
Automatic Curriculum Graph Generation for Reinforcement Learning Agents
Maxwell Svetlik

University of Texas at Austin
Austin, USA

Matteo Leonetti
University of Leeds

Leeds, UK

Jivko Sinapov
University of Texas at Austin

Austin, USA

Rishi Shah
University of Texas at Austin

Austin, USA

Nick Walker
University of Texas at Austin

Austin, USA

Peter Stone
University of Texas at Austin

Austin, USA

Abstract

In recent years, research has shown that transfer learning
methods can be leveraged to construct curricula that sequence
a series of simpler tasks such that performance on a final
target task is improved. A major limitation of existing ap-
proaches is that such curricula are handcrafted by humans
that are typically domain experts. To address this limitation,
we introduce a method to generate a curriculum based on
task descriptors and a novel metric of transfer potential. Our
method automatically generates a curriculum as a directed
acyclic graph (as opposed to a linear sequence as done in ex-
isting work). Experiments in both discrete and continuous do-
mains show that our method produces curricula that improve
the agent’s learning performance when compared to the base-
line condition of learning on the target task from scratch.

1 Introduction
Increasingly, reinforcement learning (RL) agents are be-

ing tasked with challenging problems that may be unfea-
sible to learn directly. To address such situations, trans-
fer learning (TL) methods reuse knowledge learned in a
source task so that an agent can learn a difficult target task
faster or converge to a better policy (Taylor and Stone 2009;
Lazaric 2012). Most recently, TL methods have been lever-
aged for the problem of curriculum learning in which the
goal is to construct a curriculum where an agent learns a
sequence of tasks (Narvekar et al. 2016; Peng et al. 2016).

The major limitation of current approaches to curriculum
learning is that the curriculum is typically hand-crafted or
designed by a human, often an expert in the domain. In ad-
dition, most TL methods do not generalize to simultaneous
transfer from multiple source tasks to a given target task.
Thus, each hand-crafted curriculum is represented as a lin-
ear sequence of tasks, which does not afford parallelization
of tasks when learning.

To address these issues, we introduce a framework for au-
tomatic construction of a curriculum. Our method allows an
agent to transfer from multiple source tasks into a single tar-
get task and, as a result, the generated curriculum is repre-
sented as a Directed Acyclic Graph. The construction of the
curriculum graph is based on a novel measure of task relat-
edness, that utilizes task descriptors to estimate the benefit

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of transferring knowledge from one task to another. We eval-
uate our method on discrete and continuous RL domains and
the results show that employing the generated curricula leads
to a substantial speed-up in learning performance.

2 Background
2.1 Markov Decision Process

A Markov Decision Process (MDP) is a 5-tuple
〈S,A,P,R, γ〉 where S is the set of states, A is the set of
possible actions, P is the transition function, R is the re-
ward function, and γ is the discount factor. We represent an
instance of MDP t as a task. The goal of the agent is to max-
imize the expected value of the return Gt =

∑
t≥0 γ

tRt+1.
An agent can learn the optimal policy π∗ by learning the
optimal action-value function Q∗(s, a) which gives the ex-
pected return for taking action a in state s and acting opti-
mally thereafter.

In our experiments, the action-value function was learned
using either the Q-learning algorithm (Watkins and Dayan
1992) or SARSA (Singh and Sutton 1996).

2.2 Potential-based Reward Shaping
The method proposed in this paper uses reward shap-

ing (Ng, Harada, and Russell 1999) as a means to trans-
fer knowledge from one or more source tasks to a target
task. In reward shaping, the reward signal is modified by
adding additional reward, driving the agent towards the de-
sired behavior. The reward function becomes R′(s, a, s′) =
R(s, a, s′) + F (s, a, s′), where F is the shaping function.
If the reward is sparse, the agent may have no feedback
for many actions, making learning more difficult. The shap-
ing function can fill these gaps, providing advice on the
value of the actions. We use potential-based look-ahead ad-
vice (Wiewiora, Cottrell, and Elkan 2003), where the reward
function is augmented by the potential-based advice func-
tion:

F (s, a, s′, a′) = γφ(s′, a′)− φ(s, a) (1)

If φ is a potential function over states and actions, its im-
pact on the value function is nondisruptive, allowing the
true value function to be recovered (Wiewiora, Cottrell, and
Elkan 2003).

