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ABSTRACT
Multirobot symbolic planning (MSP) aims at computing plans, each
in the form of a sequence of actions, for a team of robots to achieve
their individual goals while minimizing overall cost. Solving MSP
problems requires modeling limited domain resources (e.g., cor-
ridors that allow at most one robot at a time) and the possibility
of action synergy (e.g., multiple robots going through a door after
a single door-opening action). However, the temporal uncertainty
that propagates over actions, such as delays caused by obstacles in
navigation actions, makes it challenging to plan for resource shar-
ing and realizing synergy in a team of robots. This paper, for the
first time, introduces the problem of MSP under temporal uncer-
tainty (MSPTU). We present a novel, iterative inter-dependent plan-
ning (IIDP) algorithm, including two configurations (simple and en-
hanced), for solving general MSPTU problems. We then focus on
multirobot navigation tasks, presenting a full instantiation of IIDP
that includes a new algorithm for computing conditional plan cost
under temporal uncertainty and a novel shifted-Poisson distribution
for accumulating temporal uncertainty over actions. The algorithms
have been implemented both in simulation and on real robots. We
observed a significant reduction in overall cost compared to base-
lines in which robots do not communicate or model temporal un-
certainty.

CCS Concepts
•Computing methodologies → Robotic planning; Multi-agent
planning; Planning under uncertainty;

Keywords
Multirobot task planning; Planning under temporal uncertainty; In-
telligent mobile robotics

1. INTRODUCTION
Symbolic planning techniques allow a robot to compute a se-

quence of actions, by reasoning about action preconditions and ef-
fects, to bring about state transitions in order to achieve a goal that
is unreachable using individual actions. For instance, the action of
going through a door into a room is preconditioned by the robot
being beside the door and the door being open; and the effect is
the robot’s position being changed to the new room. When action
costs are further incorporated into this planning process, robots can
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compute optimal plans that maximize overall utility (or minimize
overall cost). As a result, symbolic planning techniques have been
widely used in applications of intelligent mobile robots, such as
indoor service tasks [6, 30, 15, 18] and search and rescue [19, 28].

When multiple robots share a physical environment (such as our
Segway-based robots, BWIBots [18], that are shown in Figure 1), it
is necessary to model how their plans interact with each other and
to construct action synergies as possible. On one hand, the robots’
plans might interact such that their independently-computed opti-
mal plans become suboptimal at runtime, due to constrained re-
sources such as narrow corridors that allow at most one robot
to pass. While such conflicts can be resolved locally at runtime
(e.g., two robots detecting a conflict can “negotiate” to decide who
gives way to the other [32]), we argue a better solution is to avoid
such conflicts at planning time. On the other hand, communications
within a team of robots have the potential to leverage synergies in
their plans by coordinating amongst themselves. For instance, when
a robot knows its teammate is going to take an expensive door-
opening action, it makes sense for the robot to plan to follow its
teammate through the door instead of opening it separately. One of
the key challenges to planning for such resource sharing and lever-
aging synergy is the inherent temporal uncertainty in the durations
of robots’ actions at runtime, which is largely overlooked in exist-
ing research. The main contribution of this paper includes:

• The introduction of the multirobot symbolic planning under tem-
poral uncertainty (MSPTU) problem, and

• A novel, Iterative Inter-Dependent Planning (IIDP) algorithm in-
spired by simulated annealing [20] for MSPTU problems.

Figure 1: Three of our Segway-based mobile robot platforms.

IIDP is generally applicable to MSPTU problems and is not re-
stricted to specific symbolic planners, forms of noisy action du-
rations or application domains. 1 IIDP has two configurations that
have different trade-offs between computational complexity and

1A MSP problem is a special form of a MSPTU problem, assuming
no temporal uncertainty, so IIDP is applicable to MSP problems.



plan quality: simple-IIDP (S-IIDP) and enhanced-IIDP (E-IIDP).
The biggest advantage of IIDP is that it does not increase a MSPTU
problem’s dimensionality beyond a single agent, while still being
able to produce near-optimal solutions (Section 4). IIDP is named
as being “inter-dependent” because an important step in IIDP calls
an external algorithm that computes an optimal plan for a robot un-
der the condition of other robots’ current plans (i.e., this planning
process depends on existing plans). This inter-dependent planning
algorithm is required by IIDP, but can be independently developed.

As the secondary contribution of this paper, we present a full in-
stantiation of the IIDPs, as applied to a multirobot navigation task,
where a new (domain-specific) conditional planning algorithm is
developed. The aim of using this task domain includes demonstrat-
ing the need of modeling temporal uncertainty in MSP problems,
illustrating the whole process of instantiating IIDP, and experimen-
tally evaluating the performance of IIDP in a real-world problem.

This paper is composed of two parts: the IIDP algorithm and the
(domain specific) inter-dependent planning algorithm, where the
former utilizes the latter. The algorithms have been implemented
both in simulation and on real robots using a multirobot naviga-
tion problem. Evaluations were conducted via comparisons against
baselines in which robots do not coordinate their plans, or coordi-
nate but do not model temporal uncertainty. We observe no signif-
icant difference when robots’ individually computed plans do not
overlap in time or space. When such overlaps exist, we observe
IIDP enables a team of robots to avoid going into the same corridor
at planning time, leverage action synergy by sharing door-opening
actions, and significantly reduce the overall plan cost.

