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ABSTRACT

In multiagent team settings, the agents are often given a protocol for

coordinating their actions. When such a protocol is not available,

agents must engage in ad hoc teamwork to effectively cooperate

with one another. A fully general ad hoc team agent needs to be

capable of collaborating with a wide range of potential teammates

on a varying set of joint tasks. This paper presents a framework for

analyzing ad hoc team problems that sheds light on the current state

of research and suggests avenues for future research. In addition,

this paper shows how previous theoretical results can aid ad hoc

agents in a set of testbed domains.

Categories and Subject Descriptors

I.2.11 [Artificial Intelligience]: Distributed Artificial Intelligence—

Multiagent Systems

General Terms

Algorithms, Experimentation

Keywords

Ad Hoc Teams, Multiagent Systems, Teamwork

1. INTRODUCTION
As the number of autonomous agents in society grows, so does

the need for them to interact with other agents effectively. Both

robots and software agents are becoming more common, and they

are becoming more durable and robust, remaining deployed for in-

creasing durations. Most existing methods for handling the inter-

actions of agents require prior coordination, in the form of proto-

cols for either coordination or communication. However, as agents

stay deployed for longer, new agents are likely to be introduced

that may not share these protocols. Furthermore, a multitude of

different agents are under development in different businesses and

research laboratories. Unfortunately, it is unlikely that these agents

will all share a common world view or communication protocol.

Therefore, it is desirable for agents to be capable of adapting to

new teammates and learning to cooperate with previously unseen

agents as part of an ad hoc team.

For example, consider a disaster rescue scenario where many dif-

ferent robots developed by many different people converge on the

location of a disaster to attempt to locate and rescue victims. It is
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desirable for the robots to cooperate as a team, but in such a sce-

nario, there is no time to program the robots to cooperate on site.

If the robots were not explicitly designed to cooperate with one an-

other, they will not work together and may even hinder each other.

On the other hand, if some of these robots are programmed to rea-

son about ad hoc teamwork, they may be able to quickly adapt their

behaviors to cooperate with the other robots to rescue victims.

In a recent AAAI challenge paper, Stone et al. [15] introduced

the concept of an ad hoc team setting, specifying it as a problem

in which team coordination strategies cannot be specified a priori.

They further presented a framework for evaluating the performance

of an ad hoc team agent with respect to a domain and a set of pos-

sible teammates. The authors argued that the ad hoc teamwork

challenge is inherently an empirical problem, but noted that little

empirical research has been done in this area so far. On the other

hand, some recent papers provide interesting theoretical results for

some specific, isolated ad hoc team scenarios [16, 17].

This paper introduces a framework for understanding the rela-

tionships among existing lines of research, specifying several di-

mensions that are especially relevant when reasoning about the dif-

ficulty of different ad hoc team problems. Furthermore, this pa-

per investigates several empirical scenarios and shows how existing

theoretical solutions can be applied to these problems.

The remainder of the paper is organized as follows. Section 2

gives a more complete definition of ad hoc teamwork and speci-

fies the empirical evaluation framework used in this work, and then

Section 3 introduces a classification framework for ad hoc team

problems along three important dimensions. Section 4 studies four

different variations of an experimental domain, each representing

a different point within the classification framework, and identi-

fies their different solutions. Next, Section 5 explores other ad hoc

teamwork domains, classifies them with respect to these dimen-

sions, and suggests avenues for future research. Section 6 situates

our research in literature, and Section 7 concludes.

2. AD HOC TEAMS
In an ad hoc team, agents need to cooperate with previously un-

seen teammates. Rather than developing protocols for coordinating

an entire team, ad hoc team research focuses on developing agents

that cooperate with teammates in the absence of such explicit proto-

cols. Therefore, we consider a single agent cooperating with team-

mates that may or may not adapt to its behavior. We assume that

we can only develop algorithms for the ad hoc team agent, without

having any direct control over the other teammates.

For this work, we adopt essentially the same evaluation frame-

work proposed by Stone et al. [15]. This framework is specified

in Algorithm 1. According to this framework, the performance of

the ad hoc team agent a depends on the distribution of problem do-

mains D and the distribution of possible teammates A that it will



cooperate with. For the team B cooperating to execute the task

d, s(B, d) is a scalar score representing their effectiveness, where

higher scores indicate better performance. The algorithm takes a

sampling approach to average the agent’s performance across a

range of possible tasks and teammates to capture the idea that a

good ad hoc team player ought to be robust to a wide variety of

teamwork scenarios. We use smin as a minimum acceptable re-

ward for the team to be evaluated, because the ad hoc team agent

may be unable to accomplish a task if its teammates are too inef-

fective, regardless of its own abilities. It is mainly used to reduce

the number of samples required to evaluate the ad hoc agents and

reduces the noise in the comparisons. Metrics other than the sum

of the rewards can be used depending on the domain, such as the

worst-case performance.

Algorithm 1 Ad hoc agent evaluation

Evaluate(a, A,D):

• Initialize performance (reward) counter r = 0.
• Repeat:

– Sample a task d fromD.

– Randomly draw a subset of agents B, from A such that

E[s(B, d)] ≥ smin.

– Randomly select one agent b ∈ B to remove from the

team to create the team B−.

– Increment r by s({a} ∪B−, d)

• If Evaluate(a0, A,D) > Evaluate(a1, A,D) and the differ-

ence is significant,then we conclude that a0 is a better ad hoc

team player than a1 in domain D over the set of possible

teammates A.