3 Related Work
In supervised machine learning, transfer learning has been

applied to effectively reuse knowledge acquired in one do-
main without having to completely start from scratch in a
new problem (Pan and Yang 2010). More recently, trans-
fer learning methodologies have been developed for RL set-
tings (Taylor and Stone 2009; Lazaric 2012).

Where multiple source tasks are available, a key ques-
tion is how to pick a good source task for a given target.
Lazaric et al. (2008) proposed a framework that allows an
agent to select samples from multiple source tasks based
on their similarity to samples in the target task. Models
(Nguyen, Silander, and Leong 2012) and options (Perkins
and Precup 1999) have also been transferred, by identifying
which source task is most similar to the target task. Along
the same research line, methods have been proposed to es-
timate the similarity between MDPs known to the agent,
and the one that it is trying to learn (Ferns et al. 2012;
Ferns, Panangaden, and Precup 2011; Ammar et al. 2014).
In cases where samples from the target task are unavailable,
task descriptors (e.g., attribute-value pairs) have been used
to identify the relevant source task(s) (Sinapov et al. 2015;
Isele, Rostami, and Eaton 2016).

While these methods have shown promise at selecting ap-
propriate source tasks for a given target, they stopped short
of automatically designing a full curriculum. More recently,
Narvekar et al. (2016) and Peng et al. (2016) proposed meth-
ods for generating tasks that can be useful candidates for a
curriculum, learned in a sequence. In these works, the cur-
ricula were hand-crafted by either expert or naive users; the
goal of our approach, on the other hand, is to automatically
construct such curricula.

We use potential based reward shaping (Ng, Harada, and
Russell 1999; Wiewiora, Cottrell, and Elkan 2003) as a
means of transferring knowledge from source tasks to a tar-
get. In reward shaping, there remain two open questions:
where the potential function should come from, and how it
should be engineered. We propose to answer those questions
in the context of curriculum learning. We use the frame-
work of Konidaris and Barto (2006) for learning shaping
functions as a basis to engineer a potential function. In their
framework, an agent associates local perceptions to the ex-
pected value of a state. The agent learns a possibly non-
Markovian function from the perceptions (which define the
agent-space), to a prediction of the reward. These functions
are used to initialize (or equivalently as a shaping signal for)
the value function, which is defined, problem by problem,
over the smallest set of variables necessary to make the rep-
resentation Markovian (the problem-space). We use this no-
tion of local perception to transfer value functions learned
from one task to another even in cases where the global state
space may differ between tasks.

4 Problem Formulation and Notation
Let T be a set of tasks generated from the same domain

D, where Ft is the vector of degrees of freedom for task t.
Each element of Ft is a feature, representing a property of
the domain (for instance, the number of ghosts in Ms. Pac-

Man, one of the domains we use in our experiments), or the
presence of an object (such as pills in Ms. Pac-Man).

Given a finite set of tasks T , and a final task tf ∈ T , our
aim is to find a suitable curriculum for tf which uses only
tasks from T . We begin formalizing this problem by giving
the definition of curriculum in the context of this work.

Definition (Curriculum). Let C = 〈V,E〉 be a directed
graph, where V ⊆ T is the set of vertices and E ⊆ V × V
is the set of edges. Furthermore, let deg+(v) be the out-
degree of a vertex v ∈ V . Given a set of tasks T , a task
tf ∈ T , and a graph C, C is a curriculum over T for tf iff
C is acyclic, weakly connected, and deg+(v) > 0 for each
v ∈ V s.t. v 6= tf , and deg+(tf) = 0.

If there is an edge in a curriculum C between two tasks
from ts to tt, then ts is a source task for the target task tt.

