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ABSTRACT
This paper studies a class of reinforcement learning algo-
rithms known as policy gradient methods. Policy gradient
methods optimize the performance of a policy by estimating
the gradient of the expected return with respect to the policy
parameters. One of the core challenges of applying policy
gradient methods is obtaining an accurate estimate of this
gradient. Most policy gradient methods rely on Monte Carlo
sampling to estimate this gradient. When only a limited num-
ber of environment steps can be collected, Monte Carlo policy
gradient estimates may suffer from sampling error – samples
receive more or less weight than they will in expectation. In
this paper, we introduce the Sampling Error Corrected policy
gradient estimator that corrects the inaccurate Monte Carlo
weights. Our approach treats the observed data as if it were
generated by a different policy than the policy that actu-
ally generated the data. It then uses importance sampling
between the two – in the process correcting the inaccurate
Monte Carlo weights. Under a limiting set of assumptions we
can show that this gradient estimator will have lower variance
than the Monte Carlo gradient estimator. We show experi-
mentally that our approach improves the learning speed of
two policy gradient methods compared to standard Monte
Carlo sampling even when the theoretical assumptions fail
to hold.
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1 INTRODUCTION
The ability to learn is a key capability for autonomous agents
and an important capability for the widespread deployment
of autonomous agents on real world tasks such as robotics or
healthcare. Reinforcement learning (RL) algorithms have the
promise to allow autonomous agents to learn without direct
human instructions. RL algorithms optimize the expected
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return – sum of rewards – by learning a policy that specifies
an action-selection rule for any state in the task environment.

One of the most effective classes of policy learning algo-
rithms is the class of policy gradient methods. Policy gradient
RL is conceptually simple: the learning agent interacts with
the environment, uses the observed states, actions, and re-
wards to estimate the gradient of the expected return with
respect to the policy parameters, updates the policy with this
gradient, and then repeats interaction. Despite this simplicity,
variants of policy gradient RL have consistently produced
state-of-the-art results in RL [14, 21, 26]. In this paper, we
analyze a theoretical problem with standard policy gradient
implementations, propose a practical solution to this prob-
lem, and show that our solution leads to empirically faster
learning for sequential decision-making tasks.

Policy gradient implementations typically rely on some
form of sampling to approximate the gradient of the policy’s
expected return. Sampling-based approaches are easy to im-
plement yet can be inefficient – it may take a large number of
samples to obtain an accurate estimate of the gradient. This
inefficiency means that a learning agent must run its current
policy on the task for a long time before it can accurately
estimate how it should update its policy. Many advances in
policy gradient methodology come from variance reduction
techniques that make sampling more efficient[4, 6, 20]. In
this paper, we propose a variance reduction technique that
is complementary to previously proposed approaches.

We first observe that sampling-based approaches approxi-
mate expectations using the frequency that states, actions,
and rewards appear in the observed data. In general these
frequencies for a finite data set will be different than the fre-
quency we would expect if the agent ran its policy to collect
a much larger data set. More importantly, these frequencies
will be different than the correct sample weightings that are
determined by the environment and policy. While we cannot
hope to correct for inaccuracy due to sampling from the
environment, the policy is known and so at least some of the
randomness is under our control.

We next observe that though the data was collected with
the agent’s current policy, for a finite data sample, it may
appear more likely that the data was generated by a different
policy. For example, if from a specific state a uniformly-
randomly-acting agent is observed to move right twice and
move left once, then it appears that the samples were gener-
ated from a policy that is more likely to move right than left.
Under this view, we draw a connection to off-policy RL and
use importance sampling to correct the observed action dis-
tribution to be closer to the expected distribution of actions
under the current policy. We call this approach the Sampling



Error Corrected (sec) policy gradient estimator. The sec es-
timator first estimates the policy that generated the observed
samples. This estimated policy will generally be different
than the agent’s current policy. Once this policy is estimated,
sec applies importance sampling to correct the sample-based
weighting of the return following each action. We present a
theoretical analysis of the variance of this new policy gradient
estimator and show that its variance is less than that of the
commonly used Monte Carlo gradient estimator. We also
conduct experiments with two policy gradient methods using
sec in place of Monte Carlo sampling. Empirical results show
that applying the Sampling Error Corrected policy gradient
estimator leads to faster learning across several reinforcement
learning tasks.