3. DIMENSIONSOFADHOCTEAMPROB-

LEMS
Section 2 specified the framework for evaluating ad hoc team

agents, but this evaluation depends on the specific domain and team-

mates that the ad hoc agent may encounter. In this section, we iden-

tify three dimensions of ad hoc teamwork settings that we believe

can be used to better understand these domains and teammates.

There are many possible ways that ad hoc team domains can vary,

such as the size of the task’s state space and the stochasticity of the

domain. But we find that for differentiating among the algorithms

in the existing literature, the following three are most informative.

1. Team Knowledge: Does the ad hoc agent know what its

teammates’ actions will be for a given state, before interact-

ing with them?

2. Environment Knowledge: Does the ad hoc agent know the

transition and reward distribution given a joint action and

state before interacting with the environment?

3. Reactivity of teammates: Howmuch does the ad hoc agent’s

actions affect those of its teammates?

These dimensions affect the difficulty of planning in the domain in

addition to how much an ad hoc agent needs to explore the environ-

ment and its teammates. When an ad hoc agent has good knowl-

edge, it can plan without considering exploration, but when it has

incomplete knowledge, it must reason about the cost and benefits of

exploration. The exploration-exploitation problem has been studied

previously, but adding in the need to explore the teammates’ behav-

iors and the ability to affect them considerably alters this tradeoff.

Sections 3.1–3.3 provide further details about each of these dimen-

sions, how we measure them, and why they are important for ad

hoc teamwork.

To better illustrate the dimensions, we introduce a simple domain

to evaluate across each of the dimensions. We describe the domain

here and revisit it in the discussion of each dimension.

MatchActions: This domain is a typical coordination game with

two agents, each of which has two actions. If they select the same

action, both receive a reward of ri, where ri is randomly selected

from {0.5, 0.75, 1.0} for i ∈ 1, 2, but fixed for the episode. On

the other hand, if both agents select different actions, they receive

a reward of 0. In addition, both agents can observe their team-

mates’ previous actions. The ad hoc agent knows that its teammate

is following one of two behaviors:

• FirstAction: the teammate always chooses the first action

• BestResponse: the teammate chooses the same action as the

ad hoc agent did previously

Therefore, the state can be represented as the previous action taken

by the ad hoc agent, called s0 if the ad hoc agent chose the first

action, and s1 otherwise.

3.1 Team Knowledge
The ad hoc agent’s knowledge about its teammates’ behaviors

gives insight into the difficulty of planning in the domain. The

agent’s knowledge can range from knowing the complete behaviors

of its teammates to knowing nothing about them. Settings with par-

tial information are especially relevant, because in many real world

problems, the exact behavior of a teammate may not be known, but

some reasonable guidelines of their behaviors exist. For example,

when playing soccer, one can usually assume that a teammate will

not intentionally pass to the other team or shoot at the wrong goal.

If the behaviors are completely known, the agent can reason fully

about the team’s actions, while if the behaviors are unknown, the

agent must learn about them and adapt to find a good behavior.

To estimate the ad hoc agent’s knowledge about its teammates’

behaviors, we compare the actions the ad hoc agent expects them to

take and the ground truth of what actions they take. Specifically, we

compare the expected distribution of teammate actions to the true

distribution that the teammates follow. To compute the difference

between the distributions, we use the Jensen-Shannon divergence

measure, which was chosen because it is a smoothed, symmetric

variant of the popular Kullback-Leibler divergence measure. When

the ad hoc agent has no information about a teammate’s action, we

assume that it uses the uniform distribution to represent its actions.

Therefore, we define the knowledge measure as

K(T, P ) =



















1 if JS(T, P ) = 0

1−
JS(T, P )

JS(T, U)
if JS(T, P ) < JS(T, U)

−
JS(P,U)

JS(U, Point)
otherwise

(1)

where T is the true distribution, P is the predicted distribution, U

is the uniform distribution, Point is a distribution with all weight

on one point (e.g. [1, 0, 0, . . .]), and JS is the Jensen-Shannon di-

vergence measure. By this definition, K(T, T ) = 1, so the knowl-

edge is complete if the ad hoc agent knows the true distribution.

K(T, U) = 0, representing when the ad hoc agent has no knowl-

edge and relies on the uniform distribution. Finally, if the pre-

dicted distribution is less accurate than the uniform distribution,

then K(T, P ) is negative, with a minimum value of -1. This mea-

sure captures the range [0,1] smoothly, but can still be used for

the range [-1,0] 1. However, we generally expect the prediction to

1One slight anomaly of this measure is that when T is the uniform
distribution (e.g. [.5,.5]), K is either 1 when P is exactly correct at
[.5 .5] or negative. For all other values of T, K smoothly spans the
range [-1,1].



be a higher entropy distribution than the true distribution as the ad

hoc agent ought to correctly model its uncertainty in its teammates’

behaviors rather than being confident and wrong, which keeps the

measure in the range [0,1].

We define the ad hoc agent’s knowledge about its teammates’

behaviors as

TeamK =

n
∑

s=1

k
∑

t=1

K(TrueActiont(s),ExpActiont(s))

nk
where 1 ≤ s ≤ n is the state, 1 ≤ t ≤ k specifies a teammate,

TrueActiont(s) is the ground truth action distribution for teammate

t for state s, and ExpActiont(s) is the action distribution that the

ad hoc agent expects teammate t to select for state s.

We assume that ExpActiont(s) is the uniform distribution if the

agent has no information about teammate t’s actions in state s.

Thus, if the ad hoc agent has better information about its team-

mates’ behaviors, the distance between the distributions will be

smaller and TeamK will be higher.

Let us now calculate the TeamK for the MatchActions domain.