4.1 Learning Through a Curriculum
A curriculum C = 〈V,E〉 imposes a partial order in

which the tasks may be executed. It also specifies which
tasks are source tasks for which target. Given a task t ∈ V ,
the set of source tasks for t is Xt = {s ∈ V |〈s, t〉 ∈ E}.
We transfer knowledge from sources to target tasks through
reward shaping, which allows the agent to merge informa-
tion coming from multiple sources, and to use a different
representation for the value function in each task.

Reward shaping setting As mentioned in Section 3, we
use the framework by Konidaris and Barto (2006), in which
the agent learns portable non-Markovian predictions from
perceptions to the expected cumulative reward. With no con-
straint on the tasks from which the agent learns, it is impos-
sible to know which perceptions will help in future tasks,
and the associated prediction may take the general form of a
non-Markovian function. Furthermore, in general, the value
function of an MDP may not be applicable in a different
MDP. In our setting, however, the intermediate tasks in the
curriculum are specifically created to have some features in
common with the final task. By defining the value function
over a set of features Ft, the value function can be portable
to a task whose degrees of freedom are a superset of Ft.

This possibility, which differentiates our framework from
Konidaris and Barto (2006), is offered by a fundamental dif-
ference between curriculum learning and general transfer
learning: the system has full control over which tasks the
agent will learn. Thus, we do not require the agent to learn
additional functions in agent-space, but the value of a task
can be reused as a shaping function in other tasks.

In order for a value function to be portable, besides being
defined over features shared among the tasks, it must also be
agent-centric. For instance, the global position of the agent
in Ms. Pac-Man is not portable. However, the position of a
ghost with respect to the agent is. If a coordinate change is
possible, so that perceptions can be represented with respect
to the agent, then the value function is portable.

A portable value function can then be applied to a differ-
ent task from the one in which it was learned. A value func-
tion defined over features Fi of a source task i is applicable
to any task j with features Fj ⊇ Fi. The state space of the

two tasks, however, is different in general. The vector repre-
senting a state sj = [si, sj\i] in task j, can be considered as
partitioned into two components, relative to the features in
Fi and Fj \Fi respectively. Let Sj be the state space of task
j, and Ai the actions of task i. We define the domain of the
application of a value function Qi over Sj as:

DQi
(j) = {sj ∈ Sj |∃a ∈ Ai, s.t.Qi(si, a) is defined}

(2)
The value function over the component of the state si may be
undefined, for instance, if the same variables have different
ranges in the source and the target task.

We define a potential function φi,j from task i to task j,
according to Equation 1, as:

φi,j(s, a) =

{
Qi(si, a) if s ∈ DQi(j) ∧ a ∈ Ai

0 otherwise
(3)

for all s ∈ Sj and a ∈ Aj .
As introduced at the start of this section, learning through

a curriculum requires, in general, transferring from a set of
source tasks. Interestingly, reward shaping is also well suited
to this scenario. We propose to define the potential function
φt used for shaping the reward in a target task t, as a compo-
sition of the value functions of the optimal policy (but any
policy could be used in principle) of the tasks in Xt. Value
functions are potential functions, and the composition must
retain this property to avoid modifying the target task. For
this paper, we use the sum of the value functions:

φt(s, a) =
∑
i∈Xt

φi,t(s, a), ∀s ∈ St, a ∈ At (4)

Curriculum learning procedure By specifying how to
construct a potential function for the curriculum case, we
have a suitable transfer mechanism. We are now able to
specify how an agent should learn through a curriculum C.
The agent can learn a task t if it has all the required po-
tential functions for shaping, that is, if it already learned all
the tasks in Xt. Algorithm 1 is an algorithm for curriculum
learning, under the definitions given in this paper. This sim-
ple algorithm is non-deterministic, since the order in which
tasks are selected at line 5 is only partially specified. The
order between tasks in different paths does not matter, as a
consequence of transferring through shaping. Once a task
is learned, the advice provided by shaping is canceled out in
the value function (Wiewiora, Cottrell, and Elkan 2003), and
the history of the previous tasks erased as a consequence.

