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ABSTRACT

With the efforts of moving to sustainable and reliable en-
ergy supply, electricity markets are undergoing far-reaching
changes. Due to the high-cost of failure in the real-world,
it is important to test new market structures in simulation.
This is the focus of the Power Trading Agent Competition
(Power TAC), which proposes autonomous electricity broker
agents as a means for stabilizing the electricity grid. This
paper focuses on the question: how should an autonomous
electricity broker agent act in competitive electricity markets
to maximize its profit. We formalize the electricity trad-
ing problem as a continuous, high-dimensional Markov De-
cision Process (MDP), which is computationally intractable
to solve. Our formalization provides a guideline for approx-
imating the MDP’s solution, and for extending existing so-
lutions. We show that a previously champion broker can
be viewed as approximating the solution using a lookahead
policy. We present TacTex’15, which improves upon this
previous approximation and achieves state-of-the-art perfor-
mance in competitions and controlled experiments. Using
thousands of experiments against 2015 finalist brokers, we
analyze TacTex’15’s performance and the reasons for its suc-
cess. We find that lookahead policies can be effective, but
their performance can be sensitive to errors in the transition
function prediction, specifically demand-prediction.
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1. INTRODUCTION

With the efforts of moving to sustainable and reliable en-
ergy supply, electricity markets (aka power markets) are
undergoing far-reaching changes: customers are being en-
gaged in power markets to incentivize adaptation of demand
to supply conditions [34]; and wholesale markets are being
deregulated and opened to competition [10]. In principle,
deregulation can increase efficiency. In practice, the Cali-
fornia energy crisis (2001) has demonstrated the high-costs
of failure due to flawed deregulation [30, 4], and the impor-
tance of testing new market structures in simulation before
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deploying them [35]. This is the focus of the Power Trading
Agent Competition (Power TAC) [13].

In Power TAC, autonomous broker agents compete with
each other to make profits in a realistic, detailed smart-grid
simulation environment with wholesale, retail and balancing
power markets, and about 57,000 customers. The stability of
electricity grids critically depends on having balanced elec-
tricity supply and demand at all times. Broker agents are
financially incentivized to maintain supply-demand balance
in their portfolio and thus contribute to grid stability.

It is likely that autonomous broker agents will be em-
ployed in future power markets, due to the need to act con-
tinually and make real-time decisions in a complex, competi-
tive, dynamic environment. The decision-making challenges
of such brokers have been under study in the autonomous
agents community, but under either limited scope, or limited
competitiveness and comparability [13]. This paper focuses
on the question: how should an autonomous broker agent
act in competitive power markets to maximize its profits?
we advance the state of the art towards answering this ques-
tion in the following ways:

e This paper is the first to formalize the complete bro-
ker’s power trading problem. We formalize the prob-
lem as a Markov Decision Process (MDP) which, due
to its continuous high-dimensional state and action
spaces, cannot be solved exactly in practice. Our for-
malization compactly captures the challenges faced by
a broker, and provides a guideline for approximat-
ing the solution and for extending existing solutions.
While our formalization is based on the Power TAC
simulation, we expect it to generalize and be useful
in reality, since Power TAC closely models real-world
markets.

e We present TacTex’15, which is by many metrics the
best Power TAC broker at the current time. Using
three strategic improvements, TacTex’15 extends a pre-
vious strategy which can be viewed as a lookahead-
policy [23] that approximates the solution to the MDP.
The strategic improvements may seem minor on the
surface but result in large performance improvements.

e Using thousands of experiments, we analyze the per-
formance of TacTex’15, and the reasons for its suc-
cess. Importantly, we investigate how the accuracy of
the transition-function predictors (i.e. the demand and
cost predictors) affect the performance of the broker’s
power trading lookahead-policy.



This paper’s contributions can be valuable for two com-
munities. For the artificial intelligence community, this pa-
per is a case-study of effective sequential decision making
in a domain too complex to be solved by current out-of-
the-box methods, which involves autonomous agents, multi-
agent systems, game-theoretic considerations, markets, and
a potentially important computational sustainability appli-
cation [7]. For the power markets community, this paper
may provide insights on autonomous trading in modern elec-
tricity markets, due to the realism of the Power TAC simu-
lation environment.

2. POWER TAC GAME DESCRIPTION

Power TAC is an annual competition in which the com-
petitors are autonomous brokers programmed by teams from
around the world. The competition includes hundreds of
games and takes several days to complete. In a game, the
Power TAC simulator runs on a central server, while com-
peting brokers run remotely and communicate with the server
through the internet. Each broker receives partial state in-
formation from the server, and responds by communicating
the actions it takes. The competition includes different game
sizes, ranging from small to large number of competitors.
Participants release their broker binaries after the competi-
tion, and use them to run controlled experiments.