The ad hoc agent has uniform beliefs over its teammate following

either the FirstAction or BestResponse behaviors. However, the

teammate is actually following the BestResponse behavior. With

these beliefs, in s0, the ad hoc agent expects that its teammate will

always chose a0, so ExpActions0 = [1, 0]. In s1, the ad hoc agent

thinks that the teammate will choose a0 with probability 0.5 and a1

with probability 0.5, while it actually chooses a1 with probability

1. Thus,

TeamK =
K([1, 0], [1, 0]) +K([0, 1], [ 1

2
, 1

2
])

2
=

0 + 1

2
= 0.5

This indicates that the ad hoc agent is fairly knowledgeable about

its teammate’s actions.

3.2 Environmental Knowledge
Another informative dimension is how much knowledge the ad

hoc agent has about the effects of a joint action given a state, for

example the transition and reward functions. If the ad hoc agent has

complete knowledge about the environment, it can plan about what

actions it should select more simply than if it must also consider

unknown effects of actions. However, if it has incomplete knowl-

edge, it must explore its actions and face the standard problem of

balancing exploring the environment versus exploiting its current

knowledge.

Similarly to teammate knowledge, we formally define the ad hoc

agent’s knowledge about the environment’s transitions as

TransK =
1

nm

n
∑

s=1

m
∑

j=1

K(TrueTrans(s, j),ExpTrans(s, j))

where 1 ≤ s ≤ n is the state, 1 ≤ j ≤ m is a joint action, K is

taken from Equation (1), TrueTrans(s, j) is the ground truth transi-
tion distribution from state s given joint action j, and ExpTrans is

the ad hoc agent’s expected transition distribution. If the agent has

no information about the transitions, we assume that ExpTrans(s, j)
is the uniform distribution. Intuitively, if the ad hoc agent knows

more about the transition function, then the distance between True-

Trans and ExpTrans will be smaller and as a result TransK will be

higher. We define the agent’s knowledge about the environmental

rewards similarly, and let EnvK = (TransK,RewardK).
Revisiting the MatchActions domain, the ad hoc agent knows the

true transition function, as it only depends on the ad hoc agent’s

previous action, so TransK = 1. However, it only knows that the

payoff for each action is uniformly drawn from {0.5, 0.75, 1.0}

and the reward is 0 if the agents’ actions do not match. There are 8

possible cases to count over, coming from 2 states and 2 actions for

each of the agents, but the cases fall into 2 sets based on whether

the actions match. In addition, it does not matter which value each

matched action actually takes, so we can simplify the calculation.

Note that there are four reward values possible: {0, 0.5, 0.75, 1.0}.

This leads to

RewardK =
4 ∗ 1 + 4 ∗K([0, 1, 0, 0], [0, 1

3
, 1

3
, 1

3
])

8
= 0.582

Thus, EnvK = (1, 0.582) As the agent observes these payoffs,

it can refine its knowledge, but we are evaluating these properties

prior to the ad hoc agent interacting with its environment.

3.3 Teammate Reactivity
The optimal behavior for the ad hoc agent also depends on how

much its teammates react to its actions. If its teammates’ actions

do not depend on the ad hoc agent at all, the ad hoc agent can sim-

ply choose its actions to maximize the team reward, as if it were

a single agent problem. Considering the actions of its teammates

separately from that of the environment may still help computa-

tion by factoring the domain. However, if the teammates’ actions

depend strongly on the ad hoc agent’s actions, the ad hoc agent’s

reasoning should consider what its teammates’ reactions will be.

If the ad hoc agent is modeling its teammates and its teammates

are modeling the ad hoc agent, the problem can become recursive,

as is directly addressed by Vidal and Durfee’s Recursive Modeling

Method [21].

A formal measure of the teammate reactivity needs to capture

how different the teammates’ actions will be when the ad hoc agent

chooses different actions. We measure the distance between the

resulting distributions of the teammate joint actions, using the pair-

wise Jensen-Shannon divergence measures. However, it is desir-

able for the distance to be 1 when the distributions have no overlap,

so we use a normalizing constant of log 2. Thus, we define the

reactivity of a domain in state s as

Reactivity(s) =
1

(m− 1)2 log 2

m
∑

a=1

m
∑

a′=1

JS(T (s, a), T (s, a′))

where JS is the Jensen-Shannon divergence measure, 1 ≤ a, a′ ≤
m is the actions available to the ad hoc agent, and T (s, a) is the
distribution of the teammates’ joint actions given the state s and

the ad hoc agent’s action, a. We use m − 1 in the denomina-

tor because we exclude the case where a = a′; in the numer-

ator, the JS measure will be 0 in this case. For the overall re-

activity of the domain, we average over the states, resulting in

Reactivity = 1

n

∑n

s=1
Reactivity(s). It is possible to consider how

an action affects the teammates’ actions further in the future, but

we restrict our focus to one step reactivity for this paper. Note that

all of the sums in this formulation can be converted to integrals for

continuous states or actions. This formulation is similar to the em-

powerment measure used by Jung et al. [13], but we consider the

ad hoc agent’s ability to change the actions of its teammates rather

than the environment state.

Let us once again explore this dimension in the context of the

MatchActions domain. Although the ad hoc agent is unsure of

its teammate’s behavior, the teammate is truly playing the BestRe-

sponse behavior. Thus, its actions are entirely dependent on the

ad hoc agent’s actions, so Reactivity = 1. If instead the teammate

played BestResponse with probability 9

10
and FirstAction with prob-

ability 1

10
, then we would get

Reactivity(s) =
JS([1, 0], [ 1

10
, 9

10
]) + JS([ 1

10
, 9

10
], [1, 0])

2 log 2
= 0.758

Therefore, we can conclude that the agent would still be very reac-

tive, though not as reactive as the BestResponse agent.