2. RELATED WORK
Single-robot symbolic planning: Since the development of ac-

tion language STRIPS [9], many action languages have been devel-
oped for symbolic planning by describing preconditions and effects
of actions, including PDDL [13] that is arguably the most widely
used. PDDL was developed for and maintained by the International
Planning Competition (IPC) community since 1998. BC is an action
language that is particularly attractive for robotic applications be-
cause it can represent recursive fluents, indirect action effects and
defaults [24] (we use BC in this work). However, none of these
action languages support the capability of reasoning about noisy
action durations, which is critical for multirobot planning toward
sharing resources and constructing synergy at runtime.

Multirobot symbolic planning: Action languages, including
PDDL, have been used for symbolic planning for a team of robots [10,
1, 21, 5, 32, 33]. However, they either do not model possible run-
time conflicts (assuming that plans computed can be successfully
executed to the end without any interruptions) [21, 5] or aim at re-
solving conflicts locally at runtime [10, 1, 32, 33]. As an example
of locally resolving conflicts, two robots that compete for a narrow
corridor can “negotiate” to make sure one robot gives way to the
other [32]. Such conflict-resolving actions can be very expensive in
practice, yielding locally optimal solutions. We model noisy action
durations, as one of the factors that cause runtime conflicts, and
avoid such conflicts (in probability) at planning time.

Multirobot scheduling: A multirobot scheduling problem’s in-
put includes a set of robots and a set of tasks. The output is a sched-
ule that is for each task an allocation of one or more time inter-
vals to one or more robots [4, 37, 7]. Recent work on multirobot
scheduling further considers temporal uncertainty (in a multirobot
navigation task) [3]. However, scheduling algorithms generally do
not reason about actions’ preconditions and effects, and hence can-

not be used for generating action sequences in complex domains
that require reasoning about actions.

Multirobot probabilistic planning: Contemporaneously with
symbolic planning, (PO)MDP-based planning techniques have been
extensively studied in the literature. Existing (PO)MDP-based re-
search has studied: planning with concurrent actions [26, 27], plan-
ning under temporal uncertainty [14, 34], incorporating temporal
logic into navigation task planning [8], and planning for multirobot
systems using a single (PO)MDP [16], multiple (PO)MDPs [35],
and DEC-POMDPs [2]. Such algorithms are good at handling non-
deterministic action outcomes using probabilities and planning to-
ward maximizing long-term reward. In contrast, symbolic planning
techniques, such as STRIPS, PDDL and BC, fall into a very differ-
ent planning paradigm, where the input are action preconditions
and effects, non-deterministic action outcomes are handled by plan
monitoring and replanning, and the output is a sequence of actions.
Therefore, symbolic planning, c.f., (PO)MDP-based, is more suit-
able to problems where there are many potential goals and human-
interpretable plans are required.

Multirobot motion planning: Existing work has investigated
the problem of multirobot concurrent task assignment and motion
(trajectory) planning [29, 25]. Given N robots and N goal loca-
tions, the algorithms aim to find a suitable assignment of robots to
goals and the generation of collision-free, time parameterized tra-
jectories for each robot. Although such motion planning algorithms
are complimentary to our multirobot symbolic task planning algo-
rithm, their methods are applicable to problems that require only
navigation actions and they do not model noisy action durations
(assuming no runtime delays).

Generally, there is a growing body of work on mixing symbolic
and probabilistic techniques in reasoning and planning research.
This paper introduces probabilistic temporal uncertainty (model-
ing noisy action durations) into the multirobot setting of symbolic
planning, and for the first time, focuses on the problem of multi-
robot symbolic planning under temporal uncertainty.

3. DEFINITION OF MSPTU PROBLEMS
We assume each robot can work on at most one task at a time

and each task requires only one robot, which corresponds to the
“single-robot”, “single-task” problems [12]. We assume the robots
are homogeneous and the tasks are not transferable. The perfor-
mance of an MSPTU algorithm is evaluated by episode and the end
of an episode is identified by the time of the slowest robot finishing
its task. A central controller runs the MSPTU algorithm to compute
plans for all robots and robots do not have to make any decision
themselves (i.e., robots work in a centralized system). We assume
that robots have a noise-free communication channel.

Given a domain that includes N robots, an MSPTU problem is of
the form 〈D,A,S,G,R〉:
• D is a description of objects (including robots) in the domain,

their properties, and their relations.

• A is a description of robot actions, including their preconditions,
effects and costs.

• S is a set of states in which each is the initial state of a robot:
si ∈ S is the state of the ith robot and |S|=N . A robot’s state
does not include the state of other robots.

• G is a set of goal states in which each corresponds to a robot:
gi ∈ G is the goal state of the ith robot and |G|=N .

• R is a set of constrained resources, each associated with a cost



of violation, that can be obtained by at most M robot at a time,
where M<N .

Domain description D includes the environmental information
that does not change over time. For instance, two rooms being di-
rectly accessible to each other should be included in D (whereas
through-door accessibility should not, because it can be changed
by robot actions). Action description A focuses on robot capabili-
ties of making changes in the domain, e.g., a door-opening action
can change a door’s property from “closed” to “open”. A robot’s
initial state, s ∈ S, and goal, g ∈ G, are specified by values of
domain properties. D and A correspond to the rigid and dynamic
laws of action languages respectively (examples in § 5.1).

Under temporal uncertainty, robots can only succeed in sharing
constrained resources probabilistically. We say robots fail in shar-
ing a resource, if K robots physically compete for a constrained
resource that can only be shared by M robots and K>M . It is dif-
ficult but necessary to model the consequences of such failed cases
in planning. For instance, two robots competing for a narrow cor-
ridor may cause collisions, detours, and many other consequences.
For the sake of simplicity, at the planning phase, we model collab-
oration failures (violations of constraints) with fixed costs.

The goal of solving an MSPTU problem is to compute symbolic
plans, each in the form of a sequence of actions, for a team of robots
to achieve their individual goals while minimizing expected overall
cost. Therefore, the output of an MSPTU algorithm is a set of plans,
one for each robot.

