

A Learning Agent for Heat-Pump **Thermostat Control**

Daniel Urieli and Peter Stone

Department of Computer Science

The University of Texas at Austin

{urieli,pstone}@cs.utexas.edu

BUILDINGS ENERGY DATA BOOK

Current and Past Editions

Glossary

Popular Tables

Query Tools

Contact Us

Search

Chapter 1: Buildings Sector

BUILDINGS ENERGY DATA BOOK

Current and Past Editions

Glossary

Popular Tables

Query Tools

Contact Us

Search

Chapter 2: Residential Sector

RESIDENTIAL SITE ENERGY CONSUMPTION BY END USE

Heat-Pump based HVAC System

- Heat-pump is widely used and highly efficient
 - Its heat output is up to 3x-4x the energy it consumes
 - Consumes electricity (rather than gas/oil based)
 can use renewable resources
 - But: no longer effective in freezing outdoor temperatures
- Backed up by an auxiliary heater
 - Resistive heat coil
 - Unaffected by outdoor temperatures
 - But: consumes 2x the energy consumed by the heat-pump heater
- Heat pump is also used for cooling

Thermostat – an HVAC System's Decision Maker

- The thermostat :
 - Controls Comfort
 - Significantly affects energy consumption
- Current interest evident from the appearance of startup companies like NEST, as well thermostats by more traditional companies like Honeywell

Goal:

Minimize energy consumption while satisfying comfort requirements

Goal:

Minimize energy consumption while satisfying comfort requirements

Contributions:

- 1. A complete reinforcement learning agent that learns and applies a new, adaptive control strategy for a heat-pump thermostat
- Our agent achieves 7.0%-14.5% yearly energy savings, while maintaining the same comfort level, comparing to a deployed strategy

www.dot.go

Simulation Environment

- GridLAB-D: A realistic smart-grid simulator, simulates power generation, loads and markets
- Open-source software, developed for the U.S. DOE, simulates seconds to years
- Realistically models a residential home
 - Heat gains and losses, thermal mass, solar radiation and weather effects, uses real weather data recorded by NREL (www.nrel.gov)

Problem Setup

Simulating a typical residential home

 Goal: minimize energy consumed by the heat-pump, while satisfying the following comfort spec:

Occupants are

12am-7am: At home.

7am-6pm: Not at home.
 (the "don't care" period)

6pm-12am: At home.

Can We Just Shut-Down The Thermostat During "don't-care" Period?

- Effective way to save energy
 - Indoor temp. closer to outdoor heat dissipation slows down
- Simulating it...

- In this case, the result is:
 - Increased energy consumption
 - Failure to satisfy the comfort spec

Can We Just Shut-Down The Thermostat During "don't-care" Period?

- Effective way to save energy
 - Indoor temp. closer to outdoor heat dissipation slows down
- Simulating it...

Therefore, people frequently prefer to leave the thermostat on all day

- In this case, the result is:
 - Increased energy consumption
 - Failure to satisfy the comfort spec

Can We Just Shut-Down The Thermostat During "don't-care" Period?

- Effective way to save energy
 - Indoor temp. closer to outdoor heat dissipation slows down
- Simulating it...

Therefore, people frequently prefer to leave the thermostat on all day

However, a smarter shutdown should still be able to save energy while maintaining comfort

- In this case, the result is:
 - Increased energy consumption
 - Failure to satisfy the comfort spec

From the US Dept. of Energy's website

Challenges

Desired behavior:

- Maximize shut-down time while staying above the heat-pump slope
- Similarly for cooling (no AUX)

Challenges:

- The heat-pump slope:
 - Is unknown in advance
 - Changes every day
 - Depends on future weather
 - Depends on specific house characteristics
- Action effects are:
 - Drifting rather than constant: since heat is being moved rather than generated, heat
 output strongly depends on the temperatures indoors, outdoors and along the heat path
 - Noisy due to hidden physical conditions
 - Delayed due to heat capacitors like walls and furniture
- Also, in a realistic deployment:
 - Exploration cannot be too long or too aggressive
 - Customer acceptance will probably depend on worst-case behavior
- Making decisions in continuous, high dimensional space

- States:
- Actions:

Reward:

- Action is taken every 6 minutes
 - Modeling a realistic lockout of the system

- States:
- Actions: {COOL, OFF, HEAT, AUX}

1 : 0 : 2 : 4 \leftarrow consumption (e_a) proportion

- Transition:
- Reward:

- Terminal States:
- Action is taken every 6 minutes
 - Modeling a realistic lockout of the system

- States:
- Actions: {COOL, OFF, HEAT, AUX}
 1 : 0 : 2 : 4 consumption (e_a) proportion

- Transition:
- Reward: $-e_a 100000 \, \Delta^2_{6pm}$ where: $\Delta^2_{6pm} := (indoor_temp_at_6pm - required_indoor_temp_at_6pm)$
- Terminal States:
- Action is taken every 6 minutes
 - Modeling a realistic lockout of the system

- States: ???
- Actions: {COOL, OFF, HEAT, AUX}
 - 1 : 0 : 2 : 4 \leftarrow consumption (e_a) proportion

- Transition:
- Reward: $-e_a 100000 \, \Delta^2_{6pm}$ where: $\Delta^2_{6pm} := (indoor_temp_at_6pm - required_indoor_temp_at_6pm)$
- Terminal States:
- Action is taken every 6 minutes
 - Modeling a realistic lockout of the system

How Should We Model State?

- Choosing a state representation is an important design decision. A state variable:
 - captures what we need to know about the system at a given moment
 - is the variable around which we construct value function approximations
 [Powell 2011]
- Definition 5.4.1 from [Powell 2011]:
 - A state variable is the minimally dimensioned function of history that
 is necessary and sufficient to compute the decision function, the
 transition function, and the contribution function.

- States: <T_{in}, Time, e_a>
 Actions: {COOL, OFF, HEAT, AUX}
 1: 0: 2: 4 consumption (e_a) proportion
- Reward: $-e_a 100000 \, \Delta^2_{6pm}$ where: $\Delta^2_{6pm} := (indoor_temp_at_6pm - required_indoor_temp_at_6pm)$
- Terminal States:
- Action is taken every 6 minutes
 - Modeling a realistic lockout of the system

- States: <T_{in}, Time, e_a>
- Actions: {COOL, OFF, HEAT, AUX}
 - 1 : 0 : 2 : 4 \leftarrow consumption (e_a) proportion

- Transition:
- Reward: $-e_a 100000 \, \Delta^2_{6pm}$ where: $\Delta^2_{6pm} := (indoor_temp_at_6pm - required_indoor_temp_at_6pm)$
- Terminal States:
- Action is taken every 6 minutes
 - Modeling a realistic lockout of the system

Expanding State to Compute the Transition Function

- Can we predict action effects for each of the state variables?
- Current state representation: <T_{in}, Time, e_a>
- Need to be able to predict T_{in} and e_a
- Method: generate simulated data, use cross-validation to test for regression prediction accuracy

Prediction error is unacceptably high – state <T_{in}, Time, e_a > doesn't capture enough information

- Prediction error is unacceptably high state <T_{in}, Time, e_a > doesn't capture enough information
- Add T_{out} directly affects T_{in}. Prediction error still unacceptably high

- Prediction error is unacceptably high state <T_{in}, Time, e_a> doesn't capture enough information
- Add T_{out} directly affects T_{in}. Prediction error still unacceptably high
- Noise explained as hidden home state add history of observable information
 - Previous action

- Prediction error is unacceptably high state <T_{in}, Time, e_a > doesn't capture enough information
- Add T_{out} directly affects T_{in}. Prediction error still unacceptably high
- Noise explained as hidden home state add history of observable information
 - Previous action
 - Measured T_{in} history of 10 temperatures: <t₀>

- Prediction error is unacceptably high state <T_{in}, Time, e_a > doesn't capture enough information
- Add T_{out} directly affects T_{in}. Prediction error still unacceptably high
- Noise explained as hidden home state add history of observable information
 - Previous action
 - Measured T_{in} history of 10 temperatures: <t₀, t₁>

- Prediction error is unacceptably high state <T_{in}, Time, e_a > doesn't capture enough information
- Add T_{out} directly affects T_{in}. Prediction error still unacceptably high
- Noise explained as hidden home state add history of observable information
 - Previous action
 - Measured T_{in} history of 10 temperatures: <t₀, t₁, t₂>

- Prediction error is unacceptably high state <T_{in}, Time, e_a> doesn't capture enough information
- Add T_{out} directly affects T_{in}. Prediction error still unacceptably high
- Noise explained as hidden home state add history of observable information
 - Previous action
 - Measured T_{in} history of 10 temperatures: <t₀, t₁, t₂, ..., t₉>

