
Source Task Creation for Curriculum Learning

Sanmit Narvekar, Jivko Sinapov, Matteo Leonetti, and Peter Stone
Department of Computer Science, University of Texas at Austin

Austin, Texas, USA
{sanmit, jsinapov, matteo, pstone}@cs.utexas.edu

ABSTRACT
Transfer learning in reinforcement learning has been an ac-
tive area of research over the past decade. In transfer learn-
ing, training on a source task is leveraged to speed up or
otherwise improve learning on a target task. This paper
presents the more ambitious problem of curriculum learning
in reinforcement learning, in which the goal is to design a
sequence of source tasks for an agent to train on, such that
final performance or learning speed is improved. We take
the position that each stage of such a curriculum should be
tailored to the current ability of the agent in order to pro-
mote learning new behaviors. Thus, as a first step towards
creating a curriculum, the trainer must be able to create
novel, agent-specific source tasks. We explore how such a
space of useful tasks can be created using a parameterized
model of the domain and observed trajectories on the target
task. We experimentally show that these methods can be
used to form components of a curriculum and that such a
curriculum can be used successfully for transfer learning in
2 challenging multiagent reinforcement learning domains.

Keywords
Reinforcement Learning; Transfer Learning; Curriculum Learn-
ing

1. INTRODUCTION
As autonomous agents are called upon to perform increas-

ingly difficult tasks, new techniques will be needed to make
learning such tasks tractable. Transfer learning [10, 27] is
a recent area of research that has been shown to speed up
learning on a complex task by transferring knowledge from
one or more easier source tasks. However, most transfer
learning methods assume the set of source tasks is provided,
and treat the transfer of knowledge as a one-step process.
Paradigms such as multi-task reinforcement learning and
lifelong learning consider learning multiple tasks, but typi-
cally focus on optimizing performance over all tasks, and/or
still require the set of tasks to be provided.

In this paper, we extend transfer learning to the prob-
lem of curriculum learning. As a motivating example, con-

Appears in: Proceedings of the 15th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2016),
J. Thangarajah, K. Tuyls, C. Jonker, S. Marsella (eds.),
May 9–13, 2016, Singapore.
Copyright c© 2016, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Figure 1: Different subgames in Quick Chess

sider the game of Quick Chess1 (Figure 1). Quick Chess
is a game designed to introduce players to the full game
of chess, by using a sequence of progressively more difficult
“subgames.” For example, the first subgame is a 5x5 board
with only pawns, where the player learns how pawns move
and about promotions. The second subgame is a small board
with pawns and a king, which introduces a new objective:
keeping the king alive. In each successive subgame, new ele-
ments are introduced (such as new pieces, a larger board, or
different configurations) that require learning new skills and
building upon knowledge learned in previous games. The
final game is the full game of chess.

The question that motivates us is: can we find an optimal
sequence of subgames (i.e. a curriculum) for an agent to play
that will make it possible to learn the target task of chess
fastest, or at a performance level better than learning from
scratch?

We postulate that the effectiveness of such a curriculum
depends crucially on the quality of the source tasks that
compose it and the current learning abilities of the agent.
As in Quick Chess, tasks should be designed to build upon
existing knowledge and promote learning new skills. How-
ever, unlike Quick Chess, the tasks need not be the same for
all agents. Thus, as a first step towards curriculum develop-
ment, this paper focuses on how to automatically construct
a space of useful subtasks. Our approach uses knowledge
of the problem encoded via a parameterized model of the
domain, and observes the agent’s performance on the target
task and each prior task in the curriculum, in order to sug-
gest new source tasks tailored to the abilities of the agent.

Our three contributions are as follows. First, we intro-
duce the problem of curriculum learning in the context of
reinforcement learning (Section 3). Second, we propose a set
of methods that can produce a space of agent-specific sub-
tasks suitable for use in a curriculum (Section 4). Third, we

1http://www.intplay.com/uploadedFiles/Game Rules/P20051-
QuickChess-Rules.pdf



experimentally show that training using a curriculum has a
strong impact on the learning speed or performance of an
agent, and that the sequence of tasks in the curriculum does
matter. Furthermore, we demonstrate that the methods pro-
posed can create such a curriculum, and be used successfully
for transfer learning in Section 5. Section 6 compares our
work with existing literature, and Section 7 concludes.

2. BACKGROUND
We represent a task as an episodic Markov Decision Pro-

cess (MDP) M . An MDP is a tuple (S,A, P,R, S0, Sf ),
where S is the set of states, A is the set of actions, P :
S × A 7→ Π(S) is a transition function that gives the prob-
ability of moving to a new state given the current state and
an action, and R : S × A 7→ R is a reward function that
gives the immediate reward for taking an action in a state.
S0 7→ Π(S) denotes the distribution over starting states, and
Sf represents the set of terminal states.

At each step, an RL agent observes its current state and
chooses an action according to its policy π : S 7→ A. The
goal of the agent is to learn an optimal policy π∗ that max-
imizes the long-term expected sum of discounted rewards
for some target task Mt. One standard way of doing this
is to learn the optimal action-value function Q∗(s, a), which
gives the expected return for taking action a in state s and
following policy π∗ after:

Q∗(s, a) = R(s, a) +
∑
s′

P (s′|s, a) max
a′

Q∗(s′, a′)

Q∗ is the unique solution to the Bellman equation above
for all (s, a) pairs, and can be learned using methods such
as Q-learning or Sarsa [22]. An optimal policy consists of
choosing arg maxaQ

∗(s, a) in each state.
In transfer learning, instead of learning directly on the

target task Mt, the agent trains on one or more easier source
tasks Ms, and transfers the knowledge acquired to the target
task. This knowledge can take the form of samples [11, 12],
options [21], policies [6], models [5], or value functions [26].
In this paper, we consider value function transfer, which uses
the parameters of an action-value function Qs(s, a) learned
in a source task to initialize the action-value function in the
target task Qt(s, a).