Algorithm 1 Curriculum learning

1: Given: curriculum C = 〈V,E〉
2: L = {} set of learned tasks
3: Q = {} set of value functions learned.
4: while V \ L 6= ∅ do
5: pick a task t in V \ L such that Xt ⊆ L
6: Qt = learn(t,{Qi|ti ∈ Xt})
7: L = L ∪ {t}, Q = Q ∪ {Qt}
8: Return Qtf

Another interesting consequence of this non-determinism is
that tasks for which no ordering is specified may be learned
in parallel, if the system allows it (for instance, with simu-
lated agents, or in multi-agent systems).

4.2 Evaluating curricula
We evaluate a curriculum with a metric based on the

time to threshold (Taylor and Stone 2009) of the final task,
while taking into account the amount of experience gathered
through the curriculum, in order to guarantee strong transfer
(Taylor and Stone 2009). The user should specify a metric
for experience, e, which can be, for instance, computation
time or number of actions, depending on what is more im-
portant to the user for a particular domain.

Given a function e : 2T × T → R, we denote with
e(Xt, t) the amount of experience to learn a task t with ad-
vice from the tasks in Xt (which may be empty). Further-
more, we denote with ef : 2T ×R → R the function which
measures the experience accumulated in the final task, with
advice from the tasks in Xf , up to reaching the threshold l.

The expected total experience required by a curriculum C
to reach threshold l is therefore:

El(C) = E

 ∑
t∈V s.t.t6=tf

e(Xt, t)

+ ef (Xf , l)

 . (5)

The expected total experience will be estimated, in practice,
by sampling multiple runs of curriculum learning. The cur-
riculum Cf = 〈{tf}, ∅〉 which contains only the final task
provides the baseline expected experience E[ef (∅, l)]. Ide-
ally, we would like a curriculum which minimizes the func-
tion El. Since the component function e, however, depends
on the power set of the tasks, the optimization quickly be-
comes combinatorially intractable. In the next section we
define a heuristic algorithm which is shown to create cur-
ricula that improve learning performance when compared to
the baseline condition of learning the final target task from
scratch.

5 Generating Curriculum Graphs
We define a heuristic to guide our algorithm, which esti-

mates the usefulness of transferring from a task, for a given
target task. We name this heuristic transfer potential. We use
transfer potential to first determine which tasks are relevant
enough to the final task, and then how to connect the most
relevant tasks.

5.1 Measuring Transfer Potential
We define transfer potential according to two observa-

tions. The first one is suggested by the definitions of the
transfer mechanism. In particular, Equation 3 shows that a
source task s is useful for a given target proportionally to the
size of DQs

(t), that is, to the applicability of its value func-
tion to the target. The second observation is derived from
the definition of the total experience in Equation 5. Even if
the source is strongly related with the target, there has to be
a significant advantage in the experience necessary to learn
both tasks over the target only.

Algorithm 2 Intra-group transfer

1: Given: task group g
2: H = {}, sort(g) descending
3: for ti ∈ g do
4: tm = argmaxtj∈g|i<j ν(tj , ti)
5: if ν(tm, ti) > ε then
6: H ← H ∪ 〈tm, ti〉
7: ReturnH

The experience necessary to learn a task depends on many
factors: the size of the state space, the stochasticity of the
dynamics, the learning algorithm involved, and the quality
of the advice. The only way of measuring experience is to
execute the task. For this paper, we use a simple proxy for
experience, based on one of these factors: the size of the state
space. Holding everything else constant, the larger the task,
the more difficult it is to learn. This allows us to estimate
transfer potential without acting in the environment. Given
these observations, we define transfer potential as:

ν(s, t) =
|DQs

(t)|
1 + |St| − |Ss|

(6)

Modeling the cost in this way naturally prioritizes tasks
with smaller state space and drives a behavior akin to learn-
ing from easy missions (Asada et al. 1996).

5.2 Task Elimination and Grouping
In order to ensure that transfer is facilitated between tasks

that ultimately give the agent information about the final tar-
get task, we first prune the task pool and eliminate tasks with
low potential. The first step of the algorithm is computing
the set V of the curriculum, as:

V = {t ∈ T |ν(t, tf) > ε}, (7)

where ε is the minimum amount of potential for a task to be
part of the curriculum, with respect to the final task.

