hadsell, R. 2016b. Sim-to-real robot learning from pixels
with progressive nets. arXiv preprint arXiv:1610.04286.
Schulman, J.; Moritz, P.; Levine, S.; Jordan, M. I.; and
Abbeel, P. 2015. High-dimensional continuous control using
generalized advantage estimation. In International Confer-
ence on Learning Representations.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learning:
An Introduction. MIT Press.

