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ABSTRACT
Designing agents that can cooperate with other agents as
a team, without prior coordination or explicit communica-
tion, is becoming more desirable as autonomous agents be-
come more prevalent. In this paper we examine an aspect
of the problem of leading teammates in an ad hoc team-
work setting, where the designed ad hoc agents lead the
other teammates to a desired behavior that maximizes team
utility. Specifically, we consider the problem of leading a
flock of agents to a desired orientation using a subset of ad
hoc agents. We examine the problem theoretically, and set
bounds on the extent of influence the ad hoc agents can have
on the team when the agents are stationary. We use these
results to examine the complicated problem of orienting a
stationary team to a desired orientation using a set of non-
stationary ad hoc agents. We then provide an empirical eval-
uation of the suggested solution using our custom-designed
simulator FlockSim.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Algorithms, Experimentation

Keywords
Ad Hoc Teamwork, Agent Cooperation, Coordination

1. INTRODUCTION
The growing use of agents in various cooperative domains

has emphasized the importance of designing agents capable
of reasoning about ad hoc teamwork [10]. Such agents can
cooperate within a team without using explicit communica-
tion or previously coordinating behaviors among teammates.
One aspect of ad hoc teamwork involves leading teammates.
Consider a case in which we want to influence a given team
of agents to alter their actions in order to maximize the team
utility. One way of doing so is by adding agents to the team
in order to lead them to perform the desired actions. While
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previous research on leading teammates in ad hoc settings
concentrated on a game theoretic analysis of this problem
[1, 11], in this work we consider a more practical aspect of
the problem by concentrating on flocking agents.

Flocking is an emergent behavior that can be found in
different species in nature including flocks of birds, schools
of fish, and swarms of insects. In each of these cases the
animals follow a simple local behavior rule that results in a
stable, well defined, group behavior. Research on flocking
behavior can be found in various disciplines, for example
in physics [14], graphics [9], biology [2, 3], and distributed
control theory [6, 7, 12]. The main focus of each of these
research directions is to characterize the emergent behavior.
In this paper we introduce the problem of leading a team of
flocking agents in ad hoc teamwork settings. In this case,
we are given a team of flocking agents following a known,
well defined rule characterizing their flocking behavior, and
we wish to examine to what extent it is possible to influence
the team. Specifically, the question addressed in this paper
is: is it possible for one or more agents to lead the team to
a desired orientation, and if so - what is the most efficient
way of doing so?

The ad hoc teamwork perspective of this problem is high-
lighted by two facts. Firstly, we do not explicitly control the
behavior of the flocking agents, thus we can only try to influ-
ence them implicitly using the behavior of the ad hoc agents
(which appear to be identical to the flocking agents). Sec-
ondly, all agents — both flocking and ad hoc — act as one
team, and their only desire is to optimize team utility. The
ad hoc agents cannot communicate with the flocking agents,
but they can coordinate their actions among themselves.

The challenge of designing ad hoc agents in such a dy-
namic system is twofold: the action space is continuous and
the set of optimal solutions is not discrete. We therefore an-
alyze the system in two steps. First, we examine the prob-
lem of leading a team of stationary flocking agents, i.e., the
agents are aligned in a formation and the ad hoc agents
attempt to influence only their orientations while all of the
agents maintain their current positions. In the second stage,
we use these results for establishing the desired behavior
when the ad hoc agents can move.

One of the main contributions of this paper is the problem
definition provided in Section 2, as it contributes a specifica-
tion of the flocking problem as a new scenario for studying ad
hoc teamwork. Another major contribution of this paper is
an initial theoretical and empirical analysis of the problem.
Some foundational results that apply to all flocking scenar-
ios are presented in Section 3. The analysis for stationary



ad hoc agents is presented in Section 4, while the analysis
for non-stationary ad hoc agents is presented in Section 5.
We also describe our empirical evaluation using our custom-
designed simulator FlockSim

1 in Section 5. Section 6 situates
this research in the literature, and Section 7 concludes.

2. PROBLEM DEFINITION
In this work we introduce a flocking model inspired by

Vicsek et al. [14]. In our model, n homogeneous agents
inhabit some environment where each agent ai moves with
some velocity vi. Velocity vi is not a function of time and
hence remains constant for each agent over time. At each
time step t, each agent ai has a position pi(t) = (xi(t), yi(t))
in the environment and an orientation θi(t). Note that pi(t)
and θi(t) are dependent on the time t and can be different
for each agent ai. Each agent’s position pi(t) at time t is
updated after its orientation is updated, such that xi(t) =
xi(t − 1) + vi cos(θi(t)) and yi(t) = yi(t − 1) − vi sin(θi(t)).

We let Ni(t) be the set of ni(t) ≤ n agents (including
agent ai) at time t which are visible to agent ai. An agent is
visible to agent ai if its position is located within a visibility
cone of angle α centered on orientation θi(t) and extending
from agent ai for an unlimited distance (see Figure 1 for an
example). We say that angle α defines the visibility cone for
each agent, and that this visibility cone defines each agent’s
neighborhood (i.e., the area in which the agent can see other
agents). For example, assume an agent aj ∈ Ni(t) is in ai’s
neighborhood and hence a neighbor of ai.