Power TAC uses a high-fidelity power markets simulator,
modeling a smart-grid with more than 57,000 simulated cus-
tomers (50,000 consumers and 7,000 renewable producers).
Power TAC’s customers are autonomous agents that opti-
mize the electricity-costs and comfort of their human own-
ers [28]. Customers model commercial and residential build-
ings, solar/wind farms, storage facilities and electric vehi-
cles. Customers consume/produce using time-series genera-
tors constructed from real-world data, according to weather
and calendar factors. The simulation proceeds in 1-hour
timeslots for 60 simulated days and completes in 2 hours.

Figure 1 shows the structure of the Power TAC simulation
environment. In Power TAC, autonomous broker agents
compete by acting in three markets: (1) a wholesale mar-
ket, where brokers bid in sequences of 24 double auctions to
procure energy from generation companies (or sell surplus),
to be delivered in the following 24 hours, (2) a tariff market,
which is a retail market where energy is traded with con-
sumers and distributed renewable energy producers, and (3)
a balancing market, which ensures that supply and demand
are balanced and determines the broker imbalance fees.
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Figure 1: High-level structure of the Power TAC simulation

The brokers compete to gain market share and maximize
profit by trading electricity. In the tariff market, brokers
publish tariff contracts for energy consumption/production.
Tariffs may include fixed and varying prices and possibly
bonuses/fees. Customers stochastically subscribe to tar-
iffs which maximize their utility (cost savings and comfort).
Customers are equipped with smart-meters, so consumption
and production are reported to the broker every hour. Bro-
kers typically balance their portfolio’s net demand by buy-
ing in the wholesale market. Full details can be found in the
Power TAC Game Specification [12].

3. THE BROKER’S POWER TRADING
PROBLEM

This section formalizes the broker’s power trading prob-
lem. Our formalization compactly captures the complex
challenges faced by a broker, and provides a guideline for
approximating the solution and for extending existing solu-
tions. While our formalization is based on the Power TAC
simulator, we expect it to generalize and be useful in real-
ity, since Power TAC closely models real-world markets. We
start with an intuitive problem description and continue to
our formalization.

Figure 2 illustrates the temporal structure of a broker’s
power trading problem. The temporal structure of the tariff
and wholesale market actions differ in multiple ways. Tar-
iffs specify energy for immediate and repeated delivery and
are published at low-frequency (every one or more days).
Wholesale bids typically specify energy for future, one-time
delivery and are executed at high-frequency (every hour).
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Figure 2: Temporal structure of the power trading
problem. Time progresses to the right; the notation ‘+¢’
stands for ‘4 timeslots into the future’. Diamonds stand for
broker actions. Squares stand for simulation environment
responses. The top part represents the wholesale market: a
broker submits limit orders to buy /sell energy for the next 24
hours, then it receives the results of the 24 double-auctions.
The bottom part represents the tariff market: a broker may
publish one or more tariffs (once every 6 hours), and cus-
tomers respond by potentially (1) subscribing to new tariffs,
(2) shifting consumption to cheaper times, and (3) elasti-
cally adapting total consumption based on price.

Power Trading as an MDP.

Given the internal states of the simulator and competing



brokers, the broker’s energy trading problem is a Markov
Decision Process (MDP) [25]. However, since competitors’
states and parts of the simulator state are unobservable, the
trading problem is a Partially Observable MDP (POMDP).
Nevertheless, for computational tractability and modeling
clarity, we treat unobservable parts of the state as environ-
ment stochasticity and formulate the trading problem as an
MDP, as follows (denoting By as the acting broker):

e States: S is the set of states, where state s is a tuple
t,B,C,P,T,SBy, 2By, AByg, By, W, cashp,, p) that in-
cludes the current time ¢ (which encapsulates week-
day/hour), and the sets: competing broker identities
B; identities of consumers C and producers P (both
referred to as customers); published tariffs of all bro-
kers 7 := UpenTp; customer subscriptions to Bg’s
tariffs Sp,; current energy consumption/production of
Bo’s customers Qp,; recent auction results Ap, :=
{(p° q°, OBy, O, MB,); ;inl including, for each of
the following 24 timeslots, the clearing price p® and
total quantity ¢°, Bo’s cleared orders O¢p,, all bro-
kers’ uncleared orders O“, and By’s market-positions
Mp, (energy deliveries and charges, updated incre-
mentally from O°p,); Bo’s energy imbalance Ip,; cur-
rent weather and forecast W; By’s cash balance cashp,;
and randomly sampled game-parameters (such as fees
and game length) p. Note: the underlying state of the
game, which includes elements unobserved by the bro-

ker, is the tuple (¢, B°,G°,C°,P°, T,S, Q, A, Z, W, cash, p)

where B°, G°,C°, P are the identities and internal states
of brokers, generation companies, consumers and pro-
ducers, respectively; and where S := UpepSp, Q :=
UBesQn, A = UpesAr, T := {I}Ben, cash =
{cashp}Ben.

e Actions: A broker’s set of actions A := A™ U A¥ U
AP is composed of tariff market actions A7, wholesale
market actions A and balancing market actions A®,
as follows.

1. Tariff market actions A™: create/modify/revoke
tariffs. A tariff is a tuple T = (type, rates, fees)
where:

— type € {consumption, production,...} can be
general (e.g. production) or specific (e.g. solar-
production).

