
To appear in AAAI Spring 2009 Symposium on Agents that Learn from Human Teachers (AAAI),
Palo Alto, United States, March 2009.

A Task Specification Language for Bootstrap Learning

Ian Fasel, Michael Quinlan, Peter Stone
Department of Computer Sciences
The University of Texas at Austin

1 University Station C0500
Austin, Texas 78712-1188

{ianfasel,mquinlan,pstone}@cs.utexas.edu

Abstract

Reinforcement learning (RL) is an effective framework for
online learning by autonomous agents. Most RL research fo-
cuses on domain-independent learning algorithms, requiring
an expert human to define the environment (state and action
representation) and task to be performed (e.g. start state and
reward function) on a case-by-case basis. In this paper, we
describe a general language for a teacher to specify sequen-
tial decision making tasks to RL agents. The teacher may
communicate properties such as start states, reward functions,
termination conditions, successful execution traces, task de-
compositions, and other advice. The learner may then prac-
tice and learn the task on its own using any RL algorithm. We
demonstrate our language in a simple BlocksWorld example
and on the RoboCup soccer keepaway benchmark problem.
The language forms the basis of a larger “Bootstrap Learn-
ing” model for machine learning, a paradigm for incremental
development of complete systems through integration of mul-
tiple machine learning techniques.

Introduction
Traditionally, research in the reinforcement learning (RL)
community has been devoted to developing domain-
independent algorithms such as SARSA (Sutton & Barto,
1998), Q-learning (Watkins, 1989), prioritized sweeping
(Moore & Atkeson, 1993), or LSPI (Lagoudakis & Parr,
2003), that are designed to work for any given state space
and action space. However, the modus operandi in RL re-
search has been for a human expert to re-code each learning
environment, including defining the actions and state fea-
tures, as well as specifying the algorithm to be used. Typ-
ically each new RL experiment is run by explicitly calling
a new program (even when learning can be biased by pre-
vious learning experiences, as in transfer learning (Soni &
Singh, 2006; Torrey et al., 2005; Taylor & Stone, 2005).
Thus, while standards have developed for describing and
testing individual RL algorithms (e.g., RL-Glue, White et
al. 2007), no such standards have developed for the problem
of describing complete tasks to a preexisting agent.

In this paper we present a new language for specifying
complete tasks, and a framework for agents to learn a new
policy for solving these tasks. The language allows a user
(or “Teacher”) to provide information such as start states,
reward functions, termination conditions, task decomposi-
tions, successful execution traces, or relevant previously

learned tasks. An agent can then practice the task to learn
a policy on its own using any RL algorithm.

The language and framework are targeted at enabling
users to develop complete systems that may need to learn
multiple different tasks using different learning techniques
or sources of training data. Moreover, a teacher can use
policies for tasks that were previously learned to “Bootstrap”
learning for more complex tasks, either by suggesting earlier
policies to be used as abstract actions (i.e., “options” Sutton,
Precup, & Singh 1999), or by specifying that an earlier pol-
icy can serve as a source of prior experience to be transferred
to learning the new task.

Why an RL Task Language?

We are motivated by the recently proposed “Bootstrap
Learning” (BL) paradigm for machine learning 1, whose am-
bition is to integrate all forms of machine learning into a
single agent with a natural human-instruction interface. In
the BL setting, a human teacher provides structured, step-
by-step lessons involving multiple instruction methods to a
learning agent, in order to gradually build its ability to per-
form a variety of complex tasks. For example, rather than
starting “tabula rasa” as in traditional machine learning, a
BL agent might first be given lessons teaching it to perform
various types of statistical pattern recognition or logical in-
ference, the results of which can be used in later lessons as
primitive state variables in more complex sequential deci-
sion making tasks. The final aim of the BL project is to cre-
ate autonomous agents which can be taught by end users in
the field to solve multiple, complex problems by combining
many different teaching and learning methods.

The overall goal of BL represents a multi-year, multi-
institution project. In this paper, we present a key initial
component to accomplish this goal: a formal language that
allows a human teacher to specify tasks to a learning agent,
so that it may set up and initiate learning of new policies au-
tonomously. We refer to our proposed language as the “BL
Task Learning” language, or simply the BLTL language, and
likewise refer to the framework for using the BLTL language
as the BLTL framework.