4. IIDP ALGORITHM
Multirobot planning requires the modeling of joint actions that

each correspond to a vector of actions, one for each robot, and
asynchronous action executions at runtime. The exponentially in-
creasing number of joint actions and possible interdependencies
of concurrent actions make optimal multirobot planning NP-hard.
The complexity of multirobot planning is analyzed in [31]. When
temporal uncertainty is further incorporated, the problem (MSPTU)
becomes extremely difficult, even if the number of robots and the
length of individual plans are within a reasonable range. In this sec-
tion, we aim to provide a general solution to MSPTU problems that
cannot be solved using existing methods.

Algorithm 1 shows our novel, iterative inter-dependent planning
(IIDP) algorithm for MSPTU problems. This algorithm is inspired by
simulated annealing search for approximating the global optimum
of overall system utility [20].

Informally, IIDP iteratively computes and saves the con-
ditional “optimal” plan for each robot given other robots’
current plans. In each iteration, the discount of conflict
penalty increases (from zero in the first iteration to one
in the last iteration) and the discount of collaboration-
failure penalty decreases (from infinite to one).

The input of IIDP includes the robots’ initial and goal states (S
and G) that can be described using an action language, such as BC
in our case, and the number of other robots being considered while
computing conditional plan cost (M ). The intuition of having pa-
rameter M is that a robot might be interested in negotiating with
only a subset of its teammates 2. Θ is an important parameter that
represents how many rounds of negotiations the robots can perform
before finalizing their plans, where a negotiation means a robot up-
dates its plan based on plans of (not necessarily all) its teammates.
2There is big room for research in specifying this subset of team-
mates, which is not covered in this paper. For instance, in naviga-
tion tasks, it makes sense to consider the robots’ spatial closeness.

The value of Θ has a significant influence on the performance of
IIDP and will be discussed later. The output is PN , a set ofN plans,
one for each robot.

Algorithm 1 IIDP: our algorithm for MSPTU problems

Input: S, a set ofN states, and, G, a set ofN goals (N≥2)
Input: M : number of other robots considered in conditional planning,M<N
Input: Θ: number of rounds of “negotiations”, Θ ≥ 0
Output: PN : [p1, p2, . . . , pN ]

1: Initialize a plan queue of sizeM :QM, where pi∈QM, i∈{1, 2, . . . ,M}
2: Initialize a plan array of sizeN : PN, where pi∈PN, i∈{1, 2, . . . , N}
3: for each i ∈ {0, 1, . . . ,Θ} do
4: α= i/Θ, where we define α=0 when Θ=0
5: for each j ∈ {1, 2, . . . , N} do
6: Dequeue fromQM

7: PN(j)=argminp′
j

(
C(p′j , Q

M, α)
)

, where sj
p′j−−→gj , sj ∈S, gj ∈G

8: Enqueue pj intoQM

9: end for
10: end for
11: return PN : [p1, p2, · · · , pN ]

We first initialize an empty plan queue (FIFO) of lengthM (M<
N ) that is used for saving the plans from M teammates. Then we
enter a for-loop that has Θ+1 iterations (Lines 3-10), where α is
a negotiation depth that incrementally grows by 1/Θ in each itera-
tion (Line 4). The loop continues until α reaches 1. Intuitively, the
negotiation depth measures how much a robot considers its team-
mates: when α = 0, it totally “ignores” its teammates (conflicts
have no cost and collaboration failures have an infinite cost); when
α=1, it considers its teammates as important as itself (costs are not
discounted). In the inner for-loop (Lines 5-9), we compute a plan
pj for the jth robot depending on existing plans of other robots,
save it in PN as PN (j), and enqueue this new plan to plan queue
QM . Inter-dependent planning is conducted in Line 7, where we
compute the optimal conditional plan for the jth robot while min-
imizing the conditional plan cost given the current plans of its M
teammates (saved in plan queue QM ). The s

p−→ g symbol repre-
sents that plan p leads state transitions from initial state s to goal g.
In the end of the program, a set of plans is returned as PN .

It should be noted that in Line 7: the operation of C for comput-
ing inter-dependent plan cost requires the modeling of action pre-
conditions, effects, costs, and noisy durations, which is highly do-
main dependent and hence its development is independent of IIDP.
The operation of argmin requires a symbolic task planner for com-
puting a sequence of actions while minimizing the overall plan cost.

Two configurations: simple and enhanced IIDPs.
When Θ = 0, the robots compute plans independently, because

we define α= 0 when Θ = 0 in Line 4. When Θ = 1, there is only
one round of negotiation and we call this configuration simple-IIDP
(S-IIDP). The performance of S-IIDP is sensitive to the order of the
robots being planned for, because a given robot considers all robots
in front of it (in plan queue QM ) but none of the robots after it. An
extreme case is that the N th robot’s updated plan is not considered
by any of its teammates. When Θ > 1, there are multiple rounds
of negotiations and we call this configuration enhanced-IIDP (E-
IIDP).

IIDP hasO(Θ ·N ·C) complexity whereC is the complexity of a
single inter-dependent planing operation (C in Line 7) and N is the
number of robots. We do not discuss the complexity of C, because
the development of C algorithms is independent of IIDP. Section 5
presents a novel algorithm for C within the context of multirobot
navigation tasks.