2 PRELIMINARIES
This section formalizes our problem setting and provides rel-
evant background on policy gradient reinforcement learning.

2.1 Preliminaries
The learning agent acts in an episodic Markov decision pro-
cess with state space 𝒮, action space 𝒜, transition proba-
bilities, 𝑃 , reward function 𝑅, and discount factor 𝛾 [16].
The agent selects actions according to a stochastic policy 𝜋
where 𝜋 is a probability distribution over actions conditioned
on state. The agent begins in state 𝑠0 and selects action
𝑎0 according to its policy. The environment then responds
with state 𝑠1 and reward 𝑟0. The process repeats until a
terminal state, 𝑠∞ is reached.1 We use 𝜏 to denote the trajec-
tory: 𝑠0, 𝑎0, 𝑟0, ...𝑠∞. The probability of a trajectory depends
on both the (known) action probabilities under 𝜋 and the
(unknown) state-transition and reward probabilities.

We assume that the policy is parameterized with parameter
vector 𝜃 and denote the parameterized policy as 𝜋𝜃. Let
𝑄𝜋(𝑠, 𝑎) = E𝜏 [

∑︀∞
𝑡=0 𝛾

𝑡𝑟𝑡|𝑠0 = 𝑠, 𝑎0 = 𝑎] be the expected
return (discounted sum of rewards) obtained when taking
action 𝑎 in state 𝑠 and then following 𝜋 until the end of the
trajectory. The performance of a policy, 𝜂, is the expected
return obtained when running the policy:

𝜂(𝜋) := E𝑠∼𝜌𝜋,𝑎∼𝜋[𝑄
𝜋(𝑠, 𝑎)]

where 𝜌𝜋(𝑠) =
∑︀∞

𝑡=0 𝛾
𝑡 Pr(𝑠𝑡 = 𝑠) denotes the probability of

being in state 𝑠 while following policy 𝜋.
Given the objective 𝜂, reinforcement learning algorithms

find 𝜃 that maximize 𝜂(𝜋𝜃).

2.2 Policy Gradient Reinforcement
Learning

One of the most common classes of reinforcement learning
algorithms is the class of policy gradient methods. Policy
gradient methods learn a (locally) optimal policy by updating
the policy parameters with respect to the gradient of 𝜂:

∇𝜃𝜂(𝜋𝜃) := E𝑠∼𝜌𝜋𝜃
,𝑎∼𝜋𝜃 [𝑄𝜋𝜃 (𝑠, 𝑎)∇𝜃 log 𝜋𝜃(𝑎|𝑠)] (1)

1We assume finite trajectory lengths and only use 𝑠∞ to denote the
terminal state.

Since the expectation in (1) depends on the unknown
environment and reward probabilities (via 𝜌𝜋𝜃 and 𝑄𝜋𝜃 ), the
gradient is typically approximated with sampling. Given a
set, 𝒟, of 𝑚 state-action pairs observed while following 𝜋𝜃 in
the environment, the Monte Carlo policy gradient estimator
is:

∇𝜃𝜂(𝜋𝜃) ≈ 𝑔mc(𝒟) =
1

𝑚

𝑚∑︁
𝑗=1

̂︀𝑄𝜋𝜃 (𝑠𝑗 , 𝑎𝑗)∇𝜃 log 𝜋𝜃(𝑎𝑗 |𝑠𝑗)

(2)
where ̂︀𝑄𝜋𝜃 (𝑠𝑗 , 𝑎𝑗) is an estimate of the sum of rewards fol-
lowing (𝑠𝑖, 𝑎𝑖) and the state-action pairs (𝑠𝑖, 𝑎𝑖) are observed
while running the current policy 𝜋𝜃. For sufficiently large
𝑚, the Monte Carlo estimator approximately weights eacĥ︀𝑄𝜋𝜃 (𝑠, 𝑎)∇𝜃 log 𝜋𝜃(𝑎|𝑠) by the probability 𝜌𝜋𝜃 (𝑠)𝜋𝜃(𝑎|𝑠) and
𝑔mc(𝒟𝑖) closely approximates ∇𝜃𝜂(𝜋𝜃). While this estimator
is known to have high variance, the policy gradient and its
Monte Carlo approximation form the basis for many other
methods that give strong performance. In particular, policy
gradient methods have been shown to produce state-of-the-art
reinforcement learning results (e.g., [6, 21, 26]).