1Bootstrapped learning proposer information pamphlet,
http://www.darpa.mil/IPTO/solicit/closed/

BAA-07-04_PIP.pdf

A key goal of the BLTL language is to enable multi-
ple methods for instruction of processes, and multiple RL
algorithms, to be used in the same agent. Previous work
on human-to-agent instruction has included task demonstra-
tions (Schaal, 1997), task decompositions (Dayan & Hin-
ton, 1993; Dietterich, 1998; Sutton, Precup, & Singh, 1999),
general advice about actions and states which the learner
can incorporate into the value function (Maclin & Shavlik,
1996; Kuhlmann et al., 2004), and identification of previ-
ously acquired policies that can be used for initializing the
policy to be learned for the new task (Soni & Singh, 2006;
Torrey et al., 2005; Taylor & Stone, 2005). Typically, re-
search on these types of instruction has required that a hu-
man set up each individual learning task from scratch and
manually invoke each one. In this paper, we allow the
teacher to provide advice, indicate relevant previous expe-
rience (enabling transfer learning), use previously taught
tasks as primitive actions in new tasks, or specify portions
of a more complex task which are to be refined by learning
(enabling task decomposition). Because parts of larger tasks
can each be learned using a different technique, we enable
multiple learning methods to be synergistically integrated in
a single RL agent that is far more capable than an agent us-
ing any one learning algorithm.

The BL Task Learning Framework

Traditional RL research focuses on algorithms for a learning
agent, behaving in a single environment, to update a policy
by which it chooses actions given fixed state variables. In the
BL paradigm, the automated student is responsible not just
for learning a specific policy, but also for the larger prob-
lem of knowing how to engage in learning, provided a task
specification. Thus the BL student must also be able to iden-
tify the task, and initialize, terminate, and evaluate episodes
(as well as single steps) during practice. By analogy, a hu-
man student who has been given a set of practice problems,
say to learn long-division, must not only learn the procedure
for division, but also must know which problems to work
on, how to evaluate her performance (for instance by check-
ing the answers and noticing how long it takes to solve each
problem), and that she should continue to work through the
entire set of homework problems—or at least as many as it
takes to master the concept and get a good grade. To enable
a teacher to provide instructions to a BL student, the BLTL
language must be able to address all of these elements of
learning.

The standard RL definitions of agents and environments,
as described in (Sutton & Barto, 1998), are as follows:

Environment: stores all the relevant details of the world,
such as the current state representation, the transition
probabilities, and transition rewards.

Learning Agent: both the learning algorithm and the pol-
icy maker for acting in the environment. The agent needs
to decide which action to take at every step, and may up-
date its policy as it receives experience in the world.

Experiment Program: this is the control loop, which steps
the agent through the environment in multiple episodes,
and collects information about performance.

A popular, freely available implementation of these compo-
nents in code is the RL-Glue framework (White et al., 2007),
which has formed the basis of several “bakeoffs” and con-
tests for comparing RL algorithms.

The BLTL framework encompasses the Environment and
Learning Agent components identically to the traditional RL
framework (indeed we implement and connect these com-
ponents using a subset of the RL-Glue package). However
in the BLTL framework, the Experiment Program is incor-
porated into an internal component called the Trainer. The
Trainer component monitors the environment and decides
when to initiate and terminate learning of a particular policy
for a particular task. It makes these choices autonomously
and is not under direct external control. During an episode of
learning, the Trainer monitors the environment and checks
for the termination conditions (as specified in the task spec-
ification), combines rewards from the environment with any
additional rewards specified in the task specification, and di-
rects the Learning Agent and the Environment to the initial
conditions as specified by the teacher (to the extent possible
given the implementation – in a simulation environment it
may be able to “teleport” to an initial condition, however in
a physical implementation it may have to e.g., walk a robot
to a starting position).

The BLTL framework therefore encompasses all of the
concepts in traditional RL, but additionally makes the con-
trol and monitoring of the Learning Agent and Environment
an integral part of the complete autonomous system, not a
separate component that must be supplied by an external hu-
man user. In order to allow an external teacher to specify a
task, the BLTL framework defines a common name space
in which the state variables and functions (such as numeri-
cal functions or sorting routines) required to define the state
and action spaces are accessible to the Teacher, Trainer, and
Learning Agent.