Transfer potential is defined between pairs of tasks, while
experience in Equation 5 depends on sets of source tasks.
While our definition of the potential allows us to carry out
only pair-wise comparisons, we also introduce a mechanism
to allow more than one source task. We exploit our initial
knowledge about the tasks’ degrees of freedom, F , to group
tasks which share certain features. We construct a binary
descriptor Bt from Ft, in order to have a coarse represen-
tation of how tasks are related. Bt,i and Ft,i are then the
i-th element of vectors Bt and Ft respectively, and we let
Bt,i = (Ft,i 6= 0). The descriptor B effectively partitions
the task set. We say that the tasks which share the descriptor
Bk belong to group gk ∈ G, where G is the set of groups,
that is a partition of V (the curriculum’s set of tasks).

5.3 Intra-Group Transfer
In intra-group transfer, we consider transfer between tasks

within the same group. Intra-group transfer, shown in Algo-
rithm 2, takes as input a group g ∈ G, which is then sorted
with respect to the transfer potential to the final task.

Algorithm 3 Inter-group transfer

1: Given: ordered transfer groups g,g′
2: H = {}
3: for ti ∈ g′ do
4: tm = argmaxtj∈g ν(tj , ti)
5: if ν(tm, ti) > ε then
6: H ← H ∪ 〈tm, ti〉
7: returnH

Algorithm 4 Curriculum Graph Generation

1: Given: task set T , final target task tf
2: G, V ′ = partition(T)
3: C = 〈V,E〉, V = V ′, E = {}
4: for g ∈ G do
5: E ← E ∪ Algorithm 2(g)
6: for ts ∈ V ′ s.t. deg+(ts) = 0, ts 6= tf do
7: E ← E ∪ 〈ts, tf 〉
8: for g′ ∈ G do
9: Gs ← {g ∈ G|B>g ⊂ B>g′}

10: for g ∈ Gs do
11: E ← E ∪ Algorithm 3(g, g′)
12: return C

The algorithm iterates over the group, assigning an edge
at line 6 between task j and task i if j has the highest po-
tential among the tasks coming after i in the group, and the
potential is above ε.

The resulting set of edges is returned.

5.4 Inter-Group Transfer
While any given group contains tasks that are themselves

related, there may be tasks in separate groups that would also
benefit from transfer. This is the goal of Inter-group transfer.

Two task groups are compared directly for transfer. The
group g is considered the source group and the other, g′, is
considered the target group. The algorithm iterates over g,
and adds an edge to a task in g′ under the same condition as
Intra-group transfer.

5.5 Curriculum Graph Generation
Algorithm 4 combines the three phases into a single al-

gorithm. The partition() function in line 2 corresponds to
the task grouping stage in section 5.2. Intra-group transfer
constructs disjoint graphs on each task group. For all graphs
generated, all vertices v ∈ V, v 6= tf , where deg+(v) = 0
are given an edge 〈v, tf 〉 into the final target task at line
7. Inter-group transfer is then carried out amongst the task
groups to further assign edges. Target and source groups are
subject to the following imposition: a target group will con-
sider all other groups as source groups if the corresponding
binary feature descriptor is a subset of the target group’s. We
let B>g be the set of features that are true in Bg (line 9).
Theorem 5.1. The graph C produced by Algorithm 4 is a
curriculum.

Proof. The curriculum C is directed by construction. We
need to show that C is weakly connected, acyclic and that

tf is the only sink. During the execution of line 5, edges for
all V ′ are considered within their groups. For each group
of tasks, each v ∈ V ′ is either assigned an outgoing edge
so that deg+(v) ≥ 1 or no edge is assigned, in which case
deg+(v) = 0. Connectivity of C follows from line 7, where
all sinks are given a directed edge into tf , leaving the sin-
gle node tf with deg+(tf) = 0. Let reach(ti,tj) be the
reachability relation between tasks, such that reach(ti,tj)⇔
〈ti, tj〉 ∈ E ∨ ∃tk s.t. reach(ti,tk) ∧ 〈tk, tj〉 ∈ E. From
line 4 in Algorithm 2 it follows that there can exist an edge
between ti and tj within a group only if j > i. There is a
cycle including task ti iff ∃tj s.t. reach(ti,tj) ∧ reach(tj ,ti),
which would imply i < j < i. Hence, each group is in-
ternally acyclic. Likewise the assignment of edges between
tasks in different groups is acyclic by the same reasoning,
where the relationship ⊂ between group descriptors is used
instead of < between task indices, at line 9.