Agent aj ’s position pj(t) = (xj(t), yj(t)) in the environ-
ment at time t is located at angle βj(i) with respect to
agent ai’s position pi(t) = (xi(t), yi(t)) and orientation θi(t).
Agent aj is in ai’s neighborhood at time t if angle βj(i) is
less than or equal to α

2
.

ai

aj

βj(i)

θi(t)

α

Figure 1: Angle α defines the visibility cone for agent ai. Agent
aj is in ai’s neighborhood since angle βj(i) ≤

α
2
.

For simplicity, we use the visibility cone approach dis-
cussed above to define each agent’s neighborhood. It should
be noted, however, that this is not the exact approach real
birds use to determine which neighboring birds influence
their flight. For example, starlings are believed to consider
the seven nearest birds in their flock as their neighborhood
when performing orientation updates [2]. However, it is gen-
erally accepted that birds do have a ‘blind’ angle behind
them such that any neighboring birds within this ‘blind’ area
are not considered when performing orientation updates [3].
This ‘blind’ area was the motivation for our visibility cone
approach.

1Videos of our FlockSim simulator are available at
http://aamas13.blogspot.com/

Under our flocking model, the global orientation of agent
ai at time step t + 1, θi(t + 1), is set to be the average
orientation of all agents in Ni(t) (including itself) at time t.
Formally,

θi(t + 1) = θi(t) +
1

ni(t)

X

j∈Ni(t)

calcDiff(θj(t), θi(t)) (1)

We must use Equation 1 instead of merely taking the average
orientation of all agents because of the special cases handled
by Algorithm 1 (e.g. The average of 350◦ and 10◦ is 180◦,
but by Algorithm 1 it is 0◦, as desired). Throughout this
paper, we restrict θi(t) to be within [0, 2π). Likewise, the
difference between the orientations of two agents is always
within [−π, π] since a difference of π + ǫ is equivalent to a
difference of ǫ − π in the opposite direction.

Algorithm 1 calcDiff(θi(t), θj(t))

1: if ((θi(t)− θj(t) ≥ −π) ∧ (θi(t)− θj(t) ≤ π)) then

2: return θi(t)− θj(t)
3: else if θi(t)− θj(t) < −π then

4: return 2π + (θi(t)− θj(t))
5: else

6: return (θi(t)− θj(t))− 2π

The n homogeneous agents that comprise the flock consist
of k ad hoc agents and m flocking agents, where k + m = n.
The ad hoc agents {a0, . . . , ak−1} are agents whose behavior
we can control, while the flocking agents {ak, . . . , aN−1} are
agents that we cannot directly control but that we know
calculate their orientation according to Equation 1. In this
paper, we make the simplification that although we can have
many flocking agents, they all must have the same position
p(t) in the environment. At each time step t, the number of
ad hoc agents inside ai’s neighborhood is denoted by ki(t)
and the number of flocking agents inside the neighborhood
is denoted by mi(t), where ki(t) + mi(t) = ni(t) (the total
number of agents in ai’s neighborhood).

Performance Representation and Objective
We define the Agent Flock Orientation Manipulation Prob-
lem as follows: Given a target orientation θ∗ and a team
of n homogeneous agents {a0, . . . , an−1}, where the flock-
ing agents {ak, . . . an−1} calculate their orientation based
on Equation 1, determine whether the ad hoc agents can
influence the flocking agents to align to θ∗, and if so, find
the plan π that does so with minimum cost c(π).

During each time step, the ad hoc agents first orient to
their desired orientations based on some plan π. Next, the
flocking agents update their orientations based on the orien-
tations of all the agents in their neighborhoods (using Equa-
tion 1). Finally, the positions of all the agents are updated.

An x-step plan specifies the orientations that each ad
hoc agent {a0, a1, . . . ak−1} will align to at each time step
when given exactly x time steps in which the agents have to
act. The x-step plan is denoted by πx = (π0

x, π1
x, . . . , πk−1

x ),
where πi

x = (θi(0), θi(1), . . . , θi(x − 1)) is the set of orienta-
tions for agent ai. The performance error E(πx) of an x-step
plan πx is the sum of the differences between each flocking
agent’s final orientation after x steps and θ∗, formally

E(πx) =

n−1
X

j=k

|calcDiff(θ∗
, θj(x))| (2)



For each plan π, performance error decreases when more
time steps are available such that E(π0) ≥ E(π1) ≥ E(π2) ≥
. . . ≥ E(π∞). Performance error never increases as more
time steps are available because the optimal behavior given
one additional time step is to either influence the same as
with one fewer time step (and obtain the same performance
error) or influence at least one flocking agent to orient itself
closer to θ∗ (and obtain lower performance error).