Policy gradient algorithms usually share the general itera-
tive steps:

(1) Collect 𝑚 state-action pairs from the environment by
running the current policy 𝜋𝜃𝑖. We will call the set of
these state-action pairs 𝒟𝑖.

(2) Use 𝒟𝑖 to compute ̂︀𝑄𝜋𝜃𝑖(𝑠, 𝑎) for all 𝑠, 𝑎 that occur in
𝒟𝑖.

(3) Approximate ∇𝜃𝜂(𝜋𝜃𝑖) with (2) using 𝒟𝑖 and the ̂︀𝑄𝜋𝜃𝑖

values.
(4) Set 𝜃𝑖+1 = 𝜃𝑖 + 𝛼𝑖𝑔mc(𝒟𝑖) where 𝛼𝑖 is a step-size that

may vary across iterations.
The exact implementation of any of these steps can vary
from method to method. For example, Williams [27] useŝ︀𝑄𝜋𝜃 (𝑠, 𝑎) =

∑︀∞
𝑡=0 𝛾

𝑡𝑟𝑡 to estimate 𝑄𝜋𝜃 while Sutton et al.
[23] fit a linear function approximator, ̂︀𝑄𝑤, and use it as
the estimate of 𝑄𝜋𝜃 . It is also common to use the advantage
function, 𝐴𝜋(𝑠, 𝑎) = 𝑄𝜋(𝑠, 𝑎) − 𝑉 𝜋(𝑠), in place of 𝑄𝜋(𝑠, 𝑎)
where 𝑉 𝜋(𝑠) = E𝑎∼𝜋[𝑄(𝑠, 𝑎)]. Replacing 𝑄𝜋 with 𝐴𝜋 leaves
the gradient unchanged [4, 27].

3 SAMPLING ERROR IN THE MONTE
CARLO GRADIENT

The Monte Carlo estimator, 𝑔mc is the standard approach to
estimating the gradient in policy gradient learning. In this
section, we discuss approximation error in 𝑔mc and present
the view that – for a fixed 𝒟𝑖 – 𝑔mc is the gradient estimated
under the wrong distribution of states and actions. The
view we present will suggest a simple solution to reduce
the approximation error of the Monte Carlo policy gradient
estimator.

For a finite number of sampled states and actions, 𝑔mc, will
have error unless 𝒟 happens to contain each state and action
(𝑠, 𝑎) at its long-run expected frequency, 𝜌𝜋𝜃 (𝑠)𝜋(𝑎|𝑠), and̂︀𝑄𝜋𝜃 (𝑠, 𝑎) = 𝑄𝜋𝜃 (𝑠, 𝑎) for all 𝑠, 𝑎. For ease of exposition, we
will ignore differences in ̂︀𝑄𝜋𝜃 (𝑠, 𝑎) and 𝑄𝜋𝜃 (𝑠, 𝑎) and focus



on error due to sampling in the states and actions. Let 𝜌𝒟𝑖(𝑠)
be the proportion of times that 𝑠 occurs in 𝒟𝑖 and 𝜋𝒟𝑖(𝑎|𝑠)
be the proportion of times that action 𝑎 occurred in state
𝑠 in 𝒟𝑖. Formally, let 𝑚(𝑠) be the number of times that we
observe state 𝑠 in 𝒟𝑖 and let 𝑚(𝑠, 𝑎) be the number of times
that we observe action 𝑎 in state 𝑠. We define 𝜌𝒟𝑖(𝑠) =

𝑚(𝑠)
𝑚

and 𝜋𝒟𝑖(𝑎|𝑠) =
𝑚(𝑠,𝑎)
𝑚(𝑠)

. Finally, we define the function �̄�𝜋 :

𝒮 ×𝒜 → R as:

�̄�𝜋(𝑠, 𝑎) =

{︃̂︀𝑄𝜋(𝑠, 𝑎) 𝑚(𝑠, 𝑎) > 0

0 𝑚(𝑠, 𝑎) = 0

Given these definitions, the Monte Carlo policy gradient
estimator can be re-written as:

𝑔mc(𝒟𝑖) =
1

𝑚

𝑚∑︁
𝑗=1

̂︀𝑄𝜋𝜃 (𝑠𝑗 , 𝑎𝑗)∇𝜃 log 𝜋𝜃(𝑎𝑗 |𝑠𝑗)

=
1

𝑚

∑︁
𝑠∈𝒮

∑︁
𝑎∈𝒜

𝑚(𝑠, 𝑎)�̄�𝜋𝜃 (𝑠, 𝑎)∇𝜃 log 𝜋𝜃(𝑎|𝑠)

=
∑︁
𝑠∈𝒮

𝜌𝒟𝑖(𝑠)
∑︁
𝑎∈𝒜

𝜋𝒟𝑖(𝑎|𝑠)�̄�
𝜋𝜃 (𝑠, 𝑎)∇𝜃 log 𝜋𝜃(𝑎|𝑠)

= E𝑠∼𝜌𝒟𝑖
,𝑎∼𝜋𝒟𝑖

[︀
�̄�𝜋𝜃 (𝑠, 𝑎)∇𝜃 log 𝜋𝜃(𝑎|𝑠)

]︀
Notably, the sample average in (2) has been replaced with
an exact expectation over actions as in (1). However, the
expectation is taken over the action distribution 𝜋𝒟𝑖 and
not 𝜋𝜃. This expression suggests that sampling error in the
Monte Carlo approximation can be viewed as evaluating the
gradient under the wrong distribution. Figure 1 expresses
how sampling error relates to weighting each 𝑎 ∈ 𝒜 in a
Monte Carlo gradient estimate for a fixed state.

This section has shown that for a fixed set of data the
Monte Carlo policy gradient estimator will be equal to an
exact expectation taken over the wrong distribution of states
and actions. The correct state distribution is unknown, how-
ever, we do know the correct action distribution (𝜋𝜃) and
thus can potentially correct the inaccurate weighting. In the
next section we introduce an algorithm that uses importance
sampling to apply this correction.

Before concluding this section, we note that 𝑔mc is an
unbiased estimator of ∇𝜃𝜂. That is, if we were to repeatedly
sample batches of data and estimate the gradient, the gradient
estimates would be correct in expectation. However, once a
single batch of data has been collected, we might ask, "can
we correct for the sampling inaccuracy observed in this fixed
sample?"

4 CORRECTING FOR SAMPLING
ERROR

The previous section presented the view that sampling error
in Monte Carlo approximations can be viewed as covariate
shift – we are interested in an expectation under 𝜌𝜋𝜃 and
𝜋𝜃 but instead we have an expectation under 𝜌𝒟𝑖 and 𝜋𝒟.
Viewing the sampling error as covariate shift suggests a
simple solution: use importance sampling to correct for the
distribution shift.

0.1

0.3

0.4

0.2

Action 𝜋𝜃 𝜋𝒟 𝑔mc weight 𝑔sec weight
Up 0.1 0.15 0.15 0.1

Right 0.3 0.35 0.35 0.3
Down 0.4 0.3 0.3 0.4
Left 0.2 0.2 0.2 0.2

Figure 1: Sampling error in a fixed state 𝑠 of a gridworld
environment. Each action 𝑎 is sampled with probability
𝜋𝜃(𝑎|𝑠) and is observed in the proportion given by 𝜋𝒟(𝑎|𝑠).
Monte Carlo weighting gives each return 𝑄𝜋𝜃 (𝑎|𝑠) the
weight 𝜋𝒟(𝑎|𝑠) while our proposed Sampling Error Cor-
rected weighting gives each return 𝑄𝜋𝜃 (𝑎|𝑠) the weight
𝜋𝒟(𝑎|𝑠) 𝜋𝜃(𝑎|𝑠)

𝜋𝒟(𝑎|𝑠) = 𝜋𝜃(𝑎|𝑠). Thus sec weights each advantage
by the correct amount while the Monte Carlo estimator
will have error unless the empirical proportion of sam-
pled actions, 𝜋𝒟, is equal to the expected proportion, 𝜋𝜃

for all actions.

Importance Sampling (IS) is a method for reweighting
values generated by one policy (commonly called the behavior
policy), 𝜇, such that in the limit of infinite samples the values
are weighted as if they had come from the policy of interest,
𝜋𝜃. In our case, we will treat the empirical distribution of
actions, 𝜋𝒟 as the behavior policy 𝜇 and then use IS to correct
for the shift between the empirical and desired distribution.
We call this approach the sampling error corrected (sec)
policy gradient estimator.