4. ADHOCTEAMWORK INTHEPURSUIT

DOMAIN
Section 2 specified the framework for evaluating ad hoc team

agents, but this evaluation depends on the specific domain and team-

mates that the ad hoc agent may encounter. Therefore, in this sec-

tion, we study several concrete versions of a domain that require the

cooperation of a team. Then, we explore how ad hoc agents should

handle these various domains, and explain how these domains are

characterized by the dimensions presented in Section 3.

4.1 The Pursuit Domain
The pursuit domain has become a popular setting for multiagent

research [18]. It lends itself well to ad hoc team problems as it re-

quires multiple agents to cooperate to capture the prey. The general

idea of the pursuit problem is that a number of predators attempt to

chase and finally “capture” a prey, but there are several variations

of the pursuit, depending on the number of predators, the definition

of “capture,” and the mechanics of the world. Here we specify a

number of variations of the pursuit domain that are interesting for

investigating ad hoc teamwork.

4-Predator Known Behaviors Pursuit (4PKB): In this fairly

common formulation of the pursuit problem, there are four preda-

tors trying to capture a single prey, while moving around a toroidal

grid, where moving off one side brings the agent back on the other

side. Therefore, all four predators are required to capture the prey

by surrounding it, as illustrated in Figure 1. In this formulation,

all agents can fully observe the positions of the other agents and

the prey moves randomly. One of the predators is an ad hoc agent

and, at each time step, it must choose a direction to move to coop-

erate with its teammates. The other three predators follow a fixed

behavior that is known to the ad hoc agent.

(a) Random start (b) Capture position (c) Another capture

Figure 1: Start and capture positions in the 4PKB and 4PUB do-

mains. The green rectangle is the prey, the red ovals are predators,

and the red oval with the star is the ad hoc predator (the one under

our control that is being evaluated).

Before continuing with describing the other domain variants, we

introduce a number of high level behaviors that the predators may

use to capture the prey. Specifically, we consider the following four

individual predator behaviors described in Barrett et al.’s work [1]:

1. Greedy (GR)- Move towards the nearest unoccupied cell neigh-

boring the prey with minimal obstacle avoidance

2. Greedy Probabilistic (GP) - Same as the GR behavior except

that the predator has a chance of taking a longer path to its

desired cell

3. Teammate-aware (TA) - Assign cells neighboring the prey

to the teammates, minimizing the movement required by the

farthest predator; move towards the assigned cell

4. Probabilistic Destinations (PD) - Spread out from other preda-

tors into a circle that tightens around the prey over time

4-Predator Unknown Behaviors Pursuit (4PUB): This version

is identical to 4PKB, except that the ad hoc agent is not given full

information about its teammates’ behaviors. Instead, the agent is

given a set of known behaviors that its teammates are possibly play-

ing. In this case, the ad hoc agent must observe its teammates and

try to determine their behaviors based on their actions. For exam-

ple, the ad hoc agent may be initially given a uniform distribution

over the GR, GP, TA, and PD behaviors. By observing its team-

mates’ actions, the ad hoc agent may be able to determine that all

of its teammates are following the TA behavior.

2-Predator Simultaneous Pursuit (2PS): In this formulation of

the pursuit problem, two predators move on a toroidal grid and

attempt to capture the prey by simultaneously occupying any two

cells neighboring the prey, as shown in Figure 2. Instead of choos-

ing an action at every time step of an episode, the agents choose a

high level behavior to play for the duration of an episode. This high

level behavior defines their actions at each time step. In between

episodes, the agents can choose a new behavior to play, based on

their previous experience. Once again, one of the predators is con-

trolled by the ad hoc agent, and its teammate chooses the behavior

by best response, using a memory bound of k. For example, at

the beginning of each episode, each predator could choose to play

the GR, GP, TA, or PD behavior. If k = 1 and the ad hoc agent

chose the GR behavior last step, its teammate would choose to play

the GR behavior this step because it knows that this will result in

the shortest time to capture the prey if the ad hoc agent continues

playing the GR behavior.

(a) Capture position (b) Another capture

Figure 2: Capture positions in the 2PS domain

2-Predator Teaching Pursuit (2PT): In this version, two preda-

tors are trying to capture the prey by choosing a high level behav-

ior to follow, similar to the 2PS domain. However, each predator

must capture the prey independently, and the predators alternate

episodes. Therefore, instead of cooperating during an episode, the

predators cooperate between episodes. Each predator observes

what high level behavior the other chose as well as how long it

takes to capture the prey using that behavior. In addition, the preda-

tors are still a team and share rewards. In this domain, capture is

defined as the predator occupying the same cell as the prey. For

example, if the ad hoc agent chooses to play the GR behavior, its

teammate observes that it chose the GR behavior as well as the

length of the episode. The teammate can then use this information

when it is selecting a behavior to play for the next episode.

In addition, the ad hoc team agent has full knowledge about

the performance of the behaviors, while its teammate starts with

no knowledge and acts greedily with respect to the behaviors’ ob-

served sample means. If the ad hoc agent was not on a team, it

could perform optimally by choosing the behavior with the best ex-

pected reward, but its teammate can observe its actions and learn

from them. The ad hoc agent knows that its teammate is greedy with

respect to the observed means of the different behaviors. However,

the teammate has noisy actuation, so it is unable to perform de-

terministic behaviors, unlike the ad hoc agent. Unfortunately, the

behavior with the best expected time to capture the prey is deter-

ministic. Therefore, there is a cost to teaching as the ad hoc team

agent must forego playing the best behavior to increase its team-

mates knowledge.