The cost of an x-step plan πx is defined as

c(πx) = w1x + w2E(πx) (3)

where w1 is a weight that can be set to emphasize the im-
portance of lesser time steps, x is a scalar representing the
size of the plan πx, and w2 is a weight that can be set to
emphasize the importance of lower performance error. At
the extremes, setting w1 >> w2 encourages finding reason-
ably low performance error in as few steps as possible, while
setting w2 >> w1 encourages minimizing performance error
using as many steps as are needed.

An optimal plan π∗ is one with minimal cost c(π∗). The
optimal number of time steps |x| for a task is the x at which
c(πx) is minimal. Likewise, the optimal cost |c(π)| is equal
to c(π|x|).

In this work, we set w1 to a moderate number and set
w2 to ∞. With these settings for w1 and w2 we obtain the
least-step plan in which all flocking agents orient to θ∗, if
such a plan exists. If such a plan does not exist, then we
obtain a plan with low performance error that uses as few
steps as possible.

3. GENERAL FLOCKING THEOREMS
In this paper we establish the building blocks towards ex-

amining a fully dynamic system of agents in which most
agents base their behavior on the current behavior of neigh-
boring agents and a few agents are controlled by our algo-
rithms. However, the agents controlled by our algorithms
do not appear any different to the other agents, and hence
the other agents do not recognize that these agents are con-
trolled by a different algorithm.

In this section, we present lemmas that are general in na-
ture and will apply to both the stationary and non-stationary
ad hoc agent cases examined in the later sections of this
paper. In particular, in this section we consider the case
in which there are ki(t) ad hoc agents and mi(t) flocking
agents, where all mi(t) flocking agents are located at the
same position pi(t) with identical orientations θi(t) (see Fig-
ure 2 for an example).

a0

a1

a2

a3

a4, a5

Ad hoc agents

Flocking agents

Position pi

Figure 2: An example with two flocking agents located at the
same position with identical initial orientations and four ad hoc
agents located at different locations within the visibility cone of
the flocking agents.

The first lemma we present in this section relates to the
maximal amount the ki(t) ad hoc agents can influence the
mi(t) flocking agents in a single time step.

Lemma 1. The ki(t) ad hoc agents can influence the mi(t)
flocking agents to turn in a particular direction by any amount

less than or equal to ki(t)π
mi(t)+ki(t)

radians in one time step.

Proof. When the difference between θj(t) and θi(t) is
less than π (or greater than π, in which case the difference
is less than π in the opposite direction), then by Equation 1

θi(t + 1) − θi(t) =
1

ni(t)

X

j∈Ni(t)

(θj(t) − θi(t))

≤
ki(t)(π − ǫ)

mi(t) + ki(t)

≤
ki(t)π

mi(t) + ki(t)
−

ki(t)ǫ

mi(t) + ki(t)

<
ki(t)π

mi(t) + ki(t)

When the difference between θj(t) and θi(t) is equal to π,
by Equation 1

θi(t + 1) − θi(t) =
1

ni(t)

X

j∈Ni(t)

(θj(t) − θi(t))

=
ki(t)π

mi(t) + ki(t)

However, it is impossible to guarantee that the flocking
agents turn in a particular direction when the difference be-
tween θj(t) and θi(t) is equal to π. Hence, in this case the ad
hoc agents set θj(t) such that the difference between θj(t)
and θi(t) is π − ǫ or π + ǫ. When the ad hoc agents do this,
directionality can be guaranteed and

θi(t + 1) − θi(t) =
ki(t)(π − ǫ)

mi(t) + ki(t)

<
ki(t)π

mi(t) + ki(t)

The second lemma we present in this section states that
all ki(t) ad hoc agents in a flocking agent’s visibility cone
can adopt the exact same orientation. We show that no
extra influence can be obtained by some of the ad hoc agents
adopting different orientations than the other ad hoc agents.

Lemma 2. When ki(t) ad hoc agents work together to in-
fluence mi(t) flocking agents to align the team to some θ,
it suffices to consider only algorithms that choose at each
time step just one orientation for all of the ad hoc agents to
adopt.

Proof. Assume an algorithm makes the ad hoc agents
adopt orientations θ0(t), . . . , θki(t)−1(t), where some of these
orientations may differ. Then, by Equation 1, the orienta-
tion of the flocking agents is

θf (t + 1) = θf (t) +
1

nf (t)

X

j∈Ni(t)

calcDiff(θj(t), θf (t))

Now, assume the ad hoc agents adopt an angle σ that is the
average of θ0(t), . . . , θki(t)−1(t). Then by Equation 1, the



new orientation is

θf (t + 1) = θf (t) +
ki(t)

nf (t)
(σ)

Since σ is the average of θ0(t), . . . , θki(t)−1(t),

1

nf (t)

X

j∈Ni(t)

calcDiff(θj(t), θf (t)) =
kt(i)

nt(f)
(σ)

Therefore, for every algorithm assigning different orienta-
tions, there is some algorithm assigning the same orienta-
tion, which concludes the proof.