— rates: a set of rates, each specifying a price
and when it applies (times and/or usage thresh-
olds).

— fees: optional periodic/signup/withdraw pay-
ments.

2. Wholesale market actions A : submit limit or-
ders of the form

(energy Amount, limit Price, targetTime)

to buy/sell energy for one of the next 24 hours.

3. Balancing market actions A”: submit customers
energy curtailment requests (currently unused).

e Transition Function: The transition function is par-
tially deterministic and partially stochastic, as follows.
The time ¢ is incremented by 1 hour; B,C,P remain

unchanged; 7T is updated by create/modify/revoke tar-
iff actions, deterministically by Bp, and stochastically
(due to unobservability) by other brokers; Sg, is up-
dated stochastically based on customers’ decisions; Qp,
is determined stochastically based on weather and cus-
tomers’ internal states (shifting and elasticity, see Fig-
ure 2); Ap, is updated with auction results, stochas-
tically since (i) competitors rely on stochastic infor-
mation (demand predictions), (ii) competitors’ inter-
nal states are hidden, and (iii) generation companies
bid stochastically; Ip, is a deterministic function of
TBo,SBy» QBys ABg; W is stochastic; cash is updated
deterministically from the recent stochastic reward;
and p remains unchanged.

e Reward: Let s:, r:, ax be the state, reward, and
broker-action(s) at time ¢t. Let r™,r*,r® be the bro-
ker’s energy buy/sell payments in the tariff, wholesale,
and balancing markets respectively. Let dist be the en-
ergy distribution fees, and fees the tariff-market fees.
The reward at time ¢ can be characterized by the fol-
lowing function.

re(se-1, a1, 80) := 17 (s0) + 7 (se) + 17 (s¢)
+ dist(s:) + fees(si—1,a1-1,8¢) :=
Qfonsp;:ons _ Qirrodp?rod + Q?Skp?Sk _ Qltndpltnd

T (s¢)

r7(st)

+bal(Ip, 1) —maz(QE™, QP x distFee

rB(st) dist(s¢)

—pub(at—1) — rev(ai—1) £ psw(Spy,t—1,SBy,t) (1)

fees(sy—1,a4—1,5¢)

where £+ denotes components that can be positive or
negative; Q5" Q"% are the total consumed/produced
quantities by Bo’s customers in the tariff-market (both
are sums of entries of Qp,); ask %4 are the amounts

By sold/procured in the wholesale-market (both are

. d
sums of elements of Mp, inside Ag,); pi°™®, p™°%,

pe*, pb'? are the average buying/selling prices (de-
termined by Ts,, Sby, @B, and Mp,); bal(Ip,,:) is
Qi)'rod 4 Q?Sk _
which depends on unobserved other broker im-
balances I\Ip,:); distFee is a fixed fee per kWh trans-
ferred over the grid; pub, rev are tariff publication and
revoke fees; psw are tariff periodic/signup/withdraw
fees/bonuses.

the fee for imbalance I, = Q™ —
bid
£ (

e Discount Factor: < reflects daily interest on cash
balance.

4. THE TacTex’15 BROKER AGENT

This section characterizes approximate MDP solutions,
and describes TacTex’15’s approximate solution.

4.1 Approximate MDP Solutions

The MDP’s solution is an optimal power-trading policy
(a mapping from states to actions). There are two prob-
lems to solve the MDP exactly: first, the high-dimensional
states and actions and the complex reward makes it compu-
tationally intractable, and second, some components of the



transition and reward functions are unknown to the broker.
Therefore, brokers necessarily can only approximate the so-
lution. There are four categories of approximate solutions
to large MDPs, of which lookahead policies seem suitable for
our domain, since they are effective in time-varying settings,
where it is unclear how to approximate a value function or
find a simple rule that maps states to actions [23].

Lookahead policies are partial MDP solutions that have
been effective in high-dimensional state-spaces [24, 3, 11,
29, 5, 6, 18, 32]. Lookahead policies optimize over simulated
trajectories S¢, T+, at, St+1, Tt+1, At+1,... using generative
models that predict action effects (next state and reward).
Here, the reward is a deterministic function of s¢—1, at—1,
s¢ except for the bal(Ip,,) component. Therefore a broker
needs generative models for bal(Ig,,.), for T \ Tsy,SBy, @Bo
(to predict Q§o™*, pso™, QP pP"°h) and for Ap, (to pre-
dict Q¢ pf*, Qy*, pi?).

While these action effects can be predicted independently,
actions need to be optimized in conjunction: the bal(Ip,,:)
function is designed such that imbalance fees typically re-
sult in negative reward when taking actions of a single type,
while positive reward can be achieved by taking actions
of multiple types in parallel (to maintain low imbalance).
Therefore, any tractable lookahead policy is required to effi-
ciently (i) sample, and (ii) combine the actions to simulate.