6 Experimental Results
We evaluate the proposed method for curriculum gener-

ation in two discrete state-space domains, Gridworld and
Block Dude, and one continuous domain, Ms. Pac-Man.
Some of the parameters such as the choice of learning algo-
rithm, learning rates, and stopping criteria used to end train-
ing on source tasks differed across domains as they were
implemented independently. 1

6.1 Gridworld Domain
Gridworld, implemented through BURLAP (MacGlashan

2016), is a 2-D domain, similar to Wumpus World (Russell
and Norvig 2003). Each cell in the 2-D grid may be empty
or occupied by a fire, a pit, or treasure. The available actions
are up, down, left and right. The agent receives -1 reward
per action, -250 and -500 reward for going next to and into a
fire, -2500 reward for going into a pit, and +200 reward for
getting to the treasure (entering a pit or treasure terminates
the episode). Each episode also ends after 200 steps.

The final target task was a 10× 10 world with 10 pits, 10
fires, and 1 treasure. The degrees of freedom of the domain
were the height and width of the grid (represented as inte-
gers) and number of fires, pits and treasure. The set of pos-
sible source tasks T used as input to our method was gen-
erated by applying the Task Simplification Heuristic intro-
duced in Narvekar et al. (2016). In other words, tasks were
generated by reducing the size of the grid, and/or remov-
ing certain elements of the game (e.g., a 5 × 5 grid without
any pits). In total, there were 30 candidate source tasks as
input to our curriculum generation method, which output a
curriculum of 5 of these tasks.

Figure 1 plots the agent’s expected reward when playing
the final target task as a function of the number of game steps
used for learning so far. The figure also shows the learning
curve for the baseline condition of learning the target task
from scratch as well as when following the two best sub-
sets of the generated curriculum, with a size of 3 (Subset
1) and 4 tasks (Subset 2). Note that the plots corresponding

1All source code used in our evaluation is available at
https://github.com/LARG/curriculum learning aaai2017

1000 2000 3000 4000 5000 6000 7000 8000
Steps of Training

200

100

0

100

200

Ex
pe

ct
ed

 R
ew

ar
d

No Transfer
Subset 1
Subset 2
Full Curriculum

Figure 1: The expected reward while learning a 10x10 Grid-
world task. We compare a generated curriculum, and subsets
of the generated curriculum, to a baseline Q-Learning agent.

to the curricula conditions were offset horizontally to ac-
count for the number of game steps used to learn the source
tasks. Each task in a curriculum was learned until the ex-
pected reward per episode stopped changing for 10 consec-
utive games. Using the curriculum or, subsets of it, leads to
faster convergence than learning the target task on its own.

6.2 Block Dude Domain
Block Dude, implemented in BURLAP (MacGlashan

2016), is a 2-D puzzle game in which the agent must reach
an exit by stacking blocks to climb over obstacles made out
of bricks. The agent can move left and right, pick up and
put down blocks, and climb up only if there is a single block
or brick in front of it. A -1 reward is given for each action,
and a +50 reward is given for reaching the exit. The game
ends after the exit is reached, the agent gets trapped (e.g., by
building a tower of blocks that it can not climb over), or 200
actions have been taken.

The domain’s degrees of freedom were the width and
height of the world, the number of blocks present, and the
number of brick columns of height 1, 2, 3, and 4. Manipu-
lating these attributes resulted in 10 task variants used as the
set of source tasks. Once the curriculum was generated, the
agent learned the tasks in the curriculum with the SARSA
algorithm using a Radial Basis Function approximator as
implemented in BURLAP. Convergence for tasks in a cur-
riculum were detected in the same manner as in Gridworld.