In practice, using the true 𝜋𝒟 may introduce high bias
into gradient estimates, particularly in continuous state and
action spaces. This bias is because using 𝜋𝒟 can be shown
to be equivalent to assuming that ̂︀𝑄𝜋𝜃 (𝑠, 𝑎) is zero for all
unobserved actions.2 Instead, let 𝜋𝜑 be a parametric estimate
of the policy that generated our data.3 The sec estimator
estimates 𝜑𝑖 so that 𝜋𝜑 is the maximum likelihood policy
that generated our data:

𝜑𝑖 = argmax
𝜑

𝑚∑︁
𝑖=1

log 𝜋𝜑(𝑎𝑖|𝑠𝑖) (3)

Importantly, sec estimates 𝜑𝑖 with the same 𝑚 samples that
will be used to estimate the policy gradient. If 𝜑𝑖 is esti-
mated with a different set of samples then 𝜋𝜑 will contain no
information for correcting sampling error – our experiments

2This assumption can be seen in the definition of �̄� in Section 3.
3We assume in this paper that we use a parametric policy estimate
and leave non-parametric estimates to future work.



confirm this observation. For most RL benchmarks, (3) can
be formulated as a supervised learning problem.

Given 𝜋𝜑, sec re-weights each ̂︀𝑄𝜋𝜃 (𝑠𝑖, 𝑎𝑖)∇𝜃 log 𝜋𝜃(𝑎𝑖|𝑠𝑖)
by the ratio of the true likelihood 𝜋𝜃 to the estimated empir-
ical likelihood 𝜋𝜑:

𝑔sec(𝒟𝑖) =
1

𝑚

𝑚∑︁
𝑗=1

𝜋𝜃(𝑎𝑗 |𝑠𝑗)
𝜋𝜑(𝑎𝑗 |𝑠𝑗)

̂︀𝑄𝜋𝜃 (𝑠𝑗 , 𝑎𝑗)∇𝜃 log 𝜋𝜃(𝑎𝑗 |𝑠𝑗) (4)

Intuitively, when an action is sampled more often than its
expected proportion, 𝑔sec down-weights the gradient estimate
following that action. Similarly, when an action is sampled
less often than its expected proportion, 𝑔sec up-weights the
gradient estimate following that action. As we will discuss
in the next section, if 𝜋𝜑 is close to 𝜋𝒟 then this sampling
correction can eliminate variance in the action selection. Full
details of this approach are given in Algorithm 1.

Algorithm 1 Sampling Error Corrected Policy Gra-
dient
Input: Initial policy parameters, 𝜃0, batch size 𝑚, a step-size
for each iteration, 𝛼𝑖, and number of iterations 𝑛.
Output: Optimized policy parameters 𝜃𝑛.

1: for all 𝑖 = 0 to 𝑛 do
2: 𝒟𝑖 = Sample 𝑚 steps (𝑠, 𝑎) ∼ 𝜋𝜃𝑖

3: 𝜑𝑖 ← argmax
𝜑

𝑚∑︁
𝑗=1

log 𝜋𝜑(𝑎𝑗 |𝑠𝑗)

4: 𝑔sec ← 1
𝑚

𝑚∑︁
𝑗=1

𝜋𝜃(𝑎𝑗 |𝑠𝑗)
𝜋𝜑(𝑎𝑗 |𝑠𝑗)

̂︀𝑄𝜋𝜃 (𝑠𝑗 , 𝑎𝑗)∇𝜃 log 𝜋𝜃𝑖(𝑎𝑗 |𝑠𝑗)

5: 𝜃𝑖+1 = 𝜃𝑖 + 𝛼𝑖 · 𝑔sec
6: end for
7: Return 𝜃𝑛

Importance sampling in reinforcement learning is typically
applied for off-policy learning, i.e., learning with data that
has been generated by a policy that is different from the
current policy. Despite this connection to off-policy learning,
we remain in the on-policy setting: data is collected with the
current policy, used to update the current policy, and then
discarded.

