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Motivation

Determine a lower bound on the expected performance
of an autonomous control policy given data generated from
a different policy.
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Preliminaries

The agent samples actions from a policy, At ∼ π(·|St).

The environment responds with St+1 ∼ P(·|St ,At).

S0 A0 S1 A1
...

The policy and environment determine a distribution over
trajectories, H : S1,A1, S2,A2, ..., SL,AL

• H ∼ π.

• V (π) = E
[∑L

t=1 r(St ,At)
∣∣∣H ∼ π

]
is the expected return

of π.

Josiah Hanna, Peter Stone, Scott Niekum UT Austin

Bootstrapping with Models: Confidence Intervals for Off-Policy Evaluation 3



Confidence Intervals for Off-Policy Evaluation

Given:

Trajectories generated by a behavior policy, πb,
{H , πb} ∈ D.

An evaluation policy, πe .

δ ∈ [0, 1] is a confidence level.

Determine a lower bound V̂lb(πe ,D) such that V (πe) ≥
V̂lb(πe ,D) with probability 1− δ.
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Existing Methods

Exact confidence
intervals Thomas et al.
[2015a].

Clip importance
weights Bottou et al.
[2013]

Bootstrap
importance-sampling
Thomas et al. [2015b].

Our work
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Data-Efficient Confidence Intervals

We draw on two ideas to reduce the number of trajectories
required for tight confidence bounds.

Replace exact confidence bounds with bootstrap
confidence intervals.

Use learned models of the environment’s transition
function to reduce variance.

Contributions:

1 Two bootstrap methods that incorporate models for
approximate high confidence policy evaluation.

2 Theoretical bound on model bias.

3 Empirical evaluation of proposed methods.
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Bootstrap Confidence Intervals

D0
...

D

Dm

V̂0 V̂m
...

Sample with
replacement

Estimate
V (πe)
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Data-Efficient Confidence Intervals

We draw on two ideas to reduce the number of trajectories
required for tight confidence bounds.

X Replace exact confidence bounds with bootstrap
confidence intervals.

Use learned models of the environment’s transition
function to reduce variance.
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Model Based Off-Policy Evaluation

Trajectories are generated from an MDP, M = 〈S,A,P , r〉.

s0 s1 s2

0.5

0.5 0.5

0.5

Model Based off-policy estimator use all trajectories to
estimate the unknown transition function, P .

s0 s1 s2

0.45

0.55 0.35

0.65

Model-Based off-policy estimator: V̂ (πe) := VM̂(πe)

where M̂ = 〈S,A, P̂ , r〉 where P̂ is the learned transition
function.
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Model-Bias

Model-Based approaches may have high bias.

1 Lack of Data: When we lack data for a particular (S ,A)
pair then we must make assumptions about the transition
probability, P(·|S ,A).

2 Model Representation: The true function P may be
outside the class of models we consider.

We show theoretically that model bias depends on:

The importance-sampled train / test error when building
the model.

The horizon length.

The maximum reward.
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Model-Based Bootstrap

D0
...

D

Dm

V̂0 V̂m
...

Sample with
replacement

Model-based
Estimate
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Existing Methods

Importance-
sampling based
methods.

Bootstrap
importance-
sampling

mb-
bootstrap
(ours)
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Doubly Robust Estimator [Jiang and Li, 2016,

Thomas and Brunskill, 2016]

DR(D) := PDIS(D)︸ ︷︷ ︸
Unbiased estimator

−
n∑

i=1

L∑
t=0

w i
t q̂πe (S i

t ,A
i
t)− w i

t−1v̂πe (S i
t)︸ ︷︷ ︸

Zero in Expectation

v̂π(S) := EA∼π,S ′∼P̂(·|S,A) [r(S ,A) + v̂(S ′)]

State value function.

q̂π(S ,A) := r(S ,A) + ES ′∼P(·|S ,A) [v̂(S ′)]

State-action value function.

wt is the importance weight of the first t time-steps.
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Weighted Doubly Robust Bootstrap

D0
...

D

Dm

V̂0 V̂m
...

Sample with
replacement

Weighted Doubly
Robust Estimate
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Bootstrapping with Models

MB-Bootstrap (Model-Based Bootstrap)

Advantages: Low variance.

Disadvantages: Potentially high bias.

WDR-Bootstrap (Weighted Doubly Robust Bootstrap)

Advantages: Low bias.

Disadvantages: Potentially higher variance.
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Existing Methods

Importance-
sampling based
methods.

Bootstrap
importance-
sampling

wdr-
bootstrap
(ours)

mb-
bootstrap
(ours)
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MountainCar Domain

State and action spaces are discretized.

Models use a tabular representation.
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Mountain Car Domain
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Mountain Car Domain
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Cliffworld Domain

Agent must cross a narrow
path to reach a goal.

State is cartesian position
and velocity. The agent
moves by selecting
acceleration.

Linear Gaussian dynamics.

Models are learned with linear
and polynomial regression.
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Cliffworld Domain
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Cliffworld Domain
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Conclusion

1 Two bootstrap methods that incorporate models for
approximate high confidence policy evaluation.

2 Theoretical bound on model bias.

3 Empirical evaluation of proposed methods.
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Future Work

Investigate ways to “blend” MB-Bootstrap and
WDR-Bootstrap for further improvements.

Application to evaluating policies learned in simulation.
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Importance-
sampling
methods.

wdr-
bootstrap

mb-bootstrap

Thanks for your attention!
Questions?
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Lower Bound Error

Mountain Car Cliffworld
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Prior Work: Importance Sampling [Precup et al.,

2000]

Re-weight return according to their relative likelihood:

IS(πe ,H , πb) :=
L−1∏
t=0

πe(Ai |Si)

πb(Ai |Si)︸ ︷︷ ︸
Importance weight

L−1∑
t=0

r(St ,At)︸ ︷︷ ︸
Observed Return

Mean of re-weighted returns is an unbiased estimate of V (πe):

IS(D) :=
∑
H∈D

IS(πe ,H , πb)
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