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Continuing RL tasks

● Continuing vs. episodic tasks

- No termination, no reset of environment

- Cart Pole

treated as an episodic task treated as a continuing task
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Average Reward Setting

● Average reward:

● Optimal differential Q-function satisfies the Bellman Equation:

3
expected average reward of the optimal policy 

The discount factor can lead to undesirable behaviors since the agent sacrifices 
long-term benefits for short-term gains

● Total discounted reward:
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Reward Shaping

● Reward shaping is a method to inject advice by providing additional rewards

● Manually constructing the shaping rewards can be non-trivial
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Encoding Advice
● Reward shaping without manually 

constructing rewards
− Learning the shaping functions 

(Grze´s and Kudenko 2010, Marthi 2007)

− Temporal logic specifications
○ Safe RL via shielding 

(Alshiekh et al. 2018)

− What if the advice is not exactly 
correct

● Want to convert temporal logic 
specifications to a reward shaping 
function that does not affect the 
optimal policy.
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Potential-Based Reward Shaping (PBRS)

● Given an MDP with reward function R, F is a shaping function such that the optimal 

policy does not change under the augmented reward R’ = R + F

● Shaping rewards are expressed as the difference of a potential function
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Design potential function Φ and shaping function F that encodes the LTL formula such that, 
in the augmented MDP                                          with                       ,  we can recover the 
optimal policy in 

− A linear temporal logic (LTL) formula
○ “Always human visible”

Problem Statement
● How to adapt PBRS for the average-reward setting?

● How to construct the potential function Φ given advice as a temporal logic specification?

● Given

− A Markov decision process
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from which we recover the optimal policy              as:

● We do not directly learn the optimal policy of       , but instead learn another value 

function            that satisfies a different Bellman equation:

where

Reward Shaping for Average-Reward Setting

● Define the shaping function F as:
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Synthesis of Φ

● Penalize the agent for visiting states from which violation of the 

specification can occur with a non-zero probability.

● Must plan ahead

− Almost-sure winning region: set of state-action pairs 

from which the probability of violation is 0

9

does not violate “always keeping human visible”

loses visibility of the human
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● After finding      , we construct Φ as

where      is an arbitrary constant and                             is 

any function such that 

Synthesis of Φ

● Construct the almost-sure winning region       in the MDP       

using graph-based methods
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Experiments
● Compare our method with

− Baseline deep differential Q-learning (Wan, Naik, and Sutton 2020)

− Shielding – stops all actions that violate the given specification (Alshiekh et al. 2018)

● Test in conditions where the advice is not exactly correct or a conjunction of 

specifications is given

− Our method will still learn the optimal policy
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Experiments
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Experiments

13



Experiments
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Summary
● Potential-based reward shaping for average-reward reinforcement learning

● Construct potential functions from advice given in the form of temporal logic specifications

● Robust to imperfect advice, conjunction of specifications, and approximate dynamics

● Future work: 

○ Unknown dynamics or models
○ Adversarial advice
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