4.2 Prior Ad Hoc Teamwork Results
In Section 4.1, several variations of the pursuit domain were pre-

sented, some of which have been studied in prior research. Both the

4PKB and 4PUB domains were investigated by Barrett et al. [1]. In



their work, Barrett et al. assume that three of the predators use one

of the specified behaviors (the same one in most cases) and the

fourth predator is the ad hoc team agent. Their ad hoc team agent

plans efficiently using Monte Carlo Tree Search (MCTS), select-

ing actions that are expected to capture the prey quickly given its

models of its teammates. In the 4PKB domain, the ad hoc agent

knows the true behavior of its teammates, but in the 4PUB domain,

it is only given a set of possible behaviors of its teammates. There-

fore, the ad hoc agent agents tracks the probabilities that its team-

mates are using the known behaviors, updating their probabilities

using Bayes’ rule and the probability of each behavior taking the

observed actions. At each time step, the agent plans using MCTS

and samples from the possible teammate models with respect to

their relative probabilities. This approach results in an effective ad

hoc team agent.

In Barrett et al.’s work, the ad hoc agent has complete informa-

tion about the environment (EnvK = (1, 1)), but its knowledge

about its teammates is varied in different tests. In the 4PKB set-

ting, the ad hoc agent knows the true behavior of its teammates,

so TeamK = 1. In the 4PUB setting, it only knows that its team-

mates are drawn from a set of knownmodels; resulting in TeamK =
0.720 for a 5x5 world, while on a 20x20 world TeamK = 0.807.
Finally, there are tests where the set of representative behaviors are

known to the agent, but the teammates’ behaviors are not drawn

from this set. Instead, these agents are sampled from a set of preda-

tor behaviors written by students for a class assignment. In this

case, TeamK = 0.155 on a 5x5 world and TeamK = 0.237 on a

20x20 world.

In this work, the reactivity of the teammates depends on the be-

havior that the teammates run as well as the size of the world. For

the GP teammates on a 5x5 grid, the reactivity is only 0.0635, while

if the teammates play the TA behavior, the reactivity is 0.501. Sim-

ilarly, on a 20x20 grid, the reactivity of GP teammates is 0.00105

and for TA teammates it is 0.0809.

In the pursuit domain, the challenge arises from a combination

of the reactivity of the teammates and the agent’s imperfect knowl-

edge about its teammates. In this research, only a single episode

was considered, so there was no long term learning; the agents had

to learn during the episode.

While Barrett et al. investigated the 4PKB and 4PUB domains,

the pursuit domain allows for many small variations that have a

large impact on where it falls along the dimensions laid out in

Section 3. Sections 4.3–4.4 explore the 2PS and 2PT variants, all

within the context of our framework from Section 3.

4.3 Repeated Interactions with a Best Response
Agent

Whereas both the 4PKB and 4PUB domains assume that the ad

hoc agent interacts with its teammates for only one episode, many

teamwork settings allow for multiple interactions among the same

teammates. In this case, long-term learning (across episodes) is

both possible and very useful. In order to model such settings, in

this section we investigate the 2PS domain.

In the 2PS domain, the ad hoc agent has perfect information

about its teammate, so TeamK = 1. Also, the ad hoc agent com-

pletely knows the environment’s transitions and rewards, so EnvK =
(1, 1). The reactivity of the domain is high, since the teammate’s

actions depend highly on the ad hoc agent’s actions. However, the

reactivity depends on the specific behaviors that are available to the

agents as well as the memory size of the teammate, k. The avail-

able information about the teammate reduces the difficulty of this

problem compared to the earlier pursuit problem, but the reactiv-

ity of this problem is much higher. Therefore, the problem is still

difficult, but many of the issues that must be faced are different.

Analysis of 2PS reveals that it can be modeled as a repeated

normal-form game in which the agents share the payoffs. In this

setting, there is a matrix of shared payoffs and two agents; one

chooses a row and one that chooses a column, where the rows and

columns correspond to different behaviors that can be chosen. One

of the agents is a k-memory bounded, best response agent, mean-

ing that it chooses the action that has the best expected payoff given

the other agent’s last k actions. The other agent is the ad hoc team

agent, and its goal is to cooperate with the best response agent to

achieve the highest payoff.

There is a cell in the payoff matrix with the highest reward that is

best for both agents. However, if the ad hoc agent jumps immedi-

ately to the corresponding behavior, it may incur a high loss before

the best response agent moves to the best action, where the loss

is defined as the difference between the maximum possible reward

and the received reward. Therefore, it may be desirable for the ad

hoc agent to take a longer path through the payoffs, minimizing the

losses.

Stone et al. [16] investigated the class of ad hoc teamwork prob-

lems that can be modeled by this normal-form game formulation.

Their work provides several theoretical results as well as an effi-

cient algorithm for finding the optimal action sequence when k =
1. Furthermore, they give an algorithm for dealing with larger

memory bounds, k > 1, but this algorithm is exponential in the

memory size. Also, they consider the case where the teammate

is non-deterministic and differs from the k memory bounded best

response by ǫ.

In this paper, the predators select from the TA, PD, and GR be-

haviors. If they play on a 5x5 grid and each agent has a 0.1 chance

of taking a random action, the resulting payoff matrix is given in

Table 1. These payoffs were calculated by running 1,000 episodes

with the agents following the specified behaviors, where the team

receives an action penalty of -1 for each step until the prey is cap-

tured.