Figure 2 shows the generated curriculum. Following the
curriculum allowed the agent to converge to the optimal pol-
icy on the final target task in approximately 13,500 game
steps (which include learning both source tasks and the final
target task). Convergence when learning the final target task
from scratch took 17,750 game steps.

6.3 Ms. Pac-Man Domain
In the Ms. Pac-Man domain, the goal of the agent is to

traverse a maze, avoid ghosts, and eat edible items such as

Final target

Figure 2: A visualization of the autonomously generated
curriculum in the Block Dude domain. Arrows represent
inter-group transfer, with the bold arrow showing transfer
to the final target task. In this domain, the generated curricu-
lum had 5 groups, each containing a single task.

pills, power-pills, and “scared” ghosts. We used the Ms. Pac-
Man implementation described by Taylor et al. (2014) where
the state space is represented by local features that are ego-
centric with respect to the agent’s position. Learning was
performed using the Q-learning algorithm with a linear func-
tion approximator. The set of source tasks used as input to
our method consisted of 20 tasks which varied in maze type,
number of pills, ghosts, and power-pills. Figure 3 (a) shows
the final target task while (b) shows an example source task.

The output curriculum consisted of 9 tasks and was com-
pared with a few handcrafted curricula designed by some
of the authors, using the same task pool the generated cur-
riculum was derived from. The methods for detecting con-
vergence when learning source tasks used in Gridworld and
Block Dude were not able to detect convergence in the non-

(a) (b)

Figure 3: Tasks in the Ms. Pac-Man domain where (a) is the
maze of the final target task and (b) is a maze of reduced
dimensionality included in the generated curriculum.

1000 2000 3000 4000 5000 6000
Episodes of Training

500

1000

1500

2000

2500

3000

3500

Ex
pe

ct
ed

 R
ew

ar
d

No Transfer
Full Curriculum
Hand Curriculum

Figure 4: Expected reward (score) of learned policies in the
Ms. Pac-Man domain. The policies shown are from a base-
line agent, an agent adhering to a generated curriculum, and
a curriculum made by a domain expert.

deterministic Ms. Pac-Man domain. Instead, we employed a
heuristic approach in which a source task was learned until
the agent obtained at least a quarter of the maximum possi-
ble reward for that particular task. Figure 4 shows the learn-
ing curves of Q-learning agents when using the automated
curriculum, the best handcrafted curriculum and the base-
line condition.

7 Conclusion and Future Work
We introduced a method to arrange a set of source tasks

into a curriculum. The proposed method was evaluated on
two discrete and one continuous RL domain. The results
showed that following this curriculum in full produces the
greatest learning benefit over any subset of the curriculum as
well as learning the final target task directly. Furthermore, in
one of the domains the generated curriculum outperformed
a series of handcrafted ones designed by domain experts.

One limitation of our method is that it assumes a set of
source tasks exists. In our experiments, the sets of source
tasks were generated according to the heuristics proposed by
Narvekar et al. (2016) but the process was not automated.
In future work, we plan to integrate the proposed curricu-
lum generation method with a methodology for automati-
cally constructing potential source tasks.

8 Acknowledgments
This work has taken place in the Learning Agents Re-

search Group (LARG) at UT Austin. LARG research is sup-
ported in part by NSF (CNS-1330072, CNS-1305287, IIS-
1637736, IIS-1651089), ONR (21C184-01), and AFOSR
(FA9550-14-1-0087). Peter Stone serves on the Board of Di-
rectors of, Cogitai, Inc. The terms of this arrangement have
been reviewed and approved by the University of Texas at
Austin in accordance with its policy on objectivity in re-
search.