There are several metrics to quantify the benefit of trans-
fer [27]. Typically, they compare the learning trajectory on
the target task for an agent after transfer, with an agent
that learns directly on the target task from scratch. In this
work, we use asymptotic performance, which compares the
final performance in the target task of learners when using
transfer versus no transfer, and the jumpstart metric, which
measures the initial performance increase on a target task
as a result of transfer.

3. PROBLEM FORMULATION
In curriculum learning, the goal is to generate a sequence

of source tasks M1,M2, . . .Mt for an agent to train on, such
that the final asymptotic performance increases, or the learn-
ing time to reach a desired performance threshold decreases,
versus following any other curriculum. As an important step
towards this, we first define the domain D of possible tasks:

Definition 1. A domain D is a set of MDPs that can be
expressed by varying a set of degrees of freedom, and apply-
ing a set of restrictions.

The degrees of freedom F of a domain are a vector of
features [F1, F2, . . . Fn] that parameterize the domain. For
example, in the Quick Chess domain, possible degrees of
freedom could be the size of the board, the number of each
type of piece, or whether special rules such as castling or
en passant are allowed. Each Fi ∈ F has a range of val-
ues Rng(Fi) that represents the possible values that feature
can take. Furthermore, we assume there is an ordering de-
fined over each Rng(Fi) that corresponds to task complexity.
Collectively, these degrees of freedom encode our domain
knowledge in the task.

An instantiation of F in D results in a specific task (an
MDP). We assume we have a generator τ that can create
tasks given a domain and degree of freedom vector:

τ : D × F 7→M

By restrictions, we mean the set of tasks that can be
formed by eliminating certain actions or states, modifying
the transition or reward function, or changing the starting
or terminal distributions of MDPs generated by τ .

Informally, D captures the universe of possible source tasks
for use within the curriculum and could be potentially infi-
nite in size. The goal of this paper is to create a subset of
tasks in D that might be suitable for learning a given target
task, using knowledge of the domain, and tailored to the
performance and abilities of the learning agent.

Formally, given a target task MDPMt and trajectory sam-
ples X consisting of tuples (s, a, s′, r) from following some
policy πt on Mt, the goal is to create suitable source tasks
Ms ∈ D that will lead to a policy in Mt that is better than
πt. Specifically, we want functions f of the following form:

f : Mt ×X 7→Ms

The overall process we propose is an incremental develop-
ment of subtasks culminating in a full curriculum: an agent
first tries learning Mt, but gets stuck at suboptimal policy
πt. X is generated from πt, and used to generate a space of
possible source tasks tailored for this agent at this particular
point in its learning process. For now, we assume a separate
process is available to select a suitable source task Ms from
this space, and leave for future work an automated way of
finding it. The procedure then repeats, with Ms possibly
becoming the new Mt, until a curriculum emerges.

4. SEARCH SPACE FOR SOURCE TASKS
In this section, we describe several methods that can serve

as f to create suitable source tasks for a target task. Intu-
itively, there are many different ways in which a task could
be a useful source for transfer to Mt: it could have a smaller
or more abstract state space; it could have some actions re-
moved; it could focus on a useful subgoal; or it could drill
a common mistake. Some of these source tasks could be
generated by simply manipulating the degrees of freedom
F , and indeed we consider that case first. However, in the
rest of the section, we define additional domain-independent
instantiations for f .

4.1 Task Dimension Simplification
The first method we propose, TaskSimplification (Al-

gorithm 1), simplifies a task using knowledge of the domain’s
parameterization. Here, Simplify is a function that changes
one of the degrees of freedom Fi ∈ F to a new F ′i ∈ Rng(Fi),



in order to make the task smaller or easier. In many do-
mains, there is a natural interpretation for Simplify. For
example, in Quick Chess, we could reduce the value of pa-
rameters such as the size of the board or the number of spe-
cific pieces. In multiagent settings, we can add cooperative
agents or remove adversarial ones.

Algorithm 1 Task Simplification

1: procedure TaskSimplification(M,X,D, F, τ)
2: F ′ = Simplify(F )
3: M ′ ← τ(D, F ′)
4: return M ′

5: end procedure

TaskSimplification transforms the S,A, P,R elements
of an MDP simultaneously, in a domain-specific way.

4.2 Promising Initializations
The second method is designed for tasks that have a sparse

reward signal. In many RL problems, positive outcomes
can be rare, especially at the onset of learning. An agent
may have to reach the goal randomly or through some ex-
ploration scheme many times before the policy stabilizes.
PromisingInitializations creates a task that initializes an
agent near states that were found to have high reward.