TA PD GR

TA -4.583 -5.123 -5.152

PD -5.123 -4.946 -4.615

GR -5.152 -4.615 -4.379

Table 1: Payoff matrix from the pursuit domain

Assume that the agents start with both agents playing the TA

behavior (a Nash equilibrium) and k = 1. The best payoff is when
both agents play the GR policy, so the ad hoc team agent wants to

find the lowest cost path to that policy combination. This occurs if

the ad hoc agent chooses the PD policy and then the GR policy from

then on. The best response teammate will play the TA policy for the

first two steps (because it is the best response to TA) then change

to the GR policy, which is the best response to PD. The loss of this

path is −4.379 − −5.123 = 0.744 while changing directly has a

cost of −4.379 − −5.152 = 0.773. Therefore, it is advantageous
for the ad hoc agent to take a longer path to its desired policy. The

efficient algorithm laid out by Stone et al. finds this solution.

In this domain, both agents know the transitions and rewards,

so EnvK = (1, 1). Also, the ad hoc agent knows that its team-

mate uses the best response policy, resulting in TeamK = 1. The
reactivity is 0.198, as the ad hoc agent’s actions do influence its

teammate’s actions.

The version of the pursuit domain considered in this section il-

lustrated how prior theoretical results can be applied directly in an

experimental setting. In the next section, we see the same for a

different theoretical approach to ad hoc teamwork.



4.4 Teaching a Novice Agent
To this point, we have assumed that the teammate has complete

knowledge about the performance of the behaviors, but in some

settings this is not the case. To explore such settings, we investigate

the 2PT domain, in which the teammate starts with no knowledge

about each behavior and must explore the behaviors to estimate

their performance.

However, we assume that the ad hoc team agent has full knowl-

edge about the behaviors and its teammate. Also, instead of having

the two predators cooperate directly, we consider the case where

they take turns trying to capture the prey, but both observe the re-

sults of the other’s actions. Unfortunately, due to a defect, the team-

mate is not able to execute all of the behaviors that are available to

the ad hoc agent, including the behavior with the best expected

time to capture the prey. Therefore, there is a cost to the ad hoc

team agent foregoing this best behavior in favor of another that will

teach its teammate. The agents are still trying to maximize their

shared rewards, but they take turns choosing behaviors to capture

the prey. The ad hoc agent has complete information about the ef-

fectiveness of the behaviors, so it should help guide its naive team-

mate towards behaviors that are more effective. We consider the

case where the teammate chooses behaviors greedily with respect

to the sample means it has seen.

In this domain, the ad hoc team agent is the teacher, and it has

perfect knowledge about its teammate, i.e. TeamK = 1. Also,

its information about the environment is perfect in both the transi-

tion and reward distributions, i.e. EnvK = (1, 1). Note that the

other agent only has limited information about the environment.

However, the reactivity of the domain depends on the number of

episodes as well as the payoff distributions of the shared behaviors,

but not the behavior that only the teacher can play. Similar to the

scenario in Section 4.3, the challenge arises from the ad hoc agent

needing to plan about the reactivity of its teammate. In addition,

it must also consider how much information its teammate has, and

how this affects the teammate’s actions.

Therefore, the ad hoc team agent should reason about when it

is useful to sacrifice choosing the behavior with the highest reward

to teach its teammate about which behaviors it should be choosing.

Close examination of this problem reveals that it can be modeled by

a multi-armed bandit (MAB), such as that proposed by Stone and

Kraus [17], where the different behaviors correspond to different

arms of the bandit. In this setting, choosing a high level behavior

to play for an episode corresponds to pulling the arm on the multi-

armed bandit, and the length of the episode corresponds to the pay-

off of the arm. Stone and Kraus prove several interesting theoretical

results about this formulation of ad hoc teamwork in a multi-arm

bandit domain regardless of the payoff distributions of the arms,

proving some theorems about when the ad hoc agent should and

should not teach. Furthermore, they give efficient algorithms for

handling cases where the payoff distributions are constrained.

From this research, we know that the ad hoc agent should con-

sider playing behaviors other than the best one, which the teammate

cannot play. In other words, it is advantageous for the ad hoc agent

to teach its teammate despite the cost of teaching. Also, the ad hoc

agent should never play the worst of the behaviors, even when the

teammate’s estimates of that behavior’s quality is too high. Further-

more, with discrete distributions for the payoffs, Stone et al. give a

polynomial time algorithm for calculating the optimal behavior for

the ad hoc agent.

Consider the case in which the agents play on a 5x5 grid and

must choose from three policies: the greedy, probabilistic destina-

tions, and greedy probabilistic predators from Section 4.1. In this

case, the teammate has non-deterministic actions and therefore can-

not follow the purely greedy policy. These different policies give

average capture times of 4.204, 4.272, and 4.911 respectively for a

single predator capturing the prey, where a smaller time is better.

The reactivity of this problem is 0.0342 if we consider histories of

actions of length 100, and 0.128 for histories of length 10. Overall,

a state is more reactive when the teacher can change the relative

values of the arms’ sample means, which happens when there are a

small number of pulls that are far from the true arm means. When

there are many pulls or the sample means closely match the true

means, the reactivity is very low.

From Stone et al.’s work, we know that the ad hoc agent should

consider sacrificing its reward from following the greedy policy to

play other behaviors and teach its teammate. Also, we know that

it should never play the greedy probabilistic behavior, even if its

teammate thinks that this behavior is best.

5. CLASSIFYING EXISTING AD HOC RE-

SEARCH DOMAINS
Section 4 introduces several ad hoc team problems and explains

how they are described by the dimensions proposed in Section 3.