Although the output of Algorithm 1 includes plans for all robots,
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Figure 2: In this example, the overall cost of p12 and p21 is smaller than
the cost of p11 and p22: C(p12)+C(p21) < C(p11)+p(22). E-IIDP
always suggests p12 and p21 (optimal) despite the planning order, outper-
forming independent planning and (Brute-force) S-IIDP.

the robots do not necessarily follow the plans all the way to the end
of episodes. The temporal uncertainty of a plan is reduced after an
action of the plan is completed. We recompute plans for all robots
after one of the robots finishes its current action. However, we have
noticed that it makes sense to activate replanning only if the change
in uncertainty is significant and only for the robots who have po-
tential to find better plans given the uncertainty change. We leave
further exploration of this issue to future work.

An illustrative example of E-IIDP.
Figure 2 shows a three-robot symbolic planning problem where

the robots’ start and end points are marked with green rectangles
and red ellipses respectively. The two subfigures show the best two
plans of robots R1 and R2; R3 has only one dominant plan. 3

In case of no communication among the robots (Θ=0), R1 takes
p11 and R2 takes p21, causing a collision with a large probability.
S-IIDP is more competitive: in an arbitrary order, we compute a
conditional plan for each robot while considering plans of all other
robots. In case of planning order R2-R1-R3 (S-IIDP is sensitive to
ordering), S-IIDP suggests p11 and p22 to R1 and R2, which is
suboptimal.

Using E-IIDP with M=2, the initial plans are p11, p21 and p31
after the first iteration (i= 0). Given a reasonably large Θ, despite
the planning order, R1 will switch to p12 when α is increased
to some level, and then the plans remain to the end. It should be
noted that, in this example, S-IIDP is guaranteed to find the opti-
mal solution only if it tries all possible orderings (Brute-force S-
IIDP), which has O(N ! · N · C) complexity for the general case,
whereas E-IIDP has O(Θ · N · C) complexity. As a result, E-IIDP
has much lower complexity than Brute-force S-IIDP in this exam-
ple: E-IIDP = O(Brute-force S-IIDP), while both produce optimal
solutions. Although in this case both Brute-force S-IIDP and E-IIDP
do find optimal solutions, it is not the case that either is always
optimal. Indeed, it is possible to generate examples of each out-
performing the other. Such examples are presented in Appendix A
that is available in an extended version of this paper.4

3Symbolic plans are simply represented as navigation trajectories
for the sake of explanation. We assume collisions occur (in proba-
bility) only if both robots are moving.
4The extended version of this paper is hosted at: www.cs.utexas.
edu/~pstone/Papers/bib2html/b2hd-AAMAS17-Zhang.html

5. AN INSTANTIATION OF IIDP
In this section, we instantiate IIDP using a multirobot navigation

task. Symbolic task planning techniques are needed because robots
need to reason about between-room accessibilities and plan to open
doors as needed. The single-robot version of this domain (without
modeling noisy action durations) has been studied in existing re-
search [17, 36]. In this section, we present our symbolic planner,
shifted-Poisson distributions for accumulating temporal uncertainty
over actions, and a novel algorithm for computing conditional plan
cost under temporal uncertainty.

5.1 Single-robot symbolic planning using BC

We use action language BC [24] for symbolic planning in this
work because it can formalize defaults and recursively defined ac-
tion effects (e.g., two rooms are accessible to each other if each of
them is accessible to a third room). However, the algorithms de-
veloped in this paper are not restricted to specific action languages
or symbolic planners. We adapt existing formulations of BC-based,
single-robot navigation tasks [17, 36] for multirobot settings. For
instance, we use the following rules to define the ownership be-
tween rooms and doors:

hasdoor(r1, d1). hasdoor(r1, d2). hasdoor(r2, d2). · · ·
default ¬hasdoor(R,D).

where, R and D represent a room and a door respectively. The last
rule above is a default for reasoning with incomplete knowledge:
it is believed that room R does not have door D unless there is
evidence supporting the contrary.

Action description, A, includes the rules that formalize the pre-
conditions and effects of actions that can be executed on each robot.
We use fluents open(D), facing(D), beside(D), and loc(R) to rep-
resent door D is open, the robot is facing door D, the robot is be-
side door D, and the robot is in room R. Robot identities are not
included in the representation of a robot’s location, loc(R), because
a robot’s state does not model the state of other robots.

Robot actions include approach(D), opendoor(D), cross(D),
and waitforopen(D), where waitforopen(D) enables a robot to wait
for another robot to open door D and is only useful in multirobot
systems. Due to space limit, we arbitrarily select action cross(D)
and present its definition as below. Crossing door D changes the
robot’s location from R1 to R2, the room on the other side of
door D. The last three rules below describe the executability, e.g.,
cross(D) cannot be executed if door D is not open.

cross(D) causes ¬facing(D).
cross(D) causes loc(R2) if loc(R1), acc(R1, D,R2).
nonexe cross(D) if loc(R), ¬hasdoor(R,D).
nonexe cross(D) if ¬facing(D).
nonexe cross(D) if ¬open(D).

Given a planning goal, a planner can find many solutions. We
select the one that minimizes the overall cost. In implementation,
to model the progress of navigation actions (approach, in our case),
we discretize distance by representing each corridor using a set of
grid cells. Accordingly, each approach action is replaced by a se-
quence of actions that lead the robot to follow waypoints. We use
CLINGO4 for solving BC programs [11].

5.2 Modeling noisy action durations
In single-robot systems, following the plan generated by a sym-

bolic planner, such as our BC-based planner, a robot can execute ac-
tions to optimally achieve the goal. When multiple robots share an
environment, their plans might interact such that their independently-
computed optimal plans become suboptimal at runtime. In order to



leverage such interactions toward sharing resources and construct-
ing action synergy, it is necessary to model the temporal uncertainty
(in noisy action durations) that propagates over actions.