4. STATIONARY AGENTS
In this section we consider the case in which there are

mi(t) flocking agents located at a single position pi with
identical initial orientations and ki(t) ad hoc agents located
at various arbitrary locations. Each agent ai has velocity
vi = 0. This means that although an agent’s orientation
may change, its position will remain constant. An example
is provided in Figure 3.

a0

a1

a2

a3

Flocking agents

Position pi

Ad hoc agents

a6,a7

a5
a4

Figure 3: An example with two flocking agents (a6 and a7) lo-
cated at the same position with identical initial orientations, four
ad hoc agents (a0, a1, a2, and a3) located at different locations
within the visibility cone of the flocking agents, and two ad hoc
agents (a4 and a5) located at different locations outside the cur-
rent visibility cone of the flocking agents.

As the flocking agents are influenced to turn towards θ∗,
different ad hoc agents become available to influence the
flocking agents. This is because some ad hoc agents may no
longer be within the flocking agents’ visibility cone, while
other ad hoc agents may enter the visibility cone. Hence, at
each time step the ad hoc agents must consider the trade-off
between moving the flocking agents maximally towards θ∗

and keeping (or moving) ad hoc agents within the flocking
agents’ visibility cone for future time steps.

In this section, we introduce some new terminology. A
border agent is an ad hoc agent that is located within the
visibility cone of the flocking agents, on the edge of the vis-
ibility cone that is farther away from the target. A border
influence orientation is a flocking agent orientation at which
an ad hoc agent is a border agent. Clearly for each ad hoc
agent, there are exactly two possible border influence orien-
tations — one in which the border agent is located on the
left hand side of the flocking agents’ visibility cone and one
in which the border agent is located on the right hand side
of the visibility cone. See Figure 4 for an example with a
border agent.

Throughout this section, recall that α denotes the angle of
the flocking agent ai’s visibility cone. Additionally, remem-
ber that an ad hoc agent aj ’s location pj(t) = (xj(t), yj(t))
in the environment at time t is located at angle βj(i) with

Visibility cone

Border agent

Border influence orientation

a1

a2
a0

θ∗

Figure 4: An example of a border agent (a0) and the resulting
border influence orientation of the flocking agent (a2).

respect to agent ai’s position pi(t) = (xi(t), yi(t)) and ori-
entation θi(t).

The first lemma in this section puts a bound on the max-
imal amount the flocking agents can be influenced to turn
and still have the same set of ad hoc agents and flocking
agents within the flocking agents’ visibility cone.

Lemma 3. ki(t) ad hoc agents within the neighborhood of
mi(t) flocking agents can influence the mi(t) flocking agents

to turn min(βj(i) + α
2
,

ki(t)π
mi(t)+ki(t)

− ǫ) radians in one time

step and still have the same mi(t) flocking agents and ki(t)
ad hoc agents within the flocking agents’ neighborhood.

Proof. In order for all the ki(t) agents to remain in the
neighborhood of all mi(t) agents at time t + 1, it is nec-
essary for the amount the mi(t) flocking agents turn by

(min(βj(i)+ α
2
,

ki(t)π
mi(t)+ki(t)

− ǫ)) plus the location of the cur-

rent edge of the flocking agents’ visibility cone (θi(t) −
α
2
)

to be less than or equal to the orientation of the position of
the ad hoc agents with respect to the position of the flocking
agents (βj(i) + θi(t)). Hence,

min(βj(i) +
α

2
,

ki(t)π

mi(t) + ki(t)
− ǫ) + θi(t) −

α

2
≤

βj(i) + θi(t)

(4)

when mi(t) flocking agents and ki(t) ad hoc agents are in
each flocking agents’ neighborhood at time t + 1.

If βj(i)+ α
2

<
ki(t)π

mi(t)+ki(t)
− ǫ, then βj(i)+ α

2
+ θi(t)−

α
2
≤

βj(i) + θi(t). The left side of Equation 4 clearly equals the
right side in this case.

Otherwise, if βj(i)+
α
2
≥ ki(t)π

mi(t)+ki(t)
−ǫ, then ki(t)π

mi(t)+ki(t)
−

ǫ+θi(t)−
α
2
≤ βj(i)+θi(t). Since, βj(i)+

α
2
≥ ki(t)π

mi(t)+ki(t)
−ǫ

in this case, the left side of Equation 4 is less than or equal
to the right side.

The second lemma in this section sets a bound on the max-
imum number of time steps needed for the ad hoc agents to
influence the flocking agents to reach θ∗ when θ∗ is reach-
able.

Lemma 4. The ki(t) ad hoc agents can influence the mi(t)
flocking agents to align the team to θ∗ within

Z = 1 + ⌈
min(π

2
, α)

ki(t)π
mi(t)+ki(t)

− ǫ
⌉

time steps when θ∗ is reachable (i.e. the difference between

θi(t) and θ∗ is less than or equal to (Z − 1) ki(t)π
mi(t)+ki(t)

− ǫ +

βj(i) + θi(t)− θi(t + 1) + α
2

and α > (Z − 2) ki(t)π
mi(t)+ki(t)

− ǫ).