We summarize those results here, and continue on to explore other

domains used in previous ad hoc research. We then use these results

to suggest new avenues for research into ad hoc teamwork.

5.1 Characteristics of the Pursuit Domain
A summary of the characteristics of variations of the pursuit do-

main is given in Table 2. Note that the reactivity of 2PS relies on the

memory bound k of the agent (0.198 if k = 1), and in 2PT, it relies
on the length of pull histories considered (0.0342 if the history size

is 100 and 0.128 for length 10). For 4PKB and 4PUB, the values

are affected by the size of the domain and the specific behaviors

used by the teammates. Specifically, the reactivity is 0.00105 when

for GP teammates on a 20x20 world, and 0.501 for TA teammates

on a 5x5 world. The TeamK varies from 0.155 when cooperating

with the teammates created by students on a 5x5 world to 0.807 for

teammates drawn from {GR,GP,TA,PD} on a 20x20 world. From

this table it becomes clear that research into ad hoc teamwork has

focused mainly on the reactivity of the problems, with some ap-

proaches handling some uncertainty about the teammate behaviors.

However, no ad hoc teamwork research thus far has handled any

domains in which the environment is unknown. In addition, de-

viating slightly from the assumptions of either the 2PS or 2PT do-

mains can render the theoretical results incorrect. Therefore, it is an

important future direction to create general methods for handling

problems with perfect knowledge about the teammates and envi-

ronment, with varying reactivities. We hypothesize that the MCTS

agent from Barrett et al. [1] should perform well in these domains,

but this exploration remains open.

Domain TeamK EnvK Reactivity

4PKB 1 (1,1) 0.00105–0.501

4PUB 0.155–0.807 (1,1) 0.00105–0.501

2PS 1 (1,1) 0.198

2PT 1 (1,1) 0.0342–0.118

Table 2: A summary of pursuit problems

5.2 Characteristics of Other Domains
Besides pursuit, there have been several other domains used in

ad hoc teamwork research, though not always under the name of

ad hoc teamwork. Although it is difficult to exactly calculate some

of the dimensions without exact specifications of the domains, we

estimate the values in Table 3.



Han et al. [9] explore using an agent to affect the collective be-

havior of a multi-agent system. Specifically, their work focused on

adding a “shill” agent that was externally controlled, corresponding

to the ad hoc team agent in our terminology. They then investigated

using this agent to affect the behavior of groups of agents such as

flocks of birds, directing the movement of the flock in a desired

direction. They use a modified Boid model, in which each agent

chooses its current heading by moving in the average direction of

their neighbors located within a neighborhood of radius r. Table 3

summarizes how the domain is characterized along the dimensions.

In this case, the shill agent knows its teammates’ behavior and the

environment, and the reactivity of its teammates depends on the

number of agents and the size of the neighborhood. For these cal-

culations, we discretize the actions into 10 degree bins. With 5

agents, the reactivity ranges from 0.880 when r = 5 to 0.0106

when r = 1, while with 100 agents, it ranges from 0.531 to 0.0732

for the same r values. This shows that while the reactivity can be

large, in many settings the teammates are not strongly affected by

the ad hoc agent’s actions in the short term. However, Han et al.’s

work shows that the long term effects of the ad hoc agent’s actions

are very influential, as the effects ripple out to the other agents.

Domain TeamK EnvK Reactivity

Flocking control 1 (1,1) 0.0732–0.880

Cooperating with
0 (1,1) 0

UTM-1 teammates

Cooperating with
0 (1,1) >0

UTM-2 teammates

Simulated pickup soccer >0 (>0,1) >0

Table 3: Estimates of other ad hoc team problems

More recently, Wu et al. [22] investigated ad hoc teamwork with

few assumptions about the behaviors of the teammates. Their ad

hoc agent plans using MCTS and uses biased adaptive play to pre-

dict the actions of teammates. Biased adaptive play can be used

to estimate the policies of teammates from their previous actions.

They test their agent on three domains: cooperative box pushing,

meeting in a 3x3 grid, and multi-channel broadcast. They consider

the case where the ad hoc agent knows the environment, but not

its teammates. These teammates are referred to as unknown team-

mates (UTM), and two types of teammates are used in each domain:

UTM-1 agents that follow a fixed set of actions and UTM-2 agents

that try to play the optimal behavior but have partial observations.

Along the dimensions, only the reactivity of the teammates vary

between these three domains. However, the specifications of the

UTM-2 agents is only that they act rationally with respect to partial

observations of the system state, so it is not possible to calculate the

exact values of the reactivity; it is only known that their reactivity

is greater than 0. If the UTM-2 agents perform close to the rational

behavior given full observations, it is expected that their reactivity

is very high in these domains.

In the domain of simulated robot soccer, Bowling and

McCracken [3] measure the performance of a few ad hoc agents,

where each ad hoc agent is given a playbook that differs from that

of its teammates. In this domain, the teammates implicitly assign

the ad hoc agent a role, and then react to it as they would any team-

mate. This means that they react to the ad hoc agent’s actions, i.e.

the reactivity is greater than 0, but the extent of this reactivity is

depends on their standard soccer behavior. In addition, the ad hoc

agent knows a set of possible plays that may overlap with the plays

that its teammates choose. It is expected that its knowledge of its

teammates is fairly high, as effective soccer plays are similar, com-

pared to random movement of the teammates, therefore TeamK is

greater than 0. Although the ad hoc agent does not know ahead

of time the noise caused by the simulation of the game or by the

noise caused by the other team, it has reasonable expectations of

the dynamics of the world, so TransK is greater than 0. In addition,

it knows that scoring goals gives a positive reward, and giving up

goals gives a negative reward, so RewardK is 1.