In order to use the BLTL framework, an end user (i.e.,
the programmer wishing to write lessons for RL tasks) must
first implement the necessary functions for the Trainer and
Learning Agent to monitor and take actions in the Envi-
ronment, and supply any additional learning algorithms he
wishes to test if not already available. The BLTL language
can then be used to set up and teach any number of lessons in
the environment while the BL agent runs continually, sens-
ing and acting in the world. Although the initial setup re-
quires about the same effort as the standard approach to
RL research for a single task, the BLTL framework makes
it simple for a teacher to supply lessons for multiple tasks,
and to reuse previously learned policies as abstract actions
in new tasks.

Language Primitives

We can now specify the primitive functions needed for a
teacher to describe to a BL agent how to practice a task.
The specification of these functions is a main contribution
of this paper. In aggregate, these functions enable a teacher
to specify a completely new RL task to a BL agent for the
purpose of learning. These functions involve initialization,
describing the rules for termination conditions, the reward,

ing point in the shaded region. Once the Environment (call
it GridWorld) and a Learning Agent (e.g., tabular action-
value function + SARSA) have been implemented, the first
step in teaching is to initialize learning and the environment:

B e g i n T a s k D e s c r i p t i o n ("GridWorldSubtask") ;
Envi ronment ("GridWorld") ;

The Teacher now specifies how to start an episode, using a
function provided by the simulator for starting a player at a
random location within a region:

Beg inEp i sode ("RandomWithinRegion(6,5,6,2)") ;

In this particular world, the possible actions are to move
one space in the cardinal directions. The state is the current
location. Therefore the teacher says:

AddToActionSpace ("Up1()")
AddToActionSpace ("Right1()")
AddToActionSpace ("Down1()")
AddToActionSpace ("Left1()")
AddToSta teSpace ("PositionX()")
AddToSta teSpace ("PositionY()")

An episode concludes when the agent reaches the starred
location, and the reward is simply the time elapsed. The
function NumSteps() and identifier EpisodeStart must
be provided to indicate the number of steps since the be-
ginning of an episode. It also must provide a function for
checking the location of the agent.

A d d T e r m i n a t i o n C o n d i t i o n ("AtLocation(6,5)") ;
StepReward ("NumSteps(EpisodeStart)") ;
OnEpisodeEnd ("Restart") ;

Finally the agent is told it may start practicing by calling
StartLearning. The training agent will then run the learn-
ing agent through several episodes, resetting the world as
needed, as the agent repeatedly takes actions and learns from
the reinforcement it receives. Once the agent has learned
and mastered this task, we can use the learned policy as an
abstract action in a future lesson, for instance to reach the
upper left corner.

Learning in Multiple Domains

So far we have implemented the BLTL famework and tested
it in two domains. The first is a simple, deterministic do-
main with discrete states and actions, and the second is a
complex, stochastic, multi-agent domain with continuous
state and discrete actions. We provided two learning agents,
which the BLTL framework automatically selects based on
the task description as follows:

First, if the task’s state and action spaces are discrete, the
BLTL framework selects a leaning agent that implements the
R-Max (Brafman, Tennenholtz, & Schuurmans, 2002) al-
gorithm, which aggressively explores unknown state-action
pairs and rapidly learns an effective policy starting from any
given state.

Alternatively, if the state space is continuous, the BLTL
framework selects an agent which implements Q-learning
with a neural network action-value function approximator,
using Experience Replay (Lin, 1992) in repeated “batches”

to update the value function. The agent implements neu-
ral networks with many hidden layers initialized in a stage-
wise manner using a probabilistic algorithm as follows: the
input layer and first hidden layer are trained as a restricted
Boltzmann machine (RBM) (Ackley, Hinton, & Sejnowski,
1985) using contrastive divergence (Hinton, 2002), using the
observed states as data. Subsequent hidden layers are then
trained in series, where the activities of the hidden units of
the previous layer are treated as data to train a new RBM at
the next layer, forming a “stack” of RBMs. A many-hidden-
layer network initialized this way is referred to as a “deep
belief network” and described in detail in (Hinton, Osindero,
& Teh, 2006; Hinton & Salakhutdinov, 2006). We have
found that the combination of experience replay and deep
belief nets makes this learning agent very efficient without
requiring additional parameter tuning (Fasel, Kalyanakrish-
nan, & Stone, 2008), making it an appropriate learning agent
for the BLTL framework.