The 2013 champion, TacTex’13 [33], can be viewed as
approximating an MDP solution using a lookahead policy.
TacTex’13 does not optimize production tariffs, wholesale
selling and fees, so QP pr o Qe=*pes* and psw() are
always zero in Equation 1. TacTex’13’s main routine is
roughly Algorithm 1. For each tariff in a sample of fixed-
rate consumption tariffs (line 1), it uses a demand-predictor
to predict Q°"pi°™® for each t in the horizon (line 2),
assumes QY'Y = Q¢°™ (and therefore marks both as Q;),
uses a cost-predictor to predict for every ¢ the price p?*?
of buying @ (line 4), predicts a profit (called wutility or
return) as the sum of rewards along the horizon (line 5),
and executes the utility-maximizing combination of actions
(lines 7-8). Therefore, TacTex’13 lookahead efficiently com-
bines actions (addressing (ii) from above) by constraining

bid — Q¢°"*, instead of examining combinations (therefore
bal(Igy,+) = 0). TacTex’13 efficiently samples actions (ad-
dressing (i) from above) by sampling fixed-rate tariffs in a
limited region in the tariff market, and by treating wholesale
actions hierarchically: it (a) treats Q% as an action to be
sampled (in Q{°™° values), and (b) solves a subproblem of
finding a cost-minimizing sequential bidding policy 7(Q) for
procuring quantities @@ on a small MDP isolated from the
full MDP.

Algorithm 1 TacTex’13’s Lookahead Policy

(1) production tariffs (2) wholesale selling, (3) imbalance,
and (4) tariff fees, since in preliminary tests (1)-(3) did not
seem beneficial and (4) had some simulator implementation
issues (see Section 5.1). As a result, TacTex’l5 assumes
QErodprret  Qeskpesk  bal(), and psw() in Equation 1 to
be zero. Therefore TacTex’15’s lookahead policy is quite
similar to TacTex’13’s (Algorithm 1); we refer the reader
to [33] for pseudo-code of the main routines. On the other
hand, TacTex’15 introduces three main improvements over
TacTex’13: it uses different (1) demand-predictor, (2) cost-
predictor (both (1)-(2) are transition-function predictors),
and (3) wholesale bidding strategy .

Demand Predictor. The demand-predictor predicts cus-
tomer subscription changes and future demand, which de-
termine Q{°"°pi°"®. TacTex’13 learned a demand-predictor
from data. However, in Power TAC there is no need to do
so: these complex stochastic customer behaviors are coded
in Power TAC’s open-source simulator. Instead, TacTex’15
uses the simulator’s customer code as a basis for its demand-
predictor. However, this code does not provide a complete
demand-predictor: it relies on information hidden from bro-
kers. TacTex’15 seeds this information with expected values:
customers of other brokers are assumed to be subscribed to
the best tariffs, customer subscriptions are predicted in the
limit (expected values after infinite time), and customer de-
mand parameters are set to expected values.

The simulator’s customer code is a high-quality demand-
predictor which, beyond contributing to the broker’s per-
formance, allows us to empirically analyze the dependency
of the broker’s performance on the demand-predictor’s accu-
racy, and more generally to gain insight into the dependency
of lookahead-based power trading on the transition-function
predictors’ accuracy. Section 5 includes the results of such
an analysis which, due to the realism of the Power TAC sim-
ulator, could generalize to real markets.

Cost Predictor. Wholesale costs are determined by pro-
cured quantities and brokers’ bidding strategies, which may

change dynamically. TacTex’15 uses an adaptive cost-predictor

Qb4 s pbd described in Algorithm 2. It has two com-
ponents: a linear regression predictor trained on boot data
(wholesale transactions sent by the simulator at game start)
(line 1), and a real-time correction factor constructed from
the last 24 hours’ prediction errors (line 2). Since the cor-
rection factor is constructed from little data (to ensure re-
sponsiveness), we limit it to bias correction. The boot data
is larger (336 instances) so we use it to determine the slope.
TacTex’13’s cost-predictor ignored Q¢ and predicted past
average prices based on time. We compare the two predic-
tors in Section 5.

1: for trf in sampleCandidateTariffs() U {no-op} do

2: {(Q+,pi°"")|t = +1, ..., +T} < demandPredictor.predict(trf)
3: for t in {+1,...,+7T} do

4: pi’id <+ costPredictor.predict(Q:)

5: utilities[trf] <— Z:;T_H Q:pSom® — Qipb'? — dist(Qy) — pub(trf)
6: trf* <+ argmax,,; utilities[trf]

7: publishTariff(trf*) // tariff market action, possibly no-op

8:

procure {Qt}:;j;l predicted for trf* in line 2 // wholesale market

4.2 TacTex’15’s Architecture

TacTex’15’s architecture is similar to that of TacTex’13
in four main ways. TacTex’15 does not try to benefit from

Algorithm 2 cost-predictor(Q?*?)