Algorithm 2 Promising Initializations

1: procedure PromisingInitializations(M,X,C, δ, ρ)
2: Y ← {(s, a, s′, r) ∈ X : r ≥ ρth percentile of all

rewards in X}
3: M ′ ←M
4: S′0 ← {}
5: for (s, a, s′, r) ∈ Y do
6: S′0 ← S′0 ∪ FindNearbyStates(s,X,C, δ)
7: end for
8: M ′.S0 ← S′0
9: return M ′

10: end procedure

Here, the parameter ρ ∈ [0, 100] is a percentile that defines
the fraction of rewards an agent has seen in its experience
trajectory X that it should consider to be positive outcomes.
FindNearbyStates is a domain-dependent function that
returns a set/distribution of states that are close to a given
state, using either a distance metric C : S × S 7→ R or
a pseudo-distance based on steps away in a trajectory. The
exact form depends on the representation used for the MDP.

If the state space is factored, we can perturb the state
vector by some amount δ such that the distance from the
original state to the perturbed state (measured by C) is
less than δ. In our Quick Chess example, if the state space
consists of the positions of all pieces on the board, we can
use a distance metric that measures the least number of
“moves” needed to transform one board configuration to an-
other. FindNearbyStates would return all configurations
that are δ steps away. If the state space is not factored (for
example, in a tabular representation), then we can use the
trajectory samples X to find states that are at most δ steps
away from a high reward state, and explore these further.

4.3 Mistake-Driven Subtasks
Our next set of methods create subtasks to help an agent

avoid and correct its mistakes. In principle, a mistake is any

action or sequence of actions (e.g., an option [23]) taken in
a state that deviates from the optimal policy.

In practice, the agent does not know the optimal policy
while learning, so we propose 3 alternative characteristics to
automatically identify mistakes. The first is any action that
leads to unsuccessful termination of an episode, such as not
reaching a goal state. Second is any action that results in no
change in state. Finally, a mistake could be any action that
incurs a large negative reward. In the following methods, we
use IsMistake to denote whether a mistake was detected,
using these criteria.

Action Simplification
The first mistake-driven subtask generation method we pro-
pose, ActionSimplification (Algorithm 3), prunes the ac-
tion set to create a subtask where mistakes are less likely.

Action set pruning is especially useful in settings where
actions have preconditions for success. For example, a robot
must grasp an object before manipulating it. An autonomous
car must be standing still before opening the doors. Intu-
itively, any complex, multi-stage policy could benefit from
this type of guided exploration.

Algorithm 3 Action Simplification

1: procedure ActionSimplification(M,X,α)
2: M ′ ←M
3: count(a) = 0, ∀a ∈ A
4: Y ← {(s, a, s′, r) ∈ X : IsMistake(s, a, s′, r)}
5: for (s, a, s′, r) ∈ Y do
6: count(a)+ = 1
7: end for
8: A′ = {a ∈ A : count(a) > α}
9: M ′.A = M ′.A \A′

10: return M ′

11: end procedure

The parameter α ∈ Z is a threshold on the number of
times an action should lead to a mistake before it is pruned.
In practice, it may be useful to set these thresholds so that
only one action is eliminated at a time, or only eliminated
in certain states.

Mistake Learning
In contrast, the second approach, MistakeLearning (Al-
gorithm 4), directly tries to correct mistakes by rewinding
the game back some number of steps, and having the agent
learn a revised policy from there. Intuitively, focusing train-
ing on areas of the state space where the agent made a “mis-
take,” gives access to this experience much faster, allowing
the agent to also learn to correct itself much faster.

Algorithm 4 Mistake Learning

1: procedure MistakeLearning(M,X, ε)
2: M ′ ←M
3: S′0 ← {}
4: Y ← {(s, a, s′, r) ∈ X : IsMistake(s, a, s′, r)}
5: for (s, a, s′, r) ∈ Y do
6: S′0 ← S′0 ∪Rewind(X, s, ε)
7: end for
8: M ′.S0 ← S′0
9: return M ′

10: end procedure



The question of how far back in the trajectory to rewind is
an interesting challenge in and of itself. For now, Rewind is
a simple method that looks back ε steps from s in trajectory
X, and returns the found state. However, in principle it
could be more complex, based on the type of mistake made
or the situation where it was made. In our example of Quick
Chess, we could rewind the game to determine what should
have been done differently to avoid a checkmate.

4.4 Option-based Subgoals
The next method creates subtasks for learning subgoals.

The options literature [23] identifies many approaches to
finding subgoals. Many take a state-based approach, where
the learner tries to find states that may have strategic value
to reach. For example, McGovern and Barto [14], identify
subgoals as states that occur frequently in successful trajec-
tories. Menache et al. [15] try to find “bottleneck” states.
Simsek and Barto [18] seek to create subgoals for “novel”
states, since they facilitate exploration of regions of the state
space that the agent normally doesn’t reach. Finally, graph-
based approaches such as Mannor et al. [13] identify states
by clustering over a state-transition map.

OptionSubGoals (Algorithm 5) is designed to take any
option discovery method (FindOption) to create a subtask.
Specifically, it creates a task to learn an option given the
option’s termination set Sf and a pseudo-reward function
R for completion. Since an option typically only involves
a subset of the task’s complete state space, this subtask
allows quick learning of how to reach important states. For
example, in Quick Chess, capturing the queen would be an
example of a useful subgoal.