A primary goal of future work (as discussed in the Con-
clusions section) is to add more possible learning agents and
enhance the ability of the BLTL framework to automatically
select appropriate learning agents based on the task descrip-
tion. However these two methods are already enough to
learn in two very different domains.

Deterministic Domain: Blocks World

A major aim of the BLTL framework is to make it easy
to teach agents complex tasks by building from simpler
previous tasks. In this domain our task was to learn
to make a stack containing three blocks in a particu-
lar order. The agent had previously learned the no-
tion of On(block,flatsurface) and also the action
MoveOnto(block,flatsurface). The instructions for
describing this task to the agent are given in Figure 2.

1 B e g i n T a s k D e s c r i p t i o n ("MakeStack") ;

2 Envi ronment ("BlocksWorld") ;

3 Beg inEp i sode ("RandomStackABC()") ;

4 AddToActionSpace ("MoveOnto(A,table)") ;

5 AddToActionSpace ("MoveOnto(A,B)") ;

6 AddToActionSpace ("MoveOnto(A,C)") ;

7 AddToActionSpace ("MoveOnto(B,table)") ;

8 AddToActionSpace ("MoveOnto(B,A)") ;

9 AddToActionSpace ("MoveOnto(B,C)") ;

10 AddToActionSpace ("MoveOnto(C,table)") ;

11 AddToActionSpace ("MoveOnto(C,A)") ;

12 AddToActionSpace ("MoveOnto(C,B)") ;

13 AddToSta teSpace ("On(A,table)") ;

14 AddToSta teSpace ("On(A,B)") ;

15 AddToSta teSpace ("On(A,C)") ;

16 AddToSta teSpace ("On(B,table)") ;

17 AddToSta teSpace ("On(B,A)") ;

18 AddToSta teSpace ("On(B,C)") ;

19 AddToSta teSpace ("On(C,table)") ;

20 AddToSta teSpace ("On(C,A)") ;

21 AddToSta teSpace ("On(C,B)") ;

22 A d d T e r m i n a t i o n C o n d i t i o n ("IsAStack(C,A,B)") ;

23 StepReward ("(IsAStack(C,A,B) ? 100 : 0)") ;

24 OnEpisodeEnd ("RestartFromBeginning") ;

25 S t a r t L e a r n i n g () ;

Figure 2: BLTL instructions for the Blocks World MakeStack task.

Because the state-space was discrete, the BLTL frame-
work selected the R-Max agent. After several episodes, the
BL agent was able to learn an effective policy for building a
particular stack, in this case the stack (C,A,B), with results

that were comparble to a standard (non-BLTL) implementa-
tion.

We then changed the task so that the agent
could use an additional, previously learned action
MakeStack-Naive(block,block,block). This action
is a complete policy that succeeds in making a stack only if
all the blocks begin on the table. By adding the additional
command:

AddToActionSpace ("MakeStack-Naive(C,A,B)")

our agent could easily take advantage of this new action
and could learn an effective policy more quickly, using
MakeStack-Naive as a single action when it encountered
three blocks on the table, instead of having to relearn an
entire sequence of actions from that stage. The downside
to adding this action was that the total state-action space
was now larger, and sometimes the agent would learn to
unstack a partial stack so that it could execute MakeStack-
Naive. Nevertheless, adding this new action was as simple
as adding a single extra command.

Non-Deterministic Domain: RoboCup

Here we consider an even more complex domain, RoboCup
soccer, and show how to describe a subtask within RoboCup
to learning agents.

Robocup is a fully distributed, multiagent domain with
both teammates and adversaries. There is hidden state,
meaning that each agent has only a partial world view at any
given moment. The agents have noisy sensors and actuators,
meaning that they do not perceive the world exactly as it is,
nor can they affect the world exactly as intended. Perception
and action are asynchronous, prohibiting the traditional AI
paradigm of using perceptual input to trigger actions.

RoboCup is a good example for the BLTL framework be-
cause mapping from the low-level state description to the
low-level action language requires several levels of interme-
diate concepts. The primitive percepts indicate perceived
distance and angle to objects in the environment, such as:
(see ((goal r) 15.3 27) ((ball) 8.2 0) which indicates that the
right goal is 15.3 m away and 27 degrees to the right and the
ball is 8.2 m straight ahead. Meanwhile, the actions are para-
metric, enabling agents to dash forward with a power rang-
ing from [0,100], turn a specified angle from [-180,180], or,
when the ball is nearby, kick in a specified direction with a
power ranging from [0,100].