1: reg + trainLinearRegression({(Q%"?, p?")}ichootdata)
2: correctionFactor < averagePredictionErrorInLast24Hours()
i)

3: return reg‘predict(Qi’ - correctionFactor

Wholesale Bidding Strategy. TacTex’15 uses a combi-
nation of truthful and strategic (i.e. non-truthful) bidding.
A truthful bidder sets its limit price to the predicted imbal-
ance fee p. It gets the highest priority among competitors
who bid less than p and never pays more than p. How-
ever, since the sequential double-auction mechanism is not
incentive compatible, truthful bidding is suboptimal in some



situations. TacTex’13 used a learned optimistic strategic
(i.e. non-truthful) bidding strategy 7(Q) that assumed that
bids with limit-prices higher than a double-auction’s clear-
ing price would get fully cleared. This strategy is optimal
in some situations (e.g. single-buyer or cooperative setups),
but can be exploited by competitors who learn to bid slightly
higher. Since each of the two strategies is beneficial in dif-
ferent situations, combining them provides a form of hedg-
ing for TacTex’15. Let p be the limit price suggested by
TacTex’13’s strategy, and ¢ be the minimum amount that
can be traded (0.01 mWh). To bid for a quantity Q%%
TacTex’15 submits the following 25 orders (see MDP whole-
sale actions, Section 3) (QY'? —24¢, 7, t), {(e,p—|—i%,t) 2.
This strategy benefits from both worlds: if TacTex’15 sets
the price, it will either be the strategic price returned by
7(Q), or the lowest among its higher bids. If another bro-
ker sets the price, TacTex’15 will have a higher priority and
benefit from the lower price as long as it is not higher than

p.
Future Extensions of TacTex’15’s MDP Solution.
Referring back to the reward specification (Equation 1), our
MDP provides a guideline for future extensions of TacTex’15’s
lookahead policy. In some situations a broker can profit from
imbalance. We can relax the assumption that Q§°"® = Q%?,
add imbalanced trajectories to our lookahead search, setting
oS — ?id = I, for a sample of Ip,,; values, and predict
bal(Ip,,+) using a learned predictor. We can sample produc-
tion tariffs like consumption tariffs, and treat wholesale sell
hierarchically like wholesale buy actions. This addresses re-
quirement (i) from Section 4.1 (sample actions efficiently).
However, addressing requirement (ii) (combined actions ef-
ficiently) becomes more challenging. In an initial implemen-
tation we use an alternating, local improvement based ap-
proach which performs well, but more sophisticated meth-
ods might be possible. Finally, tariff-revoke actions can be
added by simulating lookahead trajectories with each of the
active tariffs removed. Initial implementation shows promis-

ing results.

S. RESULTS

We analyze TacTex’15’s performance in competitions (Sec-
tion 5.1) and controlled experiments (Section 5.2).

5.1 Competition Results

The Power TAC 2015 Finals included 11 teams from uni-
versities in America, Europe and Asia. 230 games were
played continually over a week, in three different sizes: 3-
brokers, 9-brokers, and 11-brokers. A day after the finals
ended, 8 of the teams competed in a post-finals, demo-
competition with 70 4-broker games. While being unofficial,
this competition was run similarly to the finals with one im-
portant difference: a simulator-loophole that was exploited
during the finals, was fixed. Due to the proximity to the
finals, and a parallel workshop, we believe that teams used
the same brokers they used in the finals.

Table 1 summarizes the 2015 finals results. While TacTex’15

was officially ranked 2nd, it was the best broker that did not
exploit a simulator-loophole: the 1st-ranked broker gained
the highest overall score by exploiting a simulator loophole
in 3-broker games, which resulted in unrealistic dynamics
and an unrealistically high score that biased the final rank-
ing (see dark gray cells in Table 1).! Specifically, Maxon15

IThe loophole’s exploitation was confirmed by the competi-

subscribed customers to inflated tariffs which promised cus-
tomers large payments if customers unsubscribed from them
after a period shorter than a single timeslot. While cus-
tomers had no way to unsubscribe quickly enough to collect
these payments, due to the loophole they subscribed to these
tariffs assuming they could collect the payments, thus pay-
ing inflated prices to Maxonl15.

Table 1: Power TAC 2015 finals results. Ranking is
determined by the “Total” score, which is a sum of individual
z-scores in each game size, displayed in the columns “11-
brokers” (10 games played by all brokers), “9-brokers” (45
games played by each broker) and “3-brokers” (45 games
played by each broker).

Broker 11-brokers 9-brokers 3-brokers Total
0.611 0.801
TacTez’15 0.897 1.066 0.258 2.221
CUHKTac 0.962 0.859 0.106 1.927
AgentUDE 0.421 0.367 0.809 1.597
Sharpy 0.429 0.614 0.521 1.564
COLDPower 0.726 0.397 -0.751 0.371
cwiBroker -0.002 -0.120 0.465 0.343
Mertacor 0.413 0.142 -1.341 -0.786
NTUTacAgent -1.017 -1.638 0.453 -2.202
SPOT -1.052 -0.243 -1.032 -2.327
CrocodileAgent -2.387 -2.244 -1.479 -6.111

After the finals, the loophole was fixed. When replaying 3-
broker competition games without the loophole, Maxon15 no
longer won by a large gap, but instead lost by a large gap to
TacTex’15. When taking into account only 11- and 9-broker
games from the finals (where the loophole had no impact),
TacTex’15 ended 1st with a total z-score of 0.142 ahead of
CUHKTac and 0.551 ahead of Maxonlb, finishing slightly
behind CUHKTac in 11-broker games (by 0.065) and ahead
of CUHKTac in 9-broker games (by 0.207). In the post-finals
demo competition with a repaired simulator, TacTex’15 won
by a large gap ahead of the others (Table 2), making 50%
more profits than the 2nd place (Maxonl5). Maxonl5 used
the same strategy as before, but it was not as effective with
the loophole fixed.?