Algorithm 5 Option Sub-goals

1: procedure OptionSubGoals(M,X, V, φ)
2: M ′ ←M
3: (Sf , R)← FindOption(M,X, V, φ)
4: M ′.Sf = Sf

5: M ′.R = R
6: return M ′

7: end procedure

Since our work takes place in the context of transfer learn-
ing, we introduce one additional option discovery method,
FindHighValueStates (Algorithm 6), that uses high value
states learned in a previous task as a subgoal. Specifically,
it checks whether any of the learned values V (s) for states
encountered in our trajectory X exceed a threshold φ.

Algorithm 6 Find High Value States

1: procedure FindHighValueStates(M,X, V, φ)
2: Sf ← {}
3: R←M.R
4: for (s, a, s′, r) ∈ X do
5: if V (s) > φ then
6: Sf ← Sf ∪ s
7: R(s, a, s′) = V (s)
8: end if
9: end for

10: return (Sf , R)
11: end procedure

Instead of using trajectory samples X, we can also extract
high value states directly from the value function. For ex-

ample, with a tabular representation, we can simply lookup
states of high value. With function approximation, an opti-
mization routine would be used to solve for high value states.

4.5 Task-based Subgoals
An alternative to creating subgoals within an MDP is to

create them directly at the task level. Specifically, we set the
termination set Sf of the input MDP to be the initiation set
S0 of some other subtask, as shown in Algorithm 7:

Algorithm 7 Link Subtask

1: procedure LinkSubTask(M,Ms, V )
2: M ′ ←M
3: for s′ ∈Ms.S0, s ∈M.S, a ∈M.A do
4: R(s, a, s′) = V (s′)
5: end for
6: M ′.Sf ←Ms.S0

7: M ′.R← R
8: return M ′

9: end procedure

For example, we can create a subtask that terminates
where PromisingInitializations starts as follows:

M1 = PromisingInitializations(Mt, X,C, δ, ρ)

Ms = LinkSubTask(Mt,M1,M1.V )

Applied to Quick Chess, this would create a task to reach
configurations that are likely to lead to checkmate. The
reward for reaching this terminal set is the value of the state
in the subsequent task. This idea is similar to skill chaining
[8], except that instead of learning options linking target
regions to initiation sets, we link directly on tasks.

4.6 Composite Subtasks
Each of the previous subroutines f takes as input an MDP

Mt and trajectory samples X, and returns a modified task
MDP Ms. By passing the samples and resulting Ms as input
to another function f , we can chain together arbitrary many
subroutines to compose new source tasks.

Mathematically, let f and g be any two functions above.
Assume we are given a target task MDP Mt and trajectory
samples X from it. Then, the composite task (f ◦ g) =
f(g(Mt, X), X), where for ease of exposition, we’ve left out
the task specific threshold parameters.

Most of the domain-independent functions described pre-
viously make specific modifications to a particular part of
the target task MDP. In contrast, TaskSimplification can
potentially make changes to the state and action space, as
well as the transition and reward functions all at once. Thus,
in practice, tasks should be composed using TaskSimplifi-
cation first, followed by the others.

4.7 Summary
In summary, we presented several functions that could

create suitable source tasks for a target task. They can
be categorized into two types: the first (Section 4.1) allows
for task creation using domain knowledge. The others are
largely domain-independent, and rely directly on trajectory
samples in the target task to create agent-specific tasks. We
also showed how tasks of both types can be combined to
create flexible source tasks for curriculum learning.

We claim that the functions outlined are broadly and gen-
erally useful. However, they are not the only possible meth-



ods; nor would every method apply to every domain. The
next section moves on to experiments in domains for which
we have concrete transfer learning results, using source tasks
that can be generated with these functions.

5. INSTANTIATIONS AND RESULTS
In this section, we apply the methods described in Sec-

tion 4 to create a curriculum in two challenging multia-
gent domains: Ms. Pac-Man and Half Field Offense. First,
we demonstrate the effectiveness of domain-dependent and
domain-independent subtasks in a simple one-stage curricu-
lum (i.e. classic transfer learning paradigm) applied to Ms.
Pac-Man. Then, in Half Field Offense, we utilize multiple
functions from Section 4 to create a successful multistage
curriculum for learning. Furthermore, we show that the se-
quence of tasks in a curriculum matters, and provide empir-
ical evidence that such curricula can be formed recursively.

5.1 Ms. Pac-Man
Ms. Pac-Man (see Figure 2a and 2b) is a game where the

agent’s goal is to traverse a maze and accrue points by eating
objects such as pills, while avoiding the four ghosts. At the
start of the game, there are a large number of pills through-
out the maze, four power pills located at each corner, and
four ghosts that are initially placed in an area inaccessible
to Ms. Pac-Man. If a ghost catches Ms. Pac-Man, the game
is over; however, if Ms. Pac-Man eats one of the four power
pills, the ghosts themselves become edible by the agent.

We used the Ms. Pac-Man implementation described in
[24, 19]. The agent’s state space was represented by a set
of local features described in [24], that are egocentric with
respect to the agent’s position on the board. Learning was
done using Q-Learning [22], and transfer via value function
transfer.

5.1.1 Maze Simplification
The first experiment is an application of the TaskSimpli-

fication method. The domain of Ms. Pac-Man comes with
four different maze levels, some of which are easier for the
agent to learn than the others. Thus, intuitively, one way to
apply the TaskSimplification method is to train an agent
on an easier maze and transfer the learned policy to a harder
one. The results of such an application are shown in Figure
3. Here, the target task was maze level four (Figure 2b).
The TaskSimplification principle was used to generate a
source task by changing the maze level from four to one
(Figure 2a). The transfer curve shows the effects of learn-
ing for 5 episodes on the source task and then learning for
an additional 20 episodes on the target task. The baseline
curve in contrast shows the result of learning for 25 episodes
directly on the target task. Both curves are averaged over 20
runs. The results clearly show that applying TaskSimpli-
fication results in jumpstart and substantial improvement
in the expected reward over the first 25 episodes.