Proof. By Lemma 1, ki(t) ad hoc agents can influence

mi(t) flocking agents to turn by ki(t)π
mi(t)+ki(t)

− ǫ on each of

the first Z − 2 time steps. Additionally, by Lemma 3, ki(t)
ad hoc agents can influence mi(t) flocking agents to turn
by βj(i) + θi(t) − θi(t + 1) + α

2
on the Z − 1 time step and

still have have mi(t) flocking agents and ki(t) ad hoc agents
in each flocking agents’ neighborhood. Finally, by Lemma
1 ki(t) ad hoc agents can influence mi(t) flocking agents to

turn by any amount less than or equal to ki(t)π
mi(t)+ki(t)

− ǫ on

the last time step.
Influencing as described above must force the mi(t) flock-

ing agents to align to θ∗; in other words, we must show that

(Z − 2)
ki(t)π

mi(t) + ki(t)
− ǫ + βj(i) + θi(t) − θi(t + 1) +

α

2
+

ki(t)π

mi(t) + ki(t)
− ǫ ≥ π

(5)

By definition we know that α > (Z − 2) ki(t)π
mi(t)+ki(t)

− ǫ and

α ≤ 2π, so the left side of Equation 5 simplifies to 3π +
βj(i) + θi(t) − θi(t + 1) + 2π

Z−2
such that the left side of

Equation 5 is greater than or equal to the right side.

The following theorem states that it is impossible to influ-
ence the flocking agents to orient themselves to θ∗ (assum-
ing it is reachable) in fewer than Z time steps. Remember
that Lemma 4 showed that ki(t) ad hoc agents can influence
mi(t) flocking agents to align the team to θ∗ in Z time steps
when θ∗ is reachable.

Theorem 5. If alignment is possible,

Z = 1 + ⌈
min(π

2
, α)

ki(t)π
mi(t)+ki(t)

− ǫ
⌉

time steps are needed for the ki(t) ad hoc agents to influence
the mi(t) flocking agents to align the team to θ∗.

Proof. Assume, towards contradiction, that there exists
an algorithm in which ki(t) ad hoc agents influence mi(t)
flocking agents to align the team to θ∗ (when alignment is
possible) in Z′ < Z time steps.

By Lemmas 1, 3, and 4, ki(t) ad hoc agents can influence

mi(t) flocking agents to turn ki(t)π
mi(t)+ki(t)

− ǫ on each of the

first Z′ − 2 time steps, by βj(i) + θi(t) − θi(t + 1) + α
2

on

the Z′ − 1 time step, and by at most ki(t)π
mi(t)+ki(t)

− ǫ on time

step Z′. Hence,

(Z′ − 1)
ki(t)π

mi(t) + ki(t)
− ǫ + βj(i) + θi(t) − θi(t + 1) +

α

2

≥ π

(6)

when alignment of the team to θ∗ can be achieved in Z′

time steps. By Lemmas 1 and 3, βj(i) + θi(t) − θi(t + 1) +
α
2
≤ ki(t)π

mi(t)+ki(t)
− ǫ so the left side of Equation 6 becomes

Z′( ki(t)π
mi(t)+ki(t)

− ǫ).

If π
2

> α, then

Z
′ ≤

α
ki(t)π

mi(t)+ki(t)
− ǫ

In this case, the left of Equation 6 becomes

(
α

ki(t)π
mi(t)+ki(t)

− ǫ
)(

ki(t)π

mi(t) + ki(t)
− ǫ) = α =

π

2

Otherwise, if π
2
≤ α, then

Z
′ ≤

π
2

ki(t)π
mi(t)+ki(t)

− ǫ

In this case, the left of Equation 6 becomes

(
π
2

ki(t)π
mi(t)+ki(t)

− ǫ
)(

ki(t)π

mi(t) + ki(t)
− ǫ) =

π

2
< π

leading to a contradiction.

When determining how the ad hoc agents should orient
themselves to optimally influence the flocking agents, we use
a forward search approach (see Figure 5). Specifically, be-
ginning at the initial flocking orientation, we consider each
possible border influence orientation. If the border influence
orientation is reachable from the initial flocking orientation,
then we consider each possible border influence orientation
from this point. If the border influence orientation is not
reachable from the initial flocking orientation, then we turn
to the farthest reachable point and then determine if the
border influence orientation is now reachable (and repeat
this process until the border influence orientation is reach-
able). We repeat this process until the target is within reach,
and we select the plan that reaches the target in the fewest
number of steps.

Initial orientation

Option 3: Turn maximally

a0

a1

a2

Option 1: Turn to border agent a0Option 2: Turn to border agent a1

a3

Figure 5: An example of the possible subsequent flocking agent
orientations for a given initial orientation. The ad hoc agents are
labelled with a0, a1, and a2, while the flocking agent is labelled
with a3. Note that turning to border agent a2 is not possible in
the first time step.

A forward search such as this requires checking 2k possi-
ble combinations of the number of ad hoc agents influencing
the flocking agents at each time step. Consider the case
where there are three ad hoc agents. The following eight
combinations of targets covers all possible combinations:
[a0, a1, a2], [a0, a1], [a0, a2], [a0], [a1, a2], [a1], [a2], []. By con-
vention, agent a0 will be oriented farther from the target
than agent a1, which will be oriented farther from the tar-
get than agent a2, and so on. See Figure 6 for an example
with two ad hoc agents and one flocking agent.