This subsection presents a novel model for representing and rea-
soning about temporal uncertainty in the noisy durations of nav-
igation actions. This representation is used for not only modeling
individual actions’ noisy durations but also accumulating the uncer-
tainty over a sequence of actions. In this paper, we consider only the
temporal uncertainty from navigation action approach(D). Deriv-
ing the probability density function (PDF) of approach(D) builds
on the following assumptions:

1. Unless explicitly delayed, the robots move at constant velocity
v. Unless specified otherwise, v=1 in this paper.

2. A human obstacle appears within every unit distance at a known
rate, and their appearances are independent of each other. We
use λ to denote this rate.

3. While taking action approach(D), each obstacle appearance causes
a delay for a known amount of time, δ. 5

Following Assumptions 1 and 2, we can use a Poisson distribu-
tion to model the number of delays caused by human appearances
in a unit time and its corresponding PDF is:

f̂(k, λ) = λke−λ/k! (1)

where e is Euler’s number and k is the number of delays.

Proposition 1: If X and Y are two independent discrete random
variables with a Poisson distribution: X∼ Poisson(λ1) and Y ∼
Poisson(λ2), then their sum Z=X+Y follows another Poisson:
Z∼Poisson(λ1+λ2) [22].

According to Proposition 1, when a robot travels for time t (in-
stead of unit time), the number of delays, k′, accumulates over time
and follows another Poisson distribution with a PDF of f̂(k′, λ′).
Following Assumption 1, parameter λ′ is a function of traveled dis-
tance d:

λ′(d) = λ · t(d) = λ · d/v (2)

Since k′ follows a Poisson distribution, we can compute the over-
all time needed for traveling a distance of d:

t = tact + tdel = d/v + k′ · δ (3)

where tact= d/v, as a linear function of distance d, represents the
acting time, and tdel = k′ · δ is the delayed time.

Using Equations 2 and 3, we can see the overall navigation time
t follows a shifted Poisson distribution with PDF:

f
(
t, λ′(d)

)
=
(
λ′(d)

) t−d/v
δ ·e−λ

′(d)
/
(
t−d/v
δ

)
! (4)

Figure 3(a) visualizes two example PDFs. For instance, it is the
most likely that traveling distance d = 50 at velocity v = 1 takes
60 time units while modeling possible delays (instead of 50 in
obstacle-free domains). It also shows that a longer distance pro-
duces more uncertainty in completion time. We also collected nav-
igation time using a real robot, and the results shown in Figure 3(b)
suggest that a shifted Poisson distribution can well represent noisy
durations of navigation actions (with parameters properly set).

We further remove the parameter of λ′ and substitute d/v with
tact, and use Dist(tact, λ′) to represent a distribution over possible
lengths of completion time. Modeling noisy action durations in this
way paves the way to further investigating how uncertainty is accu-

5For example, such delays can be caused by forcing the robot to
stop and say “excuse me” as is done by CoBots [30].
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(a) Noisy durations of navigation actions in simulation.
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(b) Noisy durations of navigation actions on a real robot.

Figure 3: (a) PDFs of two shifted Poisson distributions used for modeling
the noisy durations of navigation actions: v = 1, δ = 5, and λ = 0.05. A
longer distance brings more uncertainty; and (b) A real robot navigates in
a reasonably busy corridor (28m) for 164 times. The shifted Poisson well
models the action’s noisy durations.

mulated over plans that include a sequence of actions. For instance,
tact= 50 and λ′= 2.5 correspond to the (blue) circle-mark curve
in Figure 3(a). Since (we assume) non-navigation actions do not
introduce extra uncertainty at running time, Equation 3 can be di-
rectly applied to modeling the distribution over possible lengths of
time consumed by a sequence of actions including potentially both
navigation and non-navigation actions. A plan of form 〈a0, a1, · · · 〉
can be represented as below to further model the distribution over
possible lengths of completion time of each action. We call p an
extended plan (or simply plan).

p : 〈 (a0, t
act
0 , λ′0), (a1, t

act
1 , λ′1), · · · 〉

According to Proposition 1, the time consumed by executing the
first K actions in plan p follows a distribution of:

Dist(

K−1∑
k=0

tk
act,

K−1∑
k=0

λ′k)

Therefore, Dist(tact, λ′) represents a novel distribution that can
model the temporal uncertainty that accumulates over a sequence
of actions in robot navigation problem. Note that other applica-
tion domains may require very different representations (PDFs) for
modeling their noisy action durations, and this subsection, as an il-
lustrative example and for the purpose of evaluating IIDP, simply
presents a concise PDF representation for navigation actions.

5.3 Computing inter-dependent plan cost: C
In a two-robot system that includes robotsR andR′, p and p′ are

robots’ extended plans. The inter-dependent plan cost of p′ given
p is the estimate of total cost robot R′ will consume, if R and R′

simultaneously execute their plans, p and p′, respectively. Different
from single-robot planning, we have to consider possible collisions
and door-sharing behaviors (and any conflicts or synergies in gen-
eral) in computing inter-dependent plan costs. We first compute the
probability of robot R′’s navigation action a′ overlapping p’s nav-



igation action a over time (parameter λ omitted from PDFs), while
the overlapping in space is handled by the symbolic task planner:

Provlp(a, a′) = 1−
∫ ∞
0

∫ ∞
t2

fs1 (t1)fc2 (t2) dt1 dt2

−
∫ ∞
0

∫ ∞
t1

fc1 (t1)fs2 (t2) dt2 dt1 (5)

where fs1 and fc1 are the PDFs of starting and completion times of
action a; fs2 and fc2 are the PDFs of starting and completion times
of action a′. The first double integral computes the probability of
the completion of a′ being earlier than the start of a, and the second
computes the probability of the start of a′ being after the comple-
tion of a. 6

We use twait(a, a′) to represent the time of robot R′ waiting for
R to open door D, where a′ is R′’s action and is waitforopen(D).

twait(a, a′) =

∫ ∞
0

∫ ∞
t2

(t1−t2)fc1 (t1)fs2 (t2) dt1 dt2 (6)

where fc1 is the PDF of the completion time of action a; and fs2 is
the PDF of the start time of action a′.