5.1.2 Avoiding Ghosts
Next, we illustrate the use of an agent-specific source task,

MistakeLearning, in the Ms. Pac-Man domain. We con-
sider a mistake to be the event where Ms. Pac-Man is eaten
by a ghost, which is a terminal non-goal state. Whenever a
mistake occurrs, we spawn the following task:

Mmistake = MistakeLearning(Mt, Xt, ε)

Event Reward

Goal 1.0
Ball out of bounds -0.1
Ball with offense 0

Ball captured by defense -0.2
Ball captured by goalie -0.1

Episode times out -0.1

Table 1: Reward structure in HFO

This call creates a subtask that rewinds ε = 50 game steps
from the moment the episode was terminated. The agent
subsequently trains for 5 episodes in the generated subtask,
after which training in the target task is resumed. The re-
sult of this test is shown in Figure 4. For this experiment,
we measured the agent’s performance as a function of the
number of game steps, since episodes spent on learning in
the generated subtasks were much shorter. Results are av-
eraged over 20 trials. The plot shows that the application
of MistakeLearning results in much faster learning when
compared to the baseline approach of restarting each episode
from the initial configuration upon episode termination.

So far, the two examples show that both domain-dependent
and domain-independent methods can be used to generate
effective source tasks for a given target task. The next set
of experiments demonstrate how, in addition, they can also
be used to design a curriculum for an agent learning a task
that may be too difficult to learn from scratch, or even using
a single source task.

5.2 Half Field Offense (HFO)
Half field offense [7] is a subtask of Robocup simulated

soccer in which a team of m offensive players try to score
a goal against n defensive players while playing on one half
of a soccer field. The domain poses many challenges, in-
cluding a large, continuous state and action space, coordi-
nation between multiple agents, and multiagent credit as-
signment. Each of these difficulties makes learning hard,
especially early on when goal scoring episodes can be rare.

Each HFO episode starts with the ball and offensive team
placed randomly near the half field line. Likewise, the de-
fensive team is randomly initialized near the goal box. A
sample starting configuration can be seen in Figure 2c. The
goal of the offensive team is to move the ball up the field
while maintaining possession, and take shots to score on
goal. An episode ends when either (1) a goal is scored, (2)
the ball goes out of bounds, (3) the defense captures the
ball, or (4) the episode times out. The reward structure of
the domain is shown in Table 1.

As done in Kalyanakrishnan et al. [7], we focus on learning
behaviors for the player with the ball. The player with the
ball has to choose one of the following actions:

• Pass k: A direct pass to the teammate that is k-th
closest to the ball, where k = 2, 3, . . . ,m.

• Dribble: A small kick in the cone formed between the
player and the goalposts, that maximizes its distance
to the closest defender also in the cone.

• Shoot j: A full power kick towards one of j evenly
spaced points on the goal line.

Offensive players without the ball follow one of several
fixed formations to provide support. The agent’s state space



(a) (b) (c) (d)

Figure 2: Examples of tasks in Ms. Pac-Man (a and b) and Half Field Offense (c and d). (a) Maze 1 (b)
Maze 4 (c) HFO initial configuration and 2v2 dribble task (d) 2v2 shoot task. In HFO, offensive players are
colored yellow, defensive players are blue, and the goalie is pink. The ball is shown by the white circle.

0 5 10 15 20 25
0

200

400

600

800

1000

1200

1400

Episodes

E
x
p

e
c
te

d
 R

e
w

a
rd

 (
p

o
in

ts
)

 

 

baseline

transfer

Figure 3: Results of TaskSimplification applied to
the Ms. Pac-Man domain. See Section 5.1.1 for de-
tails. Dashed lines indicate standard error.

consists of distances and angles to points of interest, which
are listed in Table 2. We used CMAC tile coding for function
approximation, Sarsa for the learning algorithm [22], and
value function transfer to transfer knowledge.

Space of tasks
Half field offense has a number of degrees of freedom that
allow creating many different types of tasks. We list some
of the relevant degrees of freedom in Table 3. In addition
to these, various aspects of the field (such as the size of
the goals, the goal box, etc.), the players (such as visibility,
stamina, etc.), and the world physics can also be changed.

These degrees of freedom allow us to quickly create many
domain-specific source tasks, using the TaskSimplifica-
tion rule. For example, we can add more teammates or
reduce the number of defenders to give the offense more op-
tions. We can change the defensive team behavior to train
against opponents of varying difficulty. We could also change
various aspects of the world size and physics to make scoring
and movement easier.

However, we can also create agent-specific source tasks
by observing the behavior of the agent on the target task.

0 0.5 1 1.5 2

x 10
5

0

500

1000

1500

2000

2500

Game Steps

E
x
p

e
c
te

d
 R

e
w

a
rd

 (
p

o
in

ts
)

 

 

baseline

mistake learning

Figure 4: Results of MistakeLearning applied to the
Ms. Pac-Man domain. See Section 5.1.2 for details.
Dashed lines indicate standard error.