Keepaway Soccer Keepaway is a subtask of RoboCup
soccer, in which one team, the keepers, tries to maintain pos-
session of the ball within a limited region, while the oppos-
ing team, the takers, attempts to gain possession. Whenever
the takers take possession or the ball leaves the region, the
episode ends and the players are reset for another episode
(with the keepers being given possession of the ball again).
A sample starting configuration is shown in Figure 3.

Parameters of the task include the size of the region, the
number of keepers, and the number of takers. Figure 3
shows screen shots of games with 3 keepers and 2 takers
(called 3 vs. 2, or 3v2 for short) playing in a 20m x 20m

Boundary

Keepers

Takers

Ball

Figure 3: Left: A screen shot from the middle of a 3v2 keepaway game in a 20m×

20m region. Right: A starting configuration for 4v3 keepaway in a 30m×30m region.

region and 4 vs. 3 in a 30m x 30m region.2

Keepaway has received considerable attention as a testbed
for RL algorithms (Pietro, While, & Barone, 2002; Torrey et
al., 2005; Stone, Sutton, & Kuhlmann, 2005).However, to
the best of our knowledge, in all cases the task has been
fully specified manually. In this paper, we focus on how the
keepaway task can be taught to an agent using the BLTL
framework, using some of the more advanced features such
as task decomposition and “Advice”.

In this example, our goal is for each keeper to learn a pol-
icy for what to do when it possesses the ball – i.e., the ball
handling policy. When a keeper does not have the ball, it
should follow policies that have already been specified (i.e
Receive(GetOpen) or Recieve(GoToBall)), which are
described in (Stone, Sutton, & Kuhlmann, 2005). Note that
these policies could be taught to the agent in prior lessons.
We therefore will specify to the agent that it will normally
follow the ”Keeper” policy, but when the state ”BallIsKick-
able” is true, it will use the policy currently being learned.
Note that the states and actions for when the keeper does not
have the ball are different from when it does have the ball.
An illustration of the entire agent policy is given in Figure 4.

Teammate with ball
or can get there
faster

Receive
(GetOpen)

{HoldBall,PasskThenReceive}
(k is another keeper)

In
possession

possession
Not in

Receive
(GoToBall)

Figure 4: If the keeper does not have the ball, then it follows a predetermined policy

to either GetOpen or Receive. When it has the ball, it has a choice to either HoldBall

or PasskThenReceive. How to make this choice is the focus of this lesson.

Required Actions, Predicates Before beginning the les-
son, the student must be capable of several skills, many of
which are composed of multiple primitive actions and per-
ceptions. These skills must either be previously learned via
other lessons, or be “innate” (i.e., programmed in).

Table 1 summarizes the required actions and predicates
for the keepaway task. The actions are implemented as

2Flash files illustrating the task and are available at http://
www.cs.utexas.edu/˜AustinVilla/sim/keepaway

Actions Predicates

HoldBall() CanGetToBallFaster()
PassBall(k) BallIsKickable()
GetOpen() TakerHasBall()
GoToBall() BallOutOfBounds()
Receive() dist(a, b)
PassToKThenReceive(k) ang(a, b, c)
InitializeKeepaway(nK, nT, h, w) min(a, b)

SortKeeperDistances()
SortTakerDistances()

Table 1: Actions and Predicates required for Keepaway

their names suggest. InitializeKeepaway(nkeepers,

ntakers, h, w) initializes the playing field as in Figure 2
with the specified height and width and number of keepers
and takers.

Each of the actions requires several predicates, some of
which define abstract mathematical relationships while other
are domain related, such as BallOutOfBounds() which
evaluates to true if the ball is out of bounds.

Following the bootstrap learning philosophy, each of the
above skills and primitives should have been taught to the
student by the teacher previously. Those that are sequential
decision making tasks, such as GetOpen() may be taught
using the language we propose in this paper. Others, such
as BallOutOfBounds() may be more suited to other learn-
ing approaches such as supervised learning. As such, they
must be specified to the player using different communica-
tion primitives. Because this paper focuses on task specifi-
cation for RL tasks, those primitives are beyond the scope
of this paper. Assuming that the above skills and primitives
have already been taught to the student, the teacher can use
them to specify the keepaway task using the BLTL language.