It is possible that robotR has finished the action of going through
door D before robot R′ arrives. In this case, robot R′ may have
avoided closer doors and has to reopen the door. We compute the
probability of such failures:

Pr fail(a, a′) =

∫ ∞
0

∫ ∞
t1

fc1 (t1)fs2 (t2) dt2 dt1 (7)

where fc1 is the time of robot R completing action a, the action of
opening door D, and fs2 is the time of robot R′ starting the action
of waitforopen(D), i.e., a′.

Algorithm 2 Computing inter-dependent plan cost (navigation)

Input: Plan p′, whose cost will be evaluated
Input: Plan set P , on which the cost of p′ is dependent
Input: α: negotiation depth
Input: (optional configuration parameters) µ : collision cost, ω : waitforopen(D)

failure cost, and ρ : value of time
Output: C′: overall cost of plan p′

1: C′=0
2: for each p ∈ P do
3: for each action pair [a, a′], where a ∈ p and a′ ∈ p′ do
4: C′ ← C′ + cost(a′)
5: if a is opendoor(D) and a′ is waitforopen(D) then
6: C′ ← C′ + ρ · twait (a, a′) ·

(
1− Pr fail (a, a′)

)
7: C′ ← C′ + ω ·

(
1− α ·

(
1− Pr fail (a, a′)

))
8: else if a and a′ are navigation actions (and overlap in space) then
9: C′ ← C′ + α · µ · Provlp(a, a′)
10: end if
11: end for
12: end for
13: return C′

Algorithm 2 presents our algorithm for computing inter-dependent
plan cost (in our navigation domain). While computing the cost of
waitforopen(D), we need to consider both the cases that have syn-
ergy and those that failed (Lines 6-7). Although the form of tempo-
ral uncertainty varies significantly over different robot actions, this
approach can be easily applied to other domains for sharing lim-
ited resource and constructing “wait-for-action”-style synergies, as
long as the PDFs of the actions’ durations are available.

6In implementation, the integrals are replaced by summation op-
erations, because action completions only happen at specific time
instances (e.g., Figure 3).
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Figure 4: GAZEBO simulation environment (and a picture of a human
walker blocking a robot).
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Figure 5: Costs of robots R1 and R2 in 45 trials collected using GAZEBO
simulation environment.

6. EXPERIMENTS
We have implemented IIDP (specifically, its multirobot naviga-

tion instantiation) both in simulation and on robots. Simulation ex-
periments were conducted using a realistic multirobot simulation
environment (GAZEBO [23]) and a much faster abstract simulator
that does not have an interface for visualization or a physics engine
for simulating collision consequences. Noisy action durations in the
abstract simulator are sampled from predefined distributions. Ex-
periments were conducted to investigate how different values of Θ
(S-IIDP vs. E-IIDP) affect the performance in reducing overall cost,
to evaluate the necessity of modeling noisy action durations using
our probabilistic model, and to study the performance of IIDPs in
systems that include varying numbers of robots.

Gazebo simulation (No collaboration vs. E-IIDP).
Figure 4 (left) shows our GAZEBO testing environment. We add

human walkers (right) to simulate the process of walking people
causing delays to robot navigation actions. The floormap is divided
into grid cells and taking a symbolic action (to one of the four di-
rections) enables the robot to move to one of the nearby cells given
no obstacles. Two robots need to navigate from their initial posi-
tions (green rectangles) to their goal positions (red ellipses). The
two robots start at the same time, and we record the completion
time for each of the robots. The performance is evaluated based on
the robots’ overall completion time.

Table 1: Average cost consumed (time) and standard deviation from
GAZEBO simulation experiments (reported in Figure 5).

E-IIDP No collaboration
Robot-1 136.34 (13.18) 238.36 (117.04)
Robot-2 104.85 (10.74) 278.72 (112.55)
Average 120.60 258.54

Experiments in GAZEBO were conducted to visualize and vali-
date the whole process of multirobot plan generation and execu-
tion, and to compare IIDP (enhanced configuration) to a baseline
that computes plans for the robots independently (no collabora-



tion). The results in the form of execution costs of two robots are
shown in Figure 5. We can see a cluster of red circles in the bottom-
left, which indicates the E-IIDP algorithm reduces the overall plan
cost. The blue squares on the left, for instance, correspond to the
trials where robot R2 avoids R1 by taking a big detour (locally
optimal solution). Table 1 shows the averages of the same set of
results collected from GAZEBO. Considering both robots, E-IIDP
(M=1, Θ=2) significantly reduces the average completion time
from more than 250 seconds to about 120 seconds.

d1 d2 d5

d3

d8

d4

d10
d6 d7 d9

cor1 cor2

Figure 6: Abstract simulation environment, where action durations are gen-
erated by sampling from pre-specified distributions.

Abstract simulation (S-IIDP vs. E-IIDP).
In order to run a lot more trials, we use an abstract simula-

tor: navigation actions’ noisy durations are sampled from a shifted
Poisson distribution (Eqn. 4); collision cost is 40; waitforopen(D)
failure cost is 12; and collisions are possible only if both robots are
taking navigation actions. 7 Figure 6 shows the domain map.