For example, after observing generally unsuccessful trajec-
tories on the target task, we could use MistakeLearning
to recreate situations where the agent lost the ball or failed
to score, in order to learn how to avoid or resolve them. An-
other option would be to build upon successful trajectories
using PromisingInitializations, which would create tasks
that initialize the offense at different positions near the goal,
allowing them to drill on how to shoot.

Combined, the methods from the previous section form
a space of tasks that can be used to create a curriculum.
In the next section, we illustrate the formal specification of
some of the tasks and their creation that we found to be
useful in our experiments.

5.2.1 2v2 HFO Curriculum
We first consider the target task of 2v2 half field offense,

where 2 attackers must score against 1 defender and 1 goalie.
We used agents from the released binaries of the Helios team
to form the defensive team [1]. Helios and WrightEagle con-
sistently place among the top teams in the annual Robocup
2D Simulation League tournament, making even this small
version of half field offense a challenging task.



Feature Description

dist-to-goalie Distance from O1 to the goalie
dist-to-defender-in-
cone

Distance from O1 to the closest de-
fender in the dribble cone

dist-to-teammatei Distance from O1 to each teammate
Oi, for i = 2, 3, . . .m

dist-teammatei-to-
closest-defender

For each Oi, the distance to its clos-
est defender, i = 2, 3, . . .m

dist-teammatei-pass-
intercept

For each Oi, the shortest distance
between a defender and the line be-
tween O1 and Oi, i = 2, 3, . . .m

min-ang-teammatei-
defender

For each Oi, the smallest angle be-
tween Oi, O1, and a defender, i =
2, 3, . . .m

dist-to-shot-targeti Distance from O1 to location i on
the goal line, i = 1, 2, . . . j

dist-goalie-to-shot-
targeti

Distance from goalie to location i
on the goal line, i = 1, 2, . . . j

dist-shoti-intercept Shortest distance between a de-
fender and the line between O1 and
location i on the goal line, i =
1, 2, . . . j

ang-goalie-shot-
targeti

Angle between goalie, O1, and loca-
tion i on the goal line, i = 1, 2, . . . j

ang-defender-shot-
targeti

Smallest angle between a defender,
O1, and location i on the goal line,
i = 1, 2, . . . j

Table 2: Feature space for the player with the ball
in HFO. We index offensive players by their distance
to the ball. Thus, the player with the ball is O1 and
its teammates are O2, O3, . . . Om.

Let M2v2 denote the target task’s MDP, and X2v2 be a
set of (presumably generally unsuccessful) samples collected
from M2v2. We can generate this task M2v2 = τ(D, F2v2),
using the following instantiations for the degree of freedom
vector (the order of parameters is the same as in Table 3):

F2v2 = [2, 2,Helios, flat, 68, 52.5, 2.7, 1, 0.3]

The following are specific subtasks that could be created
using the methods from Section 4:

Shoot Task
One useful skill to learn is where a goal can be scored from.
After having obtained some experience in the target task
with at least a few goals, it is very likely that similar scenar-

Parameter Range

Number Offense Players {0, 1, . . . 4}
Number Defense Players {0, 1, . . . 5}

Defense Behavior {Agent-2D, Helios, WrightEagle}
Formation Type { Flat, Box, Trapezoid}

Field Width 20 – 68
Field Length 20 – 52.5

Max ball speed 0 – 5
Max player speed 0 – 1

Wind Noise 0 – 1

Table 3: Half Field Offense degrees of freedom

ios are also possible to score from. We can gradually expand
this set of states that lead to a high reward termination us-
ing PromisingInitializations, where we use a Euclidean
distance metric C over the agent’s relative distances and
angles to other players, to measure state proximity:

Mshoot = PromisingInitializations(M2v2, X2v2, C, δ, ρ)

A sample scenario can be seen in Figure 2d. Essentially,
this task creates different configurations of players near the
goal, and drills shooting. In our experiments, we set δ = 3
and ρ = 0.10.

Dribble Task
Initially while exploring, the agent takes many shots on
goal from far away, which are unlikely to score. A skill
the agent needs is the ability to move the ball up the field,
maintaining possession away from defenders, until the agent
reaches a state that it can score from. This can be accom-
plished by chaining ActionSimplification with Mshoot us-
ing LinkSubTask:

M1 = LinkSubTask(M2v2,Mshoot, Vshoot)

Mdribble = ActionSimplification(M1, X2v2, α)

LinkSubTask creates a subtask M1 where the goal is
to reach situations that the agent is likely to score from,
as learned in Mshoot. ActionSimplification prevents the
agent from taking shots on goal from far away, since these
actions usually lead to defense captures, and adds this re-
striction to M1. An example of the initial configuration for
the dribble task is shown in Figure 2c. In our experiments,
we set α = 100.

2v2 Curriculum Results
Figure 5 shows the performance on the target task of 2v2
HFO for learners following various curricula composed of the
2 tasks above. For each curriculum, we trained on sub tasks
until convergence. Offsets in the curves represent time spent
training in source tasks. Labels indicate the curricula used;
baseline is learning on the target task without transfer.

The teams of agents were evaluated on their goal scoring
ability: the fraction of times they are able to score a goal.
Since each episode results in binary goal or no goal scored
result, we used a sliding window of 200 episodes around each
point to determine the average goal-scoring rate at each time
step. All results are averaged over 25 trials. From Figure
5, it is clear to see that using a sequence of tasks to guide
training significantly improves the final performance.