Algorithm 2 uses such a forward search approach to cal-
culate and return the number of steps needed to reach θ∗
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Figure 6: Example with two ad hoc agents (a0 and a1) and one
flocking agent (a2). On step 1, the flocking agent turns to have
a0 as a border agent. Then on step 2, the flocking agent turns
as much as possible towards θ∗. Finally, on step 3 the flocking
agent turns to θ∗.

and the necessary orientations for each of the ad hoc agents
for each of these steps. Throughout the algorithm, ele-
ment.get(x) returns the 0-indexed x item in element (where
element is a list object), element.add(y) adds item y to the
end of element, and element.size() returns the number of
items contained in element. The variables used through-
out Algorithm 2 are defined in Table 1. Remember that
although the ki(t) ad hoc agents are located at many arbi-
trary locations, the mi(t) flocking agents are located at a
single position pi and begin with identical orientations.

Variable Definition

adHocOrient the orientation the ad hoc agents must adopt
at this time step in order for the flocking
agents to reach target from current

bestAHPlan the ad hoc agent plan that uses the least num-
ber of time steps to reach θ

∗

bestFSeq the flocking sequence of orientations that uses
the least number of time steps to reach θ

∗

borderTarget the border influence orientation needed to be
a border agent

ccw whether the flocking agents are rotating
counter-clockwise

current the orientation the flocking agents are cur-
rently oriented towards

currentAHPlan the plan containing the orientations for each
ad hoc agent at each time step so far

currentFSeq the sequence of orientations for the flocking
agents at each time step so far

initFOrient the initial orientation of the flocking agents
maxSteps the maximum number of steps a plan can be
numAH the number of ad hoc agents within the flock-

ing agents’ visibility cone
numF the number of flocking agents
target the orientation the flocking agents should be

oriented towards on the next time step
targetReachable whether target is reachable from current

Table 1: Variables used in Algorithm 2.

In the worst case, line 1 will be executed 2numAH times,
line 4 will execute numAH+1 times, and line 6 will execute
maxSteps times. Hence, lines 7-24 are executed at most
(2numAH)(numAH + 1)(maxSteps) times.

Theorem 6. Given θ∗ and assuming the mi(t) flocking
agents are influenced only by the ki(t) ad hoc agents and the
mi(t) flocking agents at time t, then if θ∗ is reachable, the
ad hoc agents are guaranteed to lead the flocking agents to
θ∗ in the least number of time steps possible when the ad
hoc agents determine their plan based on Algorithm 2 and
the number of steps required is not larger than maxSteps.

Proof. There are exactly 2numAH possible ad hoc agent
combinations. Hence, by line 1, Algorithm 2 is guaranteed
to consider each possible ad hoc agent combination.

Each border influence orientation target is considered un-
til it is reachable or the plan size becomes larger than maxSteps

Algorithm 2 plan, steps = calcPlan()

1: for each possible ad hoc agent combination do

2: currentFSeq, currentAHPlan← empty list
3: current← initFOrient
4: for each borderTarget in this ad hoc agent combination do

5: targetReachable← false
6: while targetReachable == false ∧ currentFSeq.size() <

maxSteps ∧ bestFSeq.size() > currentFSeq.size() do

7: target← borderTarget
8: if ccw then

9: target← target + α
2

10: else

11: target← target− α
2

12: if |calcDiff(current, target)| > numAHπ
numAH+numF then

13: targetReachable← false
14: if ccw then

15: target← current + numAHπ
numAH+numF − ǫ

16: else

17: target← current− numAHπ
numAH+numF + ǫ

18: else

19: targetReachable← true

20: adHocOrient←
|calcDiff(target, current)|∗(numF+numAH)

numAH +
target

21: currentFSeq.add(target)
22: for each ad hoc agent x in the flocking agents’ visibility

cone when facing current do

23: currentAHPlan.get(x).add(adHocOrient)
24: current← target
25: if currentFSeq is smaller than bestFSeq then

26: bestFSeq← currentFSeq
27: bestAHPlan← currentAHPlan
28: return bestAHPlan, bestFSeq.size()

(line 6), and necessary ad hoc orientations are added to the
currentAHPlan and targets are added to the currentFSeq
until it is reachable or the plan size becomes larger than
maxSteps. The currentFSeq and currentAHPlan become
the bestFSeq and bestAHPlan (lines 25-27) only if they use
less steps to reach θ∗ than the current bestFSeq and bestAH-
Plan. Line 25 will not be reached until all border orientation
targets for a particular set of ad hoc agent combinations have
been considered and θ∗ has been reached or the plan size be-
comes larger than maxSteps. Hence, since the best possible
ad hoc agent combinations are guaranteed to be considered
and the number of steps required will not be larger than
maxSteps, we are guaranteed that the bestAHPlan that is
returned by Algorithm 2 is the least-step plan possible.