The first set of experiments in abstract simulation was conducted
to evaluate how the number of rounds of negotiations (Θ in Algo-
rithm 1) affects the overall cost. Figure 7 reports the results: Θ=0
means no collaborations between robots (baseline); Θ = 1 and
Θ = 2 correspond to S-IIDP and E-IIDP respectively. Each data
point corresponds to results from 50 trials (the same for the fol-
lowing results unless stated otherwise). For instance, when robot
R1 is delayed by 5 time units, we see E-IIDP reduces the overall
cost from more than 80 to lower than 50, and enables R1 and R2
to share door-opening actions. When one robot starts much earlier
than the other (two ends of these curves), the overall costs are all
about 45 no matter whether collaborations are enabled or not, be-
cause they can hardly cause collisions or share doors. Comparing
the triangle and square curves in both subfigures, we find that E-
IIDP enables more action synergies than S-IIDP (via sharing door-
opening actions), even when the overall cost reduction introduced
by such synergies is small.

Abstract simulation (with/without uncertainty).
Our next set of experiments evaluate the need for modeling tem-

poral uncertainty, where the baseline does not model the noise in
action durations (optimistically assuming no delays in navigation
actions).R1 needs to move from d3 in corridor cor1 to door d4, so
the best plan for R1 is to open and go through door d3 in any case.
The head start of R1 varies in a relatively small range (±6).

Figure 8 reports the results of these experiments. WhenR1 has a
head start of−1, the overall cost of our E-IIDP algorithm is smaller
than the baseline by more than ten (reduced from more than 50 to
less than 40). Focusing on this performance improvement, we find
robot R2 can either open the bottom door by itself or follow the
first robot through the corridor door on the top. Without modeling

7If two robots try to pass each other, there is a significant risk that
they will bump into each other and become entangled. In contrast,
at least in our environment, we find that most people give way to
the robots by standing close to the wall.
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Figure 7: Planning for a two-robot system (evaluating Θ):R1 andR2 need
to move from d2 to d9 and from d7 to d4 respectively.

Figure 8: Planning for a two-robot system (evaluating the need of modeling
temporal uncertainty): R1 and R2 need to move from d3 (cor1 side) to d4
and from d7 to d5 respectively.

temporal uncertainty (baseline),R2 is not aware of the risk of being
delayed while moving upward. As a consequence,R2 will be mov-
ing to door d3 (hoping to follow R1 through door d3), even if it is
in a risky situation that a single delay on the way will make it too
late to catch up with R1’s door-opening action. The big variance
in overall cost for the baseline corresponds to the fact that the tri-
als where robot R2 succeeds in following R1 through the door and
the trials where it fails produce very different overall costs. E-IIDP
models the noisy action durations and enables R2 to dynamically
evaluate the uncertainty from its teammate and itself, and is able to
balance the risk and potential benefit to select the best path.

Abstract simulation (three-robot experiments).
In a team that includes more than two robots, IIDP has the option

to consider only a subset of its teammates in conditional planning
(specified by M in Algorithm 1). This set of experiments was con-
ducted in a team of three robots to evaluate how the value of M
affects the performance of IIDP. Accordingly, we adjust the value
of Θ (S-IIDP vs. E-IIDP) and the value of M . Robots R2 and R3
have different head starts before R1’s plan execution. The subfig-
ures of Figure 9 report the results of nine different head start combi-
nations. In each subfigure, the x-axis corresponds to one of the four
IIDP configurations, and the y-axis corresponds to the overall cost.
We do not see significant differences over the four IIDP configu-
rations in most head start combinations. This corresponds to our
expectation that, when the robots’ plans do not have (much) over-
lap in time, their plan executions do not affect each other and it is
unlikely to have collisions or construct synergy. In the middle-left
and bottom-middle subfigures, we see considering two other robots
(instead of one) significantly reduces the cost of robot R3 and the
overall cost.

Table 2 shows the performance of the four IIDP configurations.
The reduction of average cost by considering plans of all other
robots is significant, regardless of Θ’s value: p-value=0.03 when
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Figure 9: Planning for a three-robot system (overall cost under four config-
urations of IIDP): R1, R2 and R3 need to move from d1 to d9, from d6 to
d4, and from d10 to d8 (cor1 side) respectively.

Table 2: Mean and standard deviation values of the four configurations in
Figure 9. GivenM=2, the average overall cost using E-IIDP is significantly
different from that of S-IIDP (v-value=0.0128).

Number of teammates considered in conditional planning
M = 1 M = 2

S-IIDP : Θ = 1 207.81 (66.24) 179.28 (9.81)
E-IIDP : Θ = 2 205.35 (62.25) 171.03 (9.99)

Θ = 1, and p-value=0.02 when Θ = 2. Given all other robots are
considered in conditional planning, E-IIDP performs significantly
better than S-IIDP (bold font). However, when only one other robot
is considered, we do not see a significant difference between E-IIDP
and S-IIDP (the left two columns). Therefore, E-IIDP with M = 2
performs significantly better than all three other configurations.

Robot trial.
Collecting statistical results using multiple robots on navigation

tasks can be difficult in practice, because the robots sometimes take
a very long time to finish a trial, especially when the collaborations
are not successful, and robot collisions can cause physical damage
to the robot platforms and sometimes to the environment. However,
in order to demonstrate that our methods can be used to enable
two real robots to collaborate by constructing an action synergy,
we present an illustrative (successful) trial in the real world.