References
Ammar, H. B.; Eaton, E.; Taylor, M. E.; Mocanu, D. C.;
Driessens, K.; Weiss, G.; and Tuyls, K. 2014. An auto-
mated measure of MDP similarity for transfer in reinforce-
ment learning. In Workshops at the Twenty-Eighth AAAI
Conference on Artificial Intelligence.
Asada, M.; Noda, S.; Tawaratsumida, S.; and Hosoda, K.
1996. Purposive behavior acquisition for a real robot by
vision-based reinforcement learning. In Recent Advances
in Robot Learning. Springer. 163–187.
Ferns, N.; Castro, P. S.; Precup, D.; and Panangaden, P.
2012. Methods for computing state similarity in Markov
decision processes. arXiv preprint arXiv:1206.6836.
Ferns, N.; Panangaden, P.; and Precup, D. 2011. Bisim-
ulation metrics for continuous Markov decision processes.
SIAM Journal on Computing 40(6):1662–1714.
Isele, D.; Rostami, M.; and Eaton, E. 2016. Using task fea-
tures for zero-shot knowledge transfer in lifelong learning.
In Proceedings of the 25th International Joint Conference
on Artificial Intelligence (IJCAI).
Konidaris, G., and Barto, A. 2006. Autonomous shaping:
Knowledge transfer in reinforcement learning. In Proceed-
ings of the 23rd international conference on Machine learn-
ing, 489–496. ACM.
Lazaric, A.; Restelli, M.; and Bonarini, A. 2008. Transfer
of samples in batch reinforcement learning. In Proceedings
of the 25th international conference on Machine learning,
544–551. ACM.
Lazaric, A. 2012. Transfer in reinforcement learning:
a framework and a survey. In Reinforcement Learning.
Springer. 143–173.
MacGlashan, J. 2016. Brown-UMBC reinforcement learn-
ing and planning (BURLAP).
Narvekar, S.; Sinapov, J.; Leonetti, M.; and Stone, P. 2016.
Source task creation for curriculum learning. In Proceedings
of the 2016 International Conference on Autonomous Agents
& Multiagent Systems, 566–574. International Foundation
for Autonomous Agents and Multiagent Systems.
Ng, A. Y.; Harada, D.; and Russell, S. 1999. Policy invari-
ance under reward transformations: Theory and application
to reward shaping. In ICML, volume 99, 278–287.
Nguyen, T.; Silander, T.; and Leong, T. Y. 2012. Transfer-
ring expectations in model-based reinforcement learning. In
Advances in Neural Information Processing Systems, 2555–
2563.
Pan, S. J., and Yang, Q. 2010. A survey on transfer learn-
ing. Knowledge and Data Engineering, IEEE Transactions
on 22(10):1345–1359.
Peng, B.; MacGlashan, J.; Loftin, R.; Littman, M. L.;
Roberts, D. L.; and Taylor, M. E. 2016. An empirical
study of non-expert curriculum design for machine learners.
In Proceedings of the IJCAI Interactive Machine Learning
Workshop.
Perkins, T. J., and Precup, D. 1999. Using options for knowl-
edge transfer in reinforcement learning. In Technical Report.
University of Massachusetts.

Russell, S. J., and Norvig, P. 2003. Artificial Intelligence: A
Modern Approach. Pearson Education, 2 edition.
Sinapov, J.; Narvekar, S.; Leonetti, M.; and Stone, P. 2015.
Learning inter-task transferability in the absence of target
task samples. In Proceedings of the 2015 International
Conference on Autonomous Agents and Multiagent Systems,
725–733. International Foundation for Autonomous Agents
and Multiagent Systems.
Singh, S. P., and Sutton, R. S. 1996. Reinforcement learn-
ing with replacing eligibility traces. Machine learning 22(1-
3):123–158.
Taylor, M. E., and Stone, P. 2009. Transfer learning for
reinforcement learning domains: A survey. The Journal of
Machine Learning Research 10:1633–1685.
Taylor, M. E.; Carboni, N.; Fachantidis, A.; Vlahavas, I.;
and Torrey, L. 2014. Reinforcement learning agents pro-
viding advice in complex video games. Connection Science
26(1):45–63.
Watkins, C. J., and Dayan, P. 1992. Q-learning. Machine
learning 8(3-4):279–292.
Wiewiora, E.; Cottrell, G.; and Elkan, C. 2003. Princi-
pled methods for advising reinforcement learning agents. In
ICML, 792–799.