5.2.2 Extension to 2v3 HFO
In this section, we extend the problem to the harder task

of 2v3 half field offense, where there are now 2 defenders
and a goalie. 2v3 is fundamentally harder than 2v2, since
the additional defender means both attackers can now be
marked. We can generate this target taskM2v3 = τ(D, F2v3)
using the following degree of freedom vector:

F2v3 = [2, 3,Helios, flat, 68, 52.5, 2.7, 1, 0.3]

This time, we can use TaskSimplification to simplify
the degree of freedom vector to recreate the 2v2 task from
the last section, allowing us to use it as a source for 2v3:

M2v2 = TaskSimplification(M2v3, X2v3, D, F2v3, τ)



Figure 5: Goal scoring accuracy on 2v2 HFO for
agents following different curricula. Standard error
(not shown to avoid clutter) ranged from 0.015 to
0.027 over the last 200 episodes for all curves.

Doing this also allows us to utilize the dribble and shoot
tasks, since they are derived from M2v2. Thus, we now
consider 3 possible source tasks for a curriculum: Mdribble,
Mshoot, and M2v2. Results of various curricula composed of
these source tasks can be seen in Figure 6.

Again, using a multistage sequence of tasks provides bet-
ter asymptotic performance than a curriculum composed of
a subset of its source tasks. Interestingly, we also find that
the most effective curriculum in 2v2 HFO is a subset of the
best curriculum in 2v3 HFO when considering this space of
tasks. This observation suggests that an automated proce-
dure to create curricula could be designed recursively.

6. RELATED WORK
Learning via a curriculum is an idea pervasive through-

out human and animal training [20]. Recently, curriculum
learning has also started to be explored in the context of
supervised learning [3, 9], where the order in which individ-
ual samples are presented to an online learner was shown to
considerably affect learning speed and generalization. Sev-
eral related paradigms, such as multi-task learning [4] and
lifelong learning [17], consider learning groups of prediction
tasks. These methods assume tasks are related, and knowl-
edge gained from solving one task can transfer to help learn
another. In particular, Ruvolo and Eaton [16] show how a
learner can actively select tasks to improve learning speed for
all tasks, or for a specific target task. However, all of these
works apply to supervised prediction tasks and assume the
set of tasks to be learned is already given.

Subsequently, many of these ideas have been studied in
the reinforcement learning paradigm. For example, Wilson
et al. [28] explored multi-task reinforcement learning while
Ammar et al. [2] consider lifelong learning applied to sequen-
tial decision making tasks. In both cases, a sequence of RL
tasks is presented to a learner, and the goal is to optimize
over all tasks. In contrast, our source tasks are designed
solely to improve performance on a target task. We aren’t
concerned with optimizing performance in a source. In ad-
dition, neither work considers task generation, and thus are
dependent on the quality of source tasks given.

Figure 6: Goal scoring accuracy on 2v3 HFO for
agents following different curricula. Standard error
(not shown to avoid clutter) ranged from 0.010 to
0.039 over the last 200 episodes for all curves.

In fact, as far as we know, we are the first to propose gen-
eral methods for creating source tasks for transfer learning.
Past work has typically relied solely on domain knowledge
to supply suitable source tasks. For example, 3v2 keepaway
serving as a source for 4v3 keepaway [26], 2D mountain car
as a source for 3D mountain car [25], or varying parameters
of physical systems [2]. Sinapov et al. [19] use a set of task
descriptors, which are similar to our degrees of freedom, to
specify a set of source tasks. This work goes significantly
beyond all of those by creating agent-specific tasks from a
dynamic analysis of an agent’s performance, and shows how
these tasks can be used in a multistage curriculum.

Finally, the problem of source task selection, which is dif-
ferent from task generation has been considered in single
step transfer learning as well [12, 19]. As before, they as-
sume the set of tasks is already prespecified, and the goal
is to select the best ones. Again, these tasks are not indi-
vidualized for each agent, and thus depend on the quality of
tasks present.

7. CONCLUSION
In this paper, we introduced the problem of curriculum

learning in reinforcement learning. As a step towards this
goal, we presented a series of functions that utilize domain
knowledge and observations of an agent’s performance to
create subtasks tailored to the agent. We showed how these
subtasks could be used as components of a multistage cur-
riculum to significantly improve an agent’s performance in
two challenging multiagent reinforcement learning domains.
A challenging next step in this research agenda is to develop
automated methods for selecting from among the space of
subtasks that our functions generate, in order to create a
fully automated, individualized RL curriculum.

Acknowledgements
This work took place in the Learning Agents Research Group
(LARG) at UT Austin. LARG research is supported in part
by NSF (CNS-1330072, CNS-1305287), ONR (21C184-01),
AFRL (FA8750-14-1-0070), & AFOSR (FA9550-14-1-0087).



REFERENCES
[1] H. Akiyama and T. Nakashima. HELIOS 2012:

RoboCup 2012 Soccer Simulation 2D League
Champion, volume 7500. Springer, 2012.

[2] H. B. Ammar, E. Eaton, P. Ruvolo, and M. Taylor.
Online multi-task learning for policy gradient
methods. In Proceedings of the 31st International
Conference on Machine Learning (ICML-14), pages
1206–1214, 2014.

[3] Y. Bengio, J. Louradour, R. Collobert, and J. Weston.
Curriculum learning. In Proceedings of the 26th
Annual International Conference on Machine
Learning, pages 41–48. ACM, 2009.