The Keepaway lesson For the agent to learn an effective
policy for ball handling in keepaway, the teacher must first
specify how to start and end an episode, then tell the student
what the state and action spaces are, then allow the student
to practice the game over multiple episodes.

Figure 5 shows the series of instructions needed to spec-
ify the keepaway ball-handling task. Most lines are self-
explainatory and are similar to those used in the GridWorld
and BlocksWorld examples. The 13 state variables when the
keeper has the ball, defined by the series of AddToStateS-
pace() functions, are the same as the ones commonly used
for learning this task (Stone, Sutton, & Kuhlmann, 2005),
and consist of several distances and angles among the keep-
ers and takers. The StateSpaceDefs are needed to create
intermediate variables needed to define those 13 state vari-
ables.

Note that the functions map relatively easily from natural
language to the formal specification. For example, “learn
a new soccer-related task” is represented in line 2; “learn
when to hold the ball and when to pass if you have the ball,
and use your existing policy when you don’t have the ball” is
represented in line 4; and “base your decision in part on the
distances of the players to the center of the field” is repre-
sented in lines 10–24. Such NLP in a constrained domain is
currently possible (Kuhlmann et al., 2004) and would enable

1 B e g i n T a s k D e s c r i p t i o n ("BallHandlingPolicy") ;

2 Envi ronment ("RoboCupSoccerSimulator") ;

3 Beg inEp i sode ("InitializeKeepaway(3, 2, 25, 25)") ;

4 W ra ppe r Po l i c y ("KeeperPolicy" , "BallIsKickable")

5 AddToActionSpace ("HoldBall()") ;

6 AddToActionSpace ("PassKThenReceive()") ;

7 AddAdviceAct ions ("HandCodedBallHandling") ;

8 S t a t e S p a c e D e f s ("SortKeeperDistances" , "K") ;

9 S t a t e S p a c e D e f s ("SortTakerDistances" , "T") ;

10 AddToSta teSpace ("dist(K[1], C)") ;

11 AddToSta teSpace ("dist(K[2], C)") ;

12 AddToSta teSpace ("dist(K[3], C)") ;

13 AddToSta teSpace ("dist(T[1], C)") ;

14 AddToSta teSpace ("dist(T[2], C)") ;

15 AddToSta teSpace ("dist(K[1], K[2])") ;

16 AddToSta teSpace ("dist(K[1], K[3])") ;

17 AddToSta teSpace ("dist(K[1], T[1])") ;

18 AddToSta teSpace ("dist(K[1], T[2])") ;

19 AddToSta teSpace ("Min(dist(K[2], T[1]), dist(K[2], T[2]))") ;

20 AddToSta teSpace ("Min(dist(K[3], T[1]), dist(K[3], T[2]))") ;

21 AddToSta teSpace ("Min(ang(K[2], K[1], T[1]),

22 ang(K[2], K[1], T[2]))") ;

23 AddToSta teSpace ("Min(ang(K[3], K[1], T[1]),

24 ang(K[3], K[1], T[2]))") ;

25 A d d T e r m i n a t i o n C o n d i t i o n ("TakerHoldsBall") ;

26 A d d T e r m i n a t i o n C o n d i t i o n ("BallOutOfBounds") ;

27 StepReward ("TimeElapsed(now, lastStepStart)") ;

28 OnEpisodeEnd ("RestartFromBeginning") ;

29 S t a r t L e a r n i n g () ;

Figure 5: BLTL instructions for the Keepaway ball-handling task.

a domain expert with no special RL knowledge to express
the learning task to the BL student.

Advice and Transfer learning At any stage during learn-
ing, the teacher may wish to give advice to influence policy
learning, as in (Kuhlmann et al., 2004). For example, the
teacher may advise that if taker 1 is more than 50m away,
the student should consider holding the ball. The command
would be:

A d v i s e A c t i o n ("dist(K[1],T[1])" , "GreaterThan(50)" ,

"HoldBall()") ;

If we have already trained the 3v2 example shown above,
we could use it to initialize a new policy that learns 3v2 on
a larger field, as in (Taylor & Stone, 2005). If the previous
learned policy was called “BallHandlingSmallField”, then
we would change line 3 and add a new line after it as follows:

Beg inEp i sode ("InitializeKeepaway(3,2,50,50)") ;