5.3 Characteristics of Future Research
Looking at how the existing research fits into the proposed di-

mensions gives us insight on directions for future investigation.

Most research on ad hoc teams has focused on how teammates react

to the ad hoc agent, as shown by the high levels of reactivity in ex-

isting domains. Little research has approached the problem of hav-

ing low knowledge of the teammates, where the ad hoc agent must

learn about its teammates to plan effectively. Wu et al.’s work [22]

assumes that the ad hoc agent knows nothing about its teammates,

but they focus on smaller domains. Barrett et al. [1] consider the

idea that the ad hoc agent may start with some knowledge about

its possible teammate, but must still learn about them by interact-

ing with them. More research needs to be performed to investigate

cases where the ad hoc agent knows little about its teammates. In

many cases, agents can make some reasonable assumptions about

the behavior of their teammates. Therefore, it is desirable to focus

on ad hoc agents that cooperate with teammates starting with low,

but nonzero information about their behaviors. In this case, the ad

hoc agent must learn more about its teammates by interacting with

them.

In addition most ad hoc teamwork research assumes that the ad

hoc agent completely knows the transition dynamics of the environ-

ment as well as the short term rewards of actions. In other words,

research into ad hoc teamwork has mainly focused on the difficul-

ties of planning effectively with teammates, where the agent does

not need to learn about the environment. On the other hand, many

real world applications of ad hoc teamwork requires the agent to

learn about its environment and adapt accordingly. In the case of

search and rescue, robots must cooperate with previously unseen

teammates, but they must also adjust to a noisy, changing environ-

ment. To perform effectively while exploring new environments,

such as those encountered in exoplanet exploration, robots must

learn about how their actions interact with the world and handle

changes to their abilities caused by wear and tear. Therefore, future

research in ad hoc teamwork should incorporate domains in which

the dynamics begin unknown. This will create ad hoc agents that

can trade off between exploring the environment, exploring interac-

tions with their teammates, and exploiting their current knowledge.

We believe that research in these areas is necessary to create robust,

effective ad hoc agents.

6. RELATEDWORK AND DISCUSSION
Aside from the ad hoc teamwork domains described in Section 5,

some other research into ad hoc teams exists, such as Jones et

al.’s [12] research into pickup teams working in the treasure hunt

domain. This work assumes that the agents share a communication

protocol that they use to bid on different roles. In addition, Knud-

son and Tumer [14] investigated ad hoc teams in a different frame-

work. However, they assume that all agents in the domain adapt

and that each agent is given a difference objective, which clearly

specifies how an agent’s actions affect its team’s performance. Ear-

lier research includes Brafman and Tennenholz’s research [4] on

agents performing a repeated joint task, where one agent attempts

to teach a novice agent. A large body of research on coordinat-

ing multi-agent teams exists, specifying standardized protocols for

communication and shared algorithms for coordination. These ap-

proaches include SharedPlans [8], STEAM [19], and GPGP [7].



Our work does not require any shared protocols, and does not as-

sume that the teammates are adapting to the ad hoc team agent.

Modeling teammates is similar to the problem of opponent mod-

eling, but it is generally safe to make stronger assumptions about

teammates’ behaviors. Therefore, the ad hoc agent does not need to

consider the worst case scenario for every action; its teammates are

trying to reach the same goal. The Workshop on Plan, Activity, and

Intent Recognition (PAIR) and theWorkshop on Applied Adversar-

ial Reasoning and Risk Modeling (AARM) both have several pa-

pers relevant to applied opponent modeling, and there are also more

theoretical approaches such as the AWESOME algorithm [6]. An

interesting avenue for future work is to classify the much broader

existing literature on opponent modeling along the same dimen-

sions presented in this paper. These dimensions may aid in identi-

fying approaches from opponent modeling literature that are likely

to apply in corresponding ad hoc teamwork domains.

Isaacs performed seminal research on pursuit and evasion [10],

and the problem was further explored by Benda et al. [2]. The pur-

suit domain has been well studied in multiagent research [18]. Most

previous research focused on developing coordinating the preda-

tors before deploying them, rather than learning to adapt to unseen

teammates. For example, MAPS [20] considers partially observ-

able environments with the prey following sophisticated strategies,

but requires a shared coordination algorithm. Other approaches fo-

cus on partial observability in continuous pursuit problems [11].

On the other hand, Chakraborty and Sen [5] investigate a pursuit

scenario in which experienced agents attempt to teach novice preda-

tors, but require the agents to share a known training protocol.

However, none of these methods are directly applicable to ad hoc

teamwork.

7. CONCLUSION
This paper presents a set of dimensions for describing ad hoc

team problems, and explains how these dimensions define the re-

lationship among existing ad hoc team research studies. We show

that reasoning about these dimensions aids in applying existing the-

oretical results to new problems.

The introduction of the dimensions describing the difficulties of

ad hoc team problems raises several interesting avenues for future

research. For example, by examining existing research in this light,

it becomes clear that research thus far on ad hoc teams assumes that

the adhoc agent knows the environment. Future work is needed on

domains where the environment is unknown and the ad hoc agent

must reason about the tradeoffs of exploration. Furthermore, do-

mains where the ad hoc agent has less information about its team-

mates ought to be investigated. All of the results in this paper are in

the context of the pursuit domain, broadly defined. Investigations

of other domains, and whether existing algorithms apply in these

domains is an important avenue for future research. From a high-

level perspective, this research contributes towards understanding

and solving the long-term challenge of creating robust, general ad

hoc team agents.
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