[4] R. Caruana. Multitask learning. Machine learning,
28(1):41–75, 1997.

[5] A. Fachantidis, I. Partalas, G. Tsoumakas, and
I. Vlahavas. Transferring task models in reinforcement
learning agents. Neurocomputing, 107:23–32, 2013.

[6] F. Fernández, J. Garćıa, and M. Veloso. Probabilistic
policy reuse for inter-task transfer learning. Robotics
and Autonomous Systems, 58(7):866 – 871, 2010.
Advances in Autonomous Robots for Service and
Entertainment.

[7] S. Kalyanakrishnan, Y. Liu, and P. Stone. Half field
offense in RoboCup soccer: A multiagent
reinforcement learning case study. In RoboCup-2006:
Robot Soccer World Cup X, volume 4434 of Lecture
Notes in Artificial Intelligence, pages 72–85. Springer
Verlag, Berlin, 2007.

[8] G. Konidaris and A. Barto. Skill discovery in
continuous reinforcement learning domains using skill
chaining. In Advances in Neural Information
Processing Systems, 2009.

[9] M. P. Kumar, B. Packer, and D. Koller. Self-paced
learning for latent variable models. In Advances in
Neural Information Processing Systems, pages
1189–1197, 2010.

[10] A. Lazaric. Transfer in reinforcement learning: a
framework and a survey. In M. Wiering and M. van
Otterlo, editors, Reinforcement Learning: State of the
Art. Springer, 2011.

[11] A. Lazaric and M. Restelli. Transfer from multiple
MDPs. In Proceedings of the Twenty-Fifth Annual
Conference on Neural Information Processing Systems
(NIPS’11), 2011.

[12] A. Lazaric, M. Restelli, and A. Bonarini. Transfer of
samples in batch reinforcement learning. In
A. McCallum and S. Roweis, editors, Proceedings of
the Twenty-Fifth Annual International Conference on
Machine Learning (ICML-2008), pages 544–551,
Helsinki, Finalnd, July 2008.

[13] S. Mannor, I. Menache, A. Hoze, and U. Klein.
Dynamic abstraction in reinforcement learning via
clustering. In Proceedings of the Twenty-First
International Conference on Machine Learning, pages
560–567, 2004.

[14] A. McGovern and A. G. Barto. Automatic discovery
of subgoals in reinforcement learning using diverse
density. In Proceedings of the Eighteenth International
Conference on Machine Learning, pages 361–368,
2001.

[15] I. Menache, S. Mannor, and N. Shimkin. Q-cut -
dynamic discovery of sub-goals in reinforcement
learning. In 13th European Conference on Machine
Learning, pages 295–306. Springer, 2002.

[16] P. Ruvolo and E. Eaton. Active task selection for
lifelong machine learning. In Proceedings of the 27th
AAAI Conference on Artificial Intelligence
(AAAI-13), July 2013.

[17] P. Ruvolo and E. Eaton. Ella: An efficient lifelong
learning algorithm. In Proceedings of the 30th
International Conference on Machine Learning
(ICML-13), June 2013.

[18] O. Simsek and A. G. Barto. Using relative novelty to
identify useful temporal abstractions in reinforcement
learning. In Proceedings of the Twenty-First
International Conference on Machine Learning, pages
751–758, 2004.

[19] J. Sinapov, S. Narvekar, M. Leonetti, and P. Stone.
Learning inter-task transferability in the absence of
target task samples. In Proceedings of the 2015 ACM
Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS). ACM, 2015.

[20] B. F. Skinner. Reinforcement today. American
Psychologist, 13(3):94, 1958.

[21] V. Soni and S. Singh. Using homomorphisms to
transfer options across continuous reinforcement
learning domains. In In Proceedings of American
Association for Artificial Intelligence (AAAI), 2006.

[22] R. Sutton and A. Barto. Reinforcement Learning: An
Introduction. MIT Press, 1998.

[23] R. Sutton, D. Precup, and S. Singh. Between mdps
and semi-mdps: A framework for temporal abstraction
in reinforcement learning. Artificial Intelligence,
112:181–211, 1999.

[24] M. E. Taylor, N. Carboni, A. Fachantidis, I. Vlahavas,
and L. Torrey. Reinforcement learning agents
providing advice in complex video games. Connection
Science, 26(1):45–63, 2014.

[25] M. E. Taylor, G. Kuhlmann, and P. Stone.
Autonomous transfer for reinforcement learning. In
The Seventh International Joint Conference on
Autonomous Agents and Multiagent Systems, May
2008.

[26] M. E. Taylor and P. Stone. Behavior transfer for
value-function-based reinforcement learning. In
F. Dignum, V. Dignum, S. Koenig, S. Kraus, M. P.
Singh, and M. Wooldridge, editors, The Fourth
International Joint Conference on Autonomous Agents
and Multiagent Systems, pages 53–59, New York, NY,
July 2005. ACM Press.

[27] M. E. Taylor and P. Stone. Transfer learning for
reinforcement learning domains: A survey. Journal of
Machine Learning Research, 10(1):1633–1685, 2009.

[28] A. Wilson, A. Fern, S. Ray, and P. Tadepalli.
Multi-task reinforcement learning: a hierarchical
bayesian approach. In Proceedings of the 24th
International Conference on Machine Learning, pages
1015–1022. ACM, 2007.