S o u r c e P o l i c y ("BallHandlingSmallField" , t r u e) ;

In our example, instead of using the above methods for
advice and transfer, we told the agent to use the existing
hand-coded policy as advice (this can also be seen as a
form of transfer). This was done on line 7 with the use
of the AddAdviceActions command. The learning agent
we implemented can make use of advice actions from many
sources – for instance, if the environment provided an inter-
face for a human teacher to “remote control” the agent, thus
providing instruction by demonstration, the syntax could
have been:

AddAdviceAct ions ("RemoteControl") ;

Keepaway Results

Since the focus of this paper is on the language for a teacher
to communicate an RL task to a student, the main mark of
success is whether a BL student can, with no prior knowl-
edge of the properties of the desired task, begin learning the
desired task as specified by a teacher.

Initially, using this protocol, we were able to initiate
learning for keepaway identically to the description in Stone,
Sutton, & Kuhlmann (2005), which does not use advice, and
verified that we can obtain similar results. We then used
the BLTL language to add the hand-coded policy as a form
of advice, where the learning agent implemnts an advice-
taking algorithm similar to that of (Kuhlmann et al., 2004).
The experience-replay agent uses advice by simply adding
10 to the reward at each timestep if the action it takes agrees
with the action that was suggested by the advice, and sub-
tracting 10 from the reward if the action it selects disagrees
with the advice. Additionally, the agent executes the ac-
tion selected by the hand coded policy with probability α,
and takes the action recommended by its own learned pol-
icy according (1 − α). Initially α = 1, but the value of α

decays exponentially so that it reaches zero after the first 30
episodes (each episode is one game of keepaway). Figure 6
shows average game times as learning progresses, where
each point on the curve represents the average time of the
previous 50 games (or all previous games if fewer than 50
have been played). The agents quickly achieve good average
game times of about 15 seconds (equal to the hand-coded
policy), and eventually achieve average game times of up
to 25 seconds, which is among the best average game times
ever reported on standard keepaway. The saw-tooth appear-
ance of the learning curves is due to the fact that each player
is learning a policy independently, in batch-mode, so each
spike represents the time that a new policy update has oc-
curred in one of the agents. Since the agents are learning in-
dependently, from the perspective of an individual agent the
world is not a true semi-MDP, because the environment (the
other agents) are changing. This makes the optimal policy
a moving target and makes experience replay slightly unsta-
ble. Nevertheless, the agents reach extremely good perfor-
mance in a very small number of games.

0 200 400 600 800 1000 1200 1400

50

100

150

200

250

300

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
c
y
c
le

s

p
e

r
g

a
m

e
 (

1
0

 c
y
c
le

s
 /

 s
e

c
)

Number of games

Figure 6: Performance results with Keepaway using advice. Peak performance of 25

second average game times is among the best reported in the literature.

Conclusions and Future Work

The main contribution of this paper is the introduction of
an architecture and interface language for teaching sequen-
tial decision making tasks to reinforcement learning agents.
The BLTL language allows tasks to be specified concretely
in terms of starting states, reward functions, and termination
conditions. In addition, the teacher may provide advice and
suggest sources for transfer learning, and may decompose
complex tasks into multiple smaller lessons, allowing differ-
ent policies learned with different methods to be combined
synergistically. The BLTL language forms the cornerstone
for the larger Bootstrap Learning project, which integrates
even more machine learning methods for teaching agents to
solve many different types of problems, not just sequential
decision making tasks.

We have illustrated our language on a GridWorld task,
and have implemented and tested the first BL agent on a
BlocksWorld task and a RoboCup soccer task. An impor-
tant next step is to test the BLTL language for other tasks,
both in RoboCup and in completely different domains such
as flying an unmanned aerial vehicle (UAV). Future work for
expanding the BLTL framework to the full Bootstrap Learn-
ing framework will include natural language mapping to the
BLTL language, and adding more machine learning meth-
ods.

The BLTL language also lays the groundwork for fu-
ture development of agents which can decide for themselves
what tasks to learn and how to learn them, rather than wait-
ing for task specifications and advice from a teacher. Cur-
rent and future work on agents that discover new learning
tasks (for example automatic subgoal discovery (McGovern
& Barto, 2001)) will benefit from the ability to formulate
new tasks using the BLTL language. Similarly, the introduc-
tion of BLTL exposes the important future goal of enabling
an agent to automatically select, based on task character-
istics, from among the large (and still growing) number of
domain-independent RL algorithms and possible parameter-
izations thereof.