Table 2: Power TAC 2015 post-finals demo competi-
tion results. 70 games were played in a single game-size
(4-brokers). Ranking is determined by z-score.

Broker 4-brokers (profits) 4-brokers (z-score)
TacTex’15 15.0M 1.122
Maxon15 10.7M 0.627
CUHKTac 10.0M 0.537
AgentUDE 9.7M 0.509
cwiBroker2015 7.9M 0.297
Sharpy 4.6M -0.092
COLDPower -0.8M -0.724
SPOT -14.0M -2.276

Figure 3 shows an analysis of TacTex’15’s performance

tion organizers. However, Maxon was not disqualified: they
explained it as an unintended result of automatic parameter
tuning right before the finals.

2To be fair, one should note that they did not retune their
parameters to the repaired simulator. On the other hand,
it’s not clear that other parameters would have done partic-
ularly better in the absence of the loophole.



in the 2015 finals and in the post-finals competition. In
11-broker games CUHKTac (1st) and TacTex’15 (2nd) won
by a large gap over the other brokers, where most brokers
ended with losses. In 9-broker games TacTex’15 won by a
large gap, making 30% more profit than the 2nd place bro-
ker in this category (CUHKTac), despite missing 3 out of
45 games due to network connection problems. The rev-
enue and costs plots show that in 11- and 9-broker games
TacTex’15 chose to reduce its market share, likely due to the
fierce competition, so that its revenue and costs were lower
compared with other top brokers, while its profit remained
high. In 3-broker games TacTex’15 typically performed the
best, although this is harder to see in the figure, due to sev-
eral events that biased the final averages: (a) Maxonl5’s
loophole-exploitation, discussed above; (b) About 1/2 of of
AgentUDE’s, Sharpy’s and cwiBroker’s 3-broker game scores
come from single outlier games in which they played against
a non-functioning broker and/or a competitor’s crash in a
monopoly/duopoly situation; (¢) TacTex’15 missed 5 out of
its 45 3-broker games due to network connection problems,
resulting in a score of 0 in these games, and a reduction of
4.3% in TacTex’15’s average profit. In the 4-broker games
of the post-finals competition TacTex’15 made about 50%
more profit than the 2nd place broker. The revenue and
costs plots show that it had a similar revenue to the 2nd
and 3rd place brokers, but much lower costs; higher revenue
and lower costs than the 5th, 6th brokers; and almost double
the revenue of each of the other brokers.

50000}, .
]

-5000¢ [}
~10000¢
~15000¢

~20000¢
~25000¢

cash

NI o
KD D& & S S
G %é&o:;@g;o%e}@z G
SRR ICIOCII
CHEC P §

&
«
s

cash

SO S NG &

SIS

S v’%f%%&;ﬁ 3
RS »
S &

cash

Figure 3: Competition analysis: average profit, rev-
enue and costs. The top 3 lines respectively summarize
11-, 9-, 3-broker games from Power TAC 2015 finals; bottom
line summarizes the 4-broker games of the post-finals demo
competition. Each line shows average profit (left), revenue
(middle), and costs (right). 3-broker game results are biased
due to a simulator-loophole exploitation by Maxonl5 and a
few other events (see text for details)

5.2 Controlled Experiments

While the competition is motivating and its results are
illustrative, it cannot isolate specific broker components in
a statistically significant way. We therefore subsequently
tested TacTex’15 in thousands of games, in two types of con-
trolled experiments: (a) performance tests, and (b) ablation
analysis tests, which evaluate the contribution of TacTex’15’s
main components to its overall performance.?

5.2.1 Experimental Setup

Each experiment consisted of running 56 games against a
set of opponent brokers, using broker binaries of 2015 final-
ists. To better evaluate statistical significance, we held most
of the random factors in the simulation fixed across exper-
iments (random seeds, weather conditions). To fix weather
conditions, we used weather files containing 3 months of real-
world weather. To cover year-round conditions we used 8
weather files (each file used by 1/8 of the games) with start-
dates of January, April, July, October of 2009 and 2010.