- Prediction error is unacceptably high state <T_{in}, Time, e_a > doesn't capture enough information
- Add T_{out} directly affects T_{in}. Prediction error still unacceptably high
- Noise explained as hidden home state add history of observable information
 - Previous action
 - Measured T_{in} history of 10 temperatures: <t₀, t₁, t₂, ..., t₉>
 - Resulting state: <T_{in}, T_{out}, Time, e_a, prevAction, t₀, ...,t₉>

Completing the state definition

- Resulting state: <T_{in}, T_{out}, Time, e_a, prevAction, t₀, ...,t₉ >
- Can we predict the newly added variables?
- Trivially, except for T_{out}
- Therefore, add weatherForecast to state
- weatherForecast doesn't need to be predicted in our transition function
- This completes our state definition
- The final resulting state is:

```
<T<sub>in</sub>, T<sub>out</sub>, Time, e<sub>a</sub>, prevAction, t<sub>0</sub>, ...,t<sub>9</sub>, weatherForecast>
```

- States: <T_{in}, T_{out}, Time, e_a, prevAction, t₀, ...,t₉, weatherForecast>
- Actions: {COOL, OFF, HEAT, AUX}
 1 : 0 : 2 : 4 consumption (e_a) proportion
- Transition: unknown in advance ⇒ learned
- Reward: $-e_a 100000 \, \Delta^2_{6pm}$ where: $\Delta^2_{6pm} := (indoor_temp_at_6pm - required_indoor_temp_at_6pm)$
- **Terminal States:** {s | s.time = 11:59pm}
- Action taken every 6 minutes
 - Modeling a realistic lockout of the system
- State space is continuous and high dimensional

Exploration

- Random actions for 3 days
- Could use more advanced exploration policy
- However, this is still a realistic setup

Exploration

- Random actions for 3 days
- Could use more advanced exploration policy
- However, this is still a realistic setup
 - For instance when occupants are traveling during the weekend

Update House Model from Data

- Every midnight, use all the recorded data <s, a, s'> to estimate the house's transition function
- Linear Regression to estimate <s,a>→ s'

Choosing the Best Action

- Dealing with continuous high-dimensional state space
- Impractical to compute a value function
- Run a tree search at every step
- Choose the first action of the best search as the next action

Safety Buffer in a Tree Search

Results

- Simulate 1 year under different weather conditions
- 21 residential homes of sizes 1000-4000 ft²
- Using real weather data recorded in

Why cold cities? Since heating consumes 2x-4x more energy

Temperature Graphs – Learned Setback Policy

Energy Savings

Comfort Performance

In more than 22,000 simulated days

Related Work

- [Rogers et al. 2011] adaptive thermostat that tries to minimize price & peak demand rather than the total amount of energy.
- [Hafner and Riedmiller 2011; Kretchmar 2000] use RL to tune an HVAC system.
- [T. Peffer et al. 2011] How people use thermostats in homes
- Learning thermostats in commercial companies
 - NEST, Honeywell...
 - Technical details and actual performance are not published

Summary

A complete, adaptive, RL agent for controlling a heat-pump thermostat

- Techniques:
 - Carefully defined the problem as an MDP
 - Carefully chose a state representation
 - Using an efficient, specialized tree-search
- Experiments run on a range of homes and weather conditions

Achieves 7%-14.5% yearly energy savings in simulation, while satisfying comfort requirements, comparing to the deployed strategy

Thank you!

BACKUP

Ablation Analysis

Table 1: Ablation Analysis

Analysis Type		Energy Consumption (kWh)	Comfort Violations (#)	Range of 6pm Temp.
Removed Feature	prevAct+hist+ conf	1112(+9.5%)	232	60.1-84.4
	prevAct+hist	1070(+5.4%)	193	60.8-80.9
	conf	1024(+0.8%)	138	67.5-78.3
	hist	1016(+0.0%)	133	67.1-77.7
	$\operatorname{prevAct}$	1015(+0.0%)	65	67.8-76.5
Other conf. bounds	2σ	1090(+7.3%)	29	69.0-78.5
	c = 2	1039(+2.3%)	27	69.0-77.8
Final Agent		1015	23	68.8-76.6

- Removing features and their combinations
 - State features:
 - prevAct: previousAction
 - Hist: temperature history t₀, ..., t₉
 - conf: confidence buffer
- Setting other values to the confidence bound