References
Ackley, D. H.; Hinton, G. E.; and Sejnowski, T. J. 1985. A learning

algorithm for boltzmann machines. Cognitive Science 9:147–
169.

Brafman, R. I.; Tennenholtz, M.; and Schuurmans, D. 2002. R-max
- a general polynomial time algorithm for near-optimal rein-
forcement learning. In Journal of Machine Learning Research,
213–231.

Dayan, P., and Hinton, G. E. 1993. Feudal reinforcement learning.
In Hanson, S. J.; Cowan, J. D.; and Giles, C. L., eds., NIPS 2005.
San Mateo, CA: Morgan Kaufmann.

Dietterich, T. G. 1998. The MAXQ method for hierarchical rein-
forcement learning. In ICML. Madison, WI.

Fasel, I.; Kalyanakrishnan, S.; and Stone, P. 2008. Reinforcement
learning with deep belief networks. (unpublished manuscript).

Hinton, G. E., and Salakhutdinov, R. R. 2006. Reducing the di-
mensionality of data with neural networks. Science.

Hinton, G. E.; Osindero, S.; and Teh, Y. W. 2006. A fast learning
algorithm for deep belief nets. Neural Computation.

Hinton, G. E. 2002. Training products of experts by minimizing
contrastive divergence. Neural Computation.

Kuhlmann, G.; Stone, P.; Mooney, R.; and Shavlik, J. 2004. Guid-
ing a reinforcement learner with natural language advice: Initial
results in RoboCup soccer. In The AAAI-2004 Workshop on Su-
pervisory Control of Learning and Adaptive Systems.

Lagoudakis, M. G., and Parr, R. 2003. Least-squares policy itera-
tion. Journal of Machine Learning Research 4:1107–1149.

Lin, L. 1992. Self-improving reactive agents based on reinforce-
ment learning, planning and teaching. In Machine Learning,
293–321.

Maclin, R., and Shavlik, J. W. 1996. Creating advice-taking rein-
forcement learners. Machine Learning 22:251–282.

McGovern, A., and Barto, A. G. 2001. Automatic discovery of sub-
goals in reinforcement learning using diverse density. In ICML,
361–368. Williamstown, MA.

Moore, A. W., and Atkeson, C. G. 1993. Prioritized sweeping:
Reinforcement learning with less data and less time. Machine
Learning 13:103–130.

Pietro, A. D.; While, L.; and Barone, L. 2002. Learning in
RoboCup keepaway using evolutionary algorithms. In et al., W.
B. L., ed., GECCO 2002, 1065–1072. New York.

Schaal, S. 1997. Learning from demonstration. In Mozer, M.; Jor-
dan, M.; and Petsche, T., eds., Advances in Neural Information
Processing Systems 9. Cambridge, MA: MIT Press.

Soni, V., and Singh, S. 2006. Using homomorphisms to transfer
options across continuous reinforcement learning domains. In
Proceedings of the Twenty First National Conference on Artifi-
cial Intelligence.

Stone, P.; Sutton, R. S.; and Kuhlmann, G. 2005. Reinforce-
ment learning for RoboCup-soccer keepaway. Adaptive Behav-
ior 13(3):165–188.

Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learning: An
Introduction. Cambridge, MA: MIT Press.

Sutton, R.; Precup, D.; and Singh, S. 1999. Between mdps and
semi-mdps: A framework for temporal abstraction in reinforce-
ment learning. Artificial Intelligence 112:181–211.

Taylor, M. E., and Stone, P. 2005. Behavior transfer for value-
function-based reinforcement learning. In AAMAS 2005, 53–59.

Torrey, L.; Walker, T.; Shavlik, J.; and Maclin, R. 2005. Us-
ing advice to transfer knowledge acquired in one reinforcement
learning task to another. In ECML 2005. Porto, Portugal.

Watkins, C. J. C. H. 1989. Learning from Delayed Rewards. Ph.D.
Dissertation, King’s College, Cambridge, UK.

White, A.; Lee, M.; Butcher, A.; Tanner, B.; Hack-
man, L.; and Sutton, R. 2007. Rl-glue distribution,
http://rlai.cs.ualberta.ca/rlbb/top.html.