5.2.2  Performance Tests

A successful broker should perform well in expectation
against every set of opponents, under different stochastic
conditions (here weather /random seeds). At the time of
writing this paper, five 2015 finalists have released their
brokers’ binaries. We used these binaries to test TacTex’15’s
performance in 2, 3, ..., 6-broker games. We generated com-
binations of brokers for each game size, and tested each com-
bination in 56 games, as described above. Figure 4 presents
the results. TacTex’15 significantly won against every com-
bination of opponents, typically by a large gap.
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Figure 4: Performance of TacTex’1l5 against

Power TAC 2015 finalists in controlled experiments
of game-sizes of 2-5. Each line connects n points where
each point is an average score (y-value) of a broker (x-value).
Therefore, each line represents the average scores of a com-
bination of brokers playing each other under a variety of
conditions (note the small error bars). Results are shown
for game-sizes of 2-, 3-, 4-, 5-brokers (top-left, top-right,
bottom-left, bottom-right, respectively). Similar results for
6-brokers are omitted. TacTex’15 consistently won against
all combinations of brokers, in all game-sizes.

3To clarify, in all controlled experiments TacTex’15 was the
exact competition agent. Its demand predictor has never
used the simulator code with the loophole since this code
relied on information hidden from the broker.



5.2.3 Ablation Analysis

To understand the reasons for TacTex’15’s success, we
tested the contribution of TacTex’15’s main components to
its overall performance, in all possible game-sizes (2,...,6).
We created three ablated versions of TacTex’15 by disabling
each of its main components. For each game size, we se-
lected the “strongest” combination of opponents, against
which TacTex’15 had the lowest score. We tested each ab-
lated version against these opponents in a 56-game experi-
ment, holding random seeds and weather conditions fixed to
the same values used against TacTex’15. When disabling a
component, we used as a baseline the corresponding compo-
nent used by TacTex’13 (since TacTex’15’s ablated version
must have some component in place of a disabled one to
run properly). Figure 5 shows the results of our ablation
analysis. Disabling the cost-predictor (Abl-cost) did not
have significant impact on TacTex’15’s performance (how-
ever it can reduce performance, see Figure 7). Disabling
the wholesale-bidding strategy (Abl-bid) significantly hurts
TacTex’15’s performance: it reduces TacTex’15’s score in
game sizes 2, 4, 5, 6, and it causes TacTex’15 to either lose
its lead (in game sizes 2, 3) or have a smaller victory mar-
gin (in game sizes 4, 5, 6). Disabling the demand-predictor
(Abl-demand) significantly hurts TacTex’15’s performance:
it drops TacTex’15’s score in all game sizes, and causes
TacTex’15 to either lose its lead (in game sizes 3, 5, 6) or
have a smaller victory margin (in game sizes 2, 4).
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Figure 5: Ablation analysis for 2-6 broker games.
The performance of TacTex’15 is compared with three of
its ablated versions, when playing against the strongest
combination of opponents in each game size. Ablated ver-
sions are constructed from TacTex’15 by disabling cost pre-
dictor (Abl-cost), wholesale-bidding strategy (Abl-bid), and
demand-predictor (Abl-demand). The left figure shows the
average scores of each version in each game size; the right fig-
ure shows the average score-differences of each version from
opponents’ average score (y-axes’ scales are the same).

5.2.4 Ablation Analysis Extensions

To gain more insight into the importance of TacTex’15’s
main components, we extended each ablation experiment.
First, we extended TacTex’15’s demand-predictor ablation
analysis from a binary ablation test (disabled/enabled, see
Abl-demand in Figure 5) to a continuum of ablation-levels,
thus testing TacTex’15’s sensitivity to demand prediction
errors. Figure 6 shows the performance-degradation as a
function of ablation-level. We see that TacTex’15’s degrades
quickly even for small levels of ablation. We conclude that

having an accurate demand-predictor is crucial for TacTex’15’s

success.
Next, we extended the ablation analysis of TacTex’15’s

wholesale-bidding strategy with additional comparisons against
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Figure 6: Performance as a function of ablation level
of the demand-predictor in 3-agent games. The plot
shows the degradation in TacTex’15’s performance as the
ablation level of its demand predictor increases. To change
ablation level along a continuum, TacTex’15 uses here a
weighted combination of two demand-predictors: (1) its own
predictor, and (2) TacTex’13’s demand-predictor, which was
used by the ablated agent Abl-demand in Figure 5. Ablation
level is then represented as the relative weight given to pre-
dictor (2), so that a weight of 0 means “no-ablation”, and a
weight of 1 means “full-ablation”.

its ablated version (used by Abl-bid, see Figure 5). Abl-bid’s
strategy (which is TacTex’15’s strategy) can be viewed as
more cooperative than TacTex’15’s, since it submits lower
bids, and thus may result in lower costs against an opponent
using a similar strategy. To understand whether Abl-bid’s
cooperative strategy is preferable in some situations, we cre-
ated a payoff matrix (Table 3) by running 2-broker games,
testing both TacTex’15 and Abl-bid in self-play and against
each other. While Abl-bid’s cooperative strategy indeed re-
sulted in lower costs in self-play (40 $/mWh vs. 57 $/mWh,
a 29.8% reduction), Abl-bid’s total scores in self-play were
not higher than TacTex’15’s, since the competitive selling
strategy reduced selling-prices further than TacTex’15’s, such
that the profit remained similar to TacTex’15’s. As a result,
TacTex’15’s competitive strategy dominated Abl-bid’s coop-
erative strategy in Table 3’s experiments.