The sec estimator is related to the use of importance sam-
pling for off-policy reinforcement learning where the behavior
policy 𝜇 must be estimated before it can be used to form the
importance weights. In practice, behavior policy estimation
can be challenging when the distribution class of the true
behavior policy is unknown [7, 17]. Fortunately, in the on-
policy, policy gradient setting, we have complete access to
the behavior policy and can specify the model class of 𝜋𝜑

to be the same as 𝜋𝜃. We can even simplify the 𝜋𝜑 model
class by estimating a policy that conditions on intermediate
representations of 𝜋𝜃. For example if 𝜋𝜃 is a convolutional
neural network, we can use all but the last layer of 𝜋𝜃 as a
feature extractor and then model 𝜋𝜑 as a linear function of
these features. We evaluate this technique in our experiments.

4.1 Variance Analysis
In this section we analyze the variance of 𝑔sec compared to
that of 𝑔mc. We make a few assumptions that simply the
analysis:

(1) The action space is discrete and if a state is observed
then all actions have also been observed in that state.

(2) The return estimate ̂︀𝑄𝜋𝜃 is computed independently
of 𝒟. This assumption implies ̂︀𝑄𝜋𝜃 (𝑠, 𝑎) is a constant
with respect to a fixed (𝑠, 𝑎) in 𝒟.

(3) For all observed states, our estimated policy 𝜋𝜑 is equal
to 𝜋𝒟, i.e., if action 𝑎 occurs 𝑘 times in state 𝑠 and 𝑠
occurs 𝑛 times in 𝒟 then 𝜋𝜑(𝑎|𝑠) = 𝑘

𝑛
.

Let S be the random variable representing the states in
𝒟 and A be the random variable representing the actions
in 𝒟. We will use 𝒟 = {S,A, ̂︀𝑄𝜋𝜃} to make explicit that 𝒟
depends on both the randomness in the set of sampled states
and sampled actions. We can now give the central theoretical
claim of this paper.

Proposition 1. Let VarS,A (𝑔) denote the variance of es-
timator 𝑔 with respect to random variables S and A. For the
Monte Carlo estimator, 𝑔mc, and the sec estimator, 𝑔sec:

VarS,A (𝑔sec({S,A})) < VarS,A (𝑔mc({S,A}))

Proof. We provide a partial proof in this section. Addi-
tional details are given in Appendix A.

We first note that both 𝑔sec and 𝑔mc can be written as:

𝑔({S,A}) =
∑︁
𝑠∈𝒮

𝜌𝒟(𝑠)
∑︁
𝑎∈𝒜

𝜋𝒟(𝑎|𝑠)𝑤(𝑠, 𝑎) ̂︀𝑄(𝑠, 𝑎)∇𝜃 log 𝜋𝜃(𝑎|𝑠)

(5)
where 𝑤(𝑠, 𝑎) = 𝜋𝜃(𝑎|𝑠)

𝜋𝒟(𝑎|𝑠) for 𝑔sec and 𝑤(𝑠, 𝑎) = 1 for 𝑔mc.
Using the law of total variance, the variance of (5) can be

decomposed as:

VarS,A (𝑔({S,A})) =ES [VarA (𝑔({S,A}|S))]⏟  ⏞  
ΣA

+VarS (EA [𝑔({S,A})|S])⏟  ⏞  
ΣS

The first term, ΣA, is the variance due to stochasticity in
the action selection.

Claim 1. VarA (𝑔sec({S,A}|S)) = 0.

Proof. See Appendix A. Intuitively, this claim follows
from the fact that using 𝑤(𝑠, 𝑎) = 𝜋𝜃(𝑎|𝑠)

𝜋𝒟(𝑎|𝑠) results in all
randomness due to A canceling. □

From Claim 1, ΣA will be zero since ES[0] = 0. However,
this term will be positive for 𝑔mc since in general the Monte
Carlo estimator does not have zero variance.4

The second term, ΣS, is the variance due to only visiting
a limited number of states before estimating the gradient.

Claim 2. EA [𝑔sec({S,A})|S] = EA [𝑔mc({S,A})|S].

4The Monte Carlo estimator has zero variance with respect to action
sampling only when ̂︀𝑄𝜋𝜃 (𝑠, 𝑎) is equal for all actions in any state.



Proof. See Appendix A. Under Assumption (1) and (3)
the expectation over 𝜋𝒟 (

∑︀
𝑎∈𝒜 