We have implemented the two configurations of IIDP and all ac-
tions formalized in action language BC, including approach(D),
opendoor(D), cross(D), and waitforopen(D), on a team of real
robots. Runtime communications are manually conducted for now.
Figure 10 shows the occupancy-grid map, where robot R1 and R2
are required to move from S1 to G1 and from S2 to G2 respec-
tively. The floor is separated into two areas by two doors in the
middle,D1 andD2. Without collaboration,R1 andR2 will choose

to ask help from humans to open and go through D1 and D2 re-
spectively, which is not a globally optimal solution.

E-IIDP models the possible delays in navigation actions, enabling
R2 to balance the potential benefit of following R1 through door
D1 and the risk of not being able to catch up R1’s door-opening
action. As a result, constructive action synergy is realized: while
R1 is taking the expensive “call for open” action, R2 moves to D1
and waits until R1 “opens” D1 (with human help). This strategy is
better than the one suggested by the no-collaboration baseline and
produces more reliable collaborations between robots by modeling
the temporal uncertainty. Figure 11 shows a picture of R2 (robot
on the right) waiting to follow R1 (robot on the left) through door
D1, using E-IIDP. A video of this trial is available at:
https://youtu.be/ADbH3sppLHQ

          D1
G1

G2

D2

S1

S2

Figure 10: Floor map of the real-world environment.

Figure 11: Using E-IIDP, two robots construct action synergy by sharing a
door-opening action: robot R1 asks for help from a human for opening the
door and is executing the gothrough action, while robot R2 is waiting to
follow R1 through the door.

7. CONCLUSIONS
We introduce the multirobot symbolic planning under tempo-

ral uncertainty (MSPTU) problem, and develop a novel, iterative
inter-dependent planning (IIDP) algorithm inspired by simulated
annealing. IIDP has two configurations, simple-IIDP (S-IIDP) and
enhanced-IIDP (E-IIDP). We instantiate IIDP with a multirobot nav-
igation problem, where we introduce shifted Poisson distributions
and present a novel algorithm for computing conditional plan cost.
In experiments, we see E-IIDP brings significant improvements against
baselines where robots do not coordinate their plans, or coordinate
but do not model temporal uncertainty, and E-IIDP enables more
collaborations, compared to S-IIDP.
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Appendix A

We present examples as evidences that neither Brute-force Sim-
ple IIDP (Brute-force S-IIDP) nor Enhanced IIDP (E-IIDP) always
finds the optimal plan. It should be noted that (similar to Figure 2
in the main paper) symbolic plans are simply represented as navi-
gation trajectories for the sake of explanation.

We make the following assumptions in the examples:

1. Robots collide at a node if they arrive at the same time step
(even when they are moving in the same direction).

2. Costs of collisions are cumulative, i.e. the cost of two col-
lisions is higher than the cost of one collision. This allows
the algorithm to minimize the probability of collisions, if not
possible to avoid them completely.

3. Robot i starts at Si and plans to go to Gi.

Figure 12 shows an example of E-IIDP outperforms Brute-force
S-IIDP (Left) and an example of Brute-force S-IIDP outperforms
E-IIDP (Right).

In the left diagram of Figure 1, the individual plans can possi-
bly “collide” at nodes A and D. E-IIDP successfully avoids both
collisions by suggesting plan (S1->A->C->G1, S2->B->D->G2),
producing the optimal solution. Brute-force S-IIDP will try two or-
derings: 1->2 and 2->1. S-IIDP with planning order 1->2 gener-
ates the plan (S1->A->D->G1, S2->B->D->G2), which results in
a collision at D. Similarly, S-IIDP with the planning order 2->1
generates a plan that causes a collision at A. In this example, E-
IIDP outperforms Brute-force S-IIDP.

The right diagram shows a three-robot example where S-IIDP
finds the optimal plan and E-IIDP fails. Brute-force S-IIDP is able
to find the optimal plan (with ordering 1->2->3): (S1->A->D->G1,
S2->B->E->G2, S3->C->F ->G3). E-IIDP produces a locally op-
timal solution (S1->A->D->G1, S2->A->D->G2, S3->B->E->G3),
where robots 1 and 2 cannot switch to collision-free plans given the
plan of robot 3, while robot 3 has no incentive to change plan. In
this example, Brute-force S-IIDP outperforms E-IIDP.

Figure 12: Two examples with avoiding collisions. The left diagram shows
a case where E-IIDP outperforms Brute-force S-IIDP. The right diagram
shows a three-robot example where S-IIDP finds the optimal plan and E-
IIDP fails.

Figure 13 shows an example where robots can realize action syn-
ergy by sharing door-opening actions. In the main paper, results
reported in Figure 7 show that E-IIDP enables more door-sharing
behaviors than S-IIDP and E-IIDP has much lower complexity than
Brute-force S-IIDP. In this example, we present a situation where
Brute-force S-IIDP (with orderings 3->2->1 or 3->1->2) outper-
forms E-IIDP. Detailed information about the plans suggested by
Brute-force S-IIDP and E-IIDP has been embedded in the figure.

Individual plans:
S1 -> open door -> G1 cost = 19
S2 -> A -> G2 cost = 0
S3 -> A -> open door -> G3 cost = 10

total cost = 29 + collision cost at A

S-IIDP succeeds, order: 3 2 1  or  3 1 2
The optimal plan:

S3 -> A -> open door -> G3 cost = 10
S2 -> G2 cost = 2
S1 -> share door -> G1 cost = 10

total cost = 22

Enhanced IIDP finds a suboptimal plan: 
S3 -> G3 cost = 11
S2 -> A -> G2 cost = 0
S1 -> open door -> G1 cost = 19

total cost = 30
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Figure 13: An example in the context of sharing doors. Brute-force S-IIDP
(with orderings 3->2->1 or 3->1->2) outperforms E-IIDP in this case by
planning robots 1 and 3 to share the door.