Table 3: Payoff matrix of two wholesale-bidding
strategies in 2-agent games. The matrix shows a game-
theoretic payoff matrix of two wholesale bidding strategies:
(a) Comp-Bid is TacTex'15’s competitive bidding strategy,
and (b) Coop-Bid is Abl-bid’s (and TacTex’13’s) cooperative
bidding strategy from Figure 5. The matrix entries show the
average scores of agents using these strategies (TacTex’15
and Abl-bid, respectively) in self-play and against each other.

Payoff Matrix

Coop-Bid Comp-Bid
Coop-Bid 1.0M 1.6 M
1.0M 0.8M
Comp-Bid 0.8M 1.0M
1.6 M 1.0M

We ran additional self-play experiments using 3-, 4-, 5-
broker games. In these cases Abl-bid’s more cooperative bid-
ding policy resulted in higher scores than TacTex’15, mainly



since Abl-bid’s lower energy costs enabled a longer price-
reduction period after game-start, during which selling-prices
where higher than the eventual equilibrium after which the
profit of all brokers increased in the same pace.

Finally, we extended TacTex’15’s cost-predictor ablation
analysis. Even though ablating TacTex’15’s cost predictor
did not reduce performance against the 2015 finalists (Fig-
ure 5), we expect it to reduce performance when wholesale
costs change more dynamically. Figure 7 shows the result
of such an experiment, where TacTex’15 played against its
cost-predictor ablated version (Abl-cost from Figure 5), and
was quicker to react to a drop in wholesale costs and thus
significantly won against Abl-cost.
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Figure 7: Cost-predictor ablation in presence of
abruptly changing market-costs. The plot shows the av-
erage cumulative profit (with confidence bounds) as a func-
tion of time in head-to-head games of TacTex’15 vs. its cost-
predictor ablated version (Abl-cost from Figure 5), when
market costs abruptly dropped in timeslot 1080 (mid-game).
TacTex’15 was quicker to react due to its more adaptive cost-
predictor: it reduced selling prices, and thus gained market-
share and increased its profits. To create a market-cost drop
effect, we could reduce either the sellers’ asks, or the bro-
kers’ bids. We implemented the latter (to avoid changing
the simulator), by making both brokers switch their bid-
ding policies in timeslot 1080 from competitive policies (of
TacTex’15) to a cooperative policy (of TacTex’13).

6. RELATED WORK

This work is the first to formalize the complete broker’s
power trading problem as an MDP, and characterize its ap-
proximate solutions. Previous research either did not for-
mulate the trading problem explicitly, or used an MDP to
model either a more abstract trading problem [26, 27], or a
subproblem of the complete trading problem [22, 16, 33, 15,
1, 20]. Moreover, all these MDP models were heuristically
and manually constructed. In contrast, our MDP is defined
by the underlying problem.

Previous approaches to power trading did not use looka-
head policies to optimize the predicted utility (other than
TacTex’13, which was discussed above). AgentUDE14 [20]
(1st place, 2014) used an empirically tuned tariff strategy
provoking subscription changes and withdraw payments, and
Q-learning for wholesale bidding. CwiBrokerl4 (2nd place,
2014) [9] used tuned heuristics based on domain knowledge.
An analysis of the 2014 Power TAC finals can be found at [2].

Mertacorl3 [19] used Particle Swarm Optimization based
tariff strategy. CwiBroker13 [17] (2nd place, 2013) used tar-
iff strategy inspired by Tit-for-Tat. Their wholesale strategy
used multiple bids per auction but was based on equilibria
in continuous auctions, rather than TacTex’15’s hedging be-
tween optimistic strategic bidding and truthful bidding.

In other trading agent competitions, utility-optimization
approaches were used in different market structures [31, 21].
Other approaches included game theoretic analysis of the
economy [14] and fuzzy reasoning [8].

7. CONCLUSION

This paper has focused on the question: how should an
autonomous electricity broker agent act in competitive elec-
tricity markets to maximize its profit. We have formalized
the complete electricity trading problem as an MDP, which
is computationally intractable to solve exactly. Our formal-
ization provides a guideline for approximating the MDP’s
solution, and for extending existing approximate solutions.
We introduced TacTex’15 which extends the lookahead pol-
icy of a previously champion agent (TacTex’13) with better
transition function predictors and a more competitive bid-
ding strategy, and achieves state-of-the-art performance in
competitions and controlled experiments. Using thousands
of experiments against 2015 finalist brokers, we analyzed
TacTex’15’s performance and reasons for its success, find-
ing that while its lookahead policy is an effective solution
in the power trading domain, its performance can be sensi-
tive to errors in the transition function prediction, especially
demand-prediction. An important direction for future work
is to further close the gap between the current approximate
solution to the trading MDP and its fully optimal solution.
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