Algorithm 2 has been implemented and tested in our custom-
designed simulator FlockSim. Results from experiments us-
ing FlockSim are given in Section 5.

5. NON-STATIONARY AD HOC AGENTS
In this section we consider the case in which there are

mi(t) flocking agents that are all located at position pi with
identical initial orientations. These flocking agents will re-
main at position pi forever, but may change orientation if
influenced by at least one ad hoc agent. In order to facilitate
this, there are ad hoc agents located at arbitrary locations
in the environment that can each travel with some constant
velocity.

In the stationary ad hoc agents section, the main decision
for each ad hoc agent was whether to influence the flock-
ing agents to turn maximally towards θ∗ or to influence the
flocking agents to turn such that one of the ad hoc agents
becomes a border agent. However, determining exactly how
non-stationary ad hoc agents should behave is a more diffi-
cult problem. Hence, in this preliminary work we consider



some heuristic approaches for how non-stationary ad hoc
agents should behave.

In the stationary ad hoc agents case, it did not matter how
the ad hoc agents that were not within any flocking agent
visibility cones behaved because they had no influence over
any flocking agents. However, non-stationary ad hoc agents
travel in the direction they are facing, so it does matter
what orientation they face even when they are not within
the visibility cone of any flocking agents. Hence, in this work
we present two heuristic behaviors for ad hoc agents that are
not within the visibility cone of any flocking agents.

Towards Flocking Agent Orient towards the position of
the flocking agent.

Towards Visibility Cone Orient towards the closest point
on the flocking agents’ visibility cone from the ad hoc
agent’s current position.

The performance of each of these behaviors is studied em-
pirically later in this section and reported on in Figure 7.
Although one of these behaviors must currently be chosen
by the user for each trial, the optimal behavior likely con-
sists of some combination of these behaviors and perhaps
other behaviors. The exact situations in which each behav-
ior should be utilized have not yet been determined. How-
ever, there are some situations where each behavior may be
best. Moving towards the visibility cone may be ideal when
no ad hoc agents are currently in the visibility cone to in-
fluence the flocking agent, as the flocking agent will not be
able to be influenced until at least one ad hoc agent moves
within its’ visibility cone. On the other hand, moving to-
wards the flocking agent may be ideal when there are ad hoc
agents currently within the flocking agents’ visibility cone,
as moving closer to the flocking agent now will decrease the
number of time steps required for the ad hoc agent to enter
the flocking agents’ visibility cone in future time steps.

The general behavior for non-stationary ad hoc agents
that are inside a flocking agent’s visibility cone is similar
to the behavior of stationary ad hoc agents. Specifically,
the non-stationary ad hoc agents will either influence the
flocking agents to turn maximally or they will influence the
flocking agents to turn such that an ad hoc agent is at the
edge of the visibility cone (and hence a border agent). The
main difference between the stationary ad hoc agents behav-
ior and the non-stationary ad hoc agents behavior is that
now the border agent must be on the edge of the visibility
cone after updating its location. There are exactly two ori-
entations at which a non-stationary ad hoc agent can orient
and be a border agent. One of these orientations results in
the ad hoc agent becoming a border agent on the left hand
side of the visibility cone, while the other orientation results
in the ad hoc agent becoming a border agent on the right
hand side of the visibility cone. There must be exactly two
orientations at which a non-stationary ad hoc agent can ori-
ent and be a border agent because any other orientations
will result in either the flocking agents being influenced to
turn farther and the ad hoc agent no longer moving enough
to move into the visibility cone or in the flocking agents not
being influenced to turn as much and the ad hoc agent being
too far inside the visibility cone to be a border agent. We
could find the exact orientation at which a non-stationary
ad hoc agent can orient and be a border agent by perform-
ing a binary search for the exact orientation. However, we

instead use a simpler, more efficient heuristic approach that
finds an orientation close to the exact orientation that would
be found by the binary search such that the ad hoc agent is
still within the flocking agents’ visibility cone after moving.

Non-stationary ad hoc agents clearly have more influence
than stationary ad hoc agents. In some situations, conver-
gence of the flocking agents to θ∗ is able to occur quicker.
In other situations, non-stationary ad hoc agents are able
to lead the flocking agents to converge to θ∗ in cases where
stationary ad hoc agents would be unable to. There are sit-
uations in which an ad hoc agent can travel into the flocking
agent’s visibility cone and influence when it would have been
unable to influence if it were stationary. In fact, stationary
flocking agents can always be influenced to reach θ∗ eventu-
ally when non-stationary ad hoc agents are utilized.

Empirical Evaluation
All of the heuristic behaviors discussed in this section have
been implemented and tested in FlockSim. Earlier in this
section we presented two heuristic behaviors for ad hoc agents
that are located outside of the flocking agents’ visibility
cone. Now we examine each of these behaviors in FlockSim,
and study (1) is there a significant difference in the num-
ber of steps required for the flocking agents to orient to θ∗

with each heuristic behavior and (2) how well do our ad
hoc agents perform when compared with the naive method
used by others (e.g. [7, 12]) in which the controllable agents
orient towards θ∗ such that the flock slowly converges to θ∗?

Figure 7: Results obtained using FlockSim on three different
team configurations over 1000 trials.

The results of our experiments are presented in Figure 7.
For these experiment, v = 50 for the ad hoc agents, α = 90◦,
θ∗ = 270◦, the initial flocking orientation was 90◦, and the
ad hoc agents and flocking agents were placed randomly in
a 950 by 500 environment. Each of the runs within the
three possible team configurations used the same random-
ization seed. maxSteps was set to 100, such that no trials
stopped due to the plan size exceeding maxSteps. When run
with teams composed of one to four non-stationary ad hoc
agents and one to four stationary flocking agents on a Dell
Precision-360 desktop computer, an optimal plan is found
in 0.00368103 seconds on average.

As clearly seen in Figure 7, Towards Visibility Cone

performs better than Towards Flocking Agent in all the
configurations utilizing ad hoc agents. In order to determine
whether there is a significant difference in the number of
steps required for the flocking agents to orient to θ∗, we ran
a Student’s t-test on the step counts from the 1000 runs
for each pair of heuristic behaviors. For each of the three
pairs, we found the difference to be statistically significant



at p = 0.05. Towards Visibility Cone likely performed
better because getting into the visibility cone faster allows
the ad hoc agent to influence the flocking agent sooner.

Figure 7 also clearly shows that our ad hoc agent algo-
rithms perform significantly better than the naive method
in which the controllable agents orient towards θ∗. Our ad
hoc agent algorithms performed better because we purposely
orient the ad hoc agents past θ∗ in order to orient the flock-
ing agents exactly to θ∗ quickly. It is important to note
that in this experiment we relaxed the definition of ‘reach-
ing’ θ∗ for the naive method. Due to the way in which the
naive method slowly converges, under our strict definition
of ‘reaching’, the naive methods would very rarely converge.

6. RELATED WORK
Although there has been much work in the field of mul-

tiagent teamwork, there has been relatively little work to-
wards getting agents to collaborate towards a common goal
without pre-coordination. Most prior multiagent teamwork
research requires explicit coordination protocols or commu-
nication protocols (e.g. SharedPlans, STEAM, and GPGP)
[5, 13, 4]. However, our work is different in that we do not
assume that any protocol is known by all agents.

Han, Li and Guo study how one agent can influence the
direction in which an entire flock of agents is moving [6].
Similarly to our work, in their work each agent follows a
simple control rule based on its neighbors. However, unlike
our work they only consider one ad hoc agent with unlimited,
non-constant velocity. This allows their ad hoc agent to
move to any position in the environment within one time
step, which is unrealistic.

Reynolds introduced the original flocking model when he
presented three flocking behaviors — collision avoidance, ve-
locity matching, and flock centering [9]. His work was fo-
cused on creating graphical models that looked and behaved
like real flocks, and hence did not consider adding control-
lable agents to the flock like we do.

Vicsek et al. considered just the flock centering aspect of
Reynolds’ model [14]. Hence, they use a model where all of
the particles move at a constant velocity and adopt the av-
erage direction of the particles in their neighborhood. How-
ever, like Reynolds’ work, they were only concerned with
simulating flock behavior and not with adding controllable
agents to the flock.

Jadbabaie, Lin, and Morse build on Vicsek et al.’s work
[7]. They use a simpler direction update than Vicsek et
al. and they show that a flock with a controllable agent will
eventually converge to the controllable agent’s heading. Like
us, they show that a controllable agent can be used to influ-
ence the behavior of the other agents in a flock. However,
they are only concerned with getting the flock to converge
eventually, whereas we attempt to do so as quickly as possi-
ble. Su, Wang, and Lin also present work that is concerned
with using a controllable agent to make the flock converge
eventually [12].

Jones et al. perform an empirical study of dynamically
formed teams of heterogeneous robots in a multirobot trea-
sure hunt domain [8]. They assume that all of the robots
know they are working as a team and that all of the robots
can communicate with one another, whereas in our work we
do not assume that the teammates realize they are working
on a team with the ad hoc agents.

7. CONCLUSIONS
In this paper, we consider the problem of leading a flock

of agents to a desired orientation using a subset of ad hoc
agents. This paper’s major contributions are (1) a specifica-
tion for the flocking problem as a new scenario for studying
ad hoc teamwork and (2) an initial theoretical and empirical
analysis of this problem. We first set bounds on the extent
of influence the ad hoc agents can have on the team when all
the agents are stationary, and then we subsequently exam-
ine the more complicated problem of orienting a stationary
team using a set of non-stationary ad hoc agents.

Although we begin to consider the non-stationary ad hoc
agent case in this work, it is just an initial step towards solv-
ing the general case of non-stationary ad hoc and flocking
agents. As such, we plan to extend the work presented here
towards this general case in the near future. Additionally, as
this paper introduces flocking from the ad hoc perspective,
there are many exciting directions for future work, such as
exploring different neighborhood models, and determining
if there is an optimal behavior for non-stationary ad hoc
agents that are outside the flocking agents’ visibility cone.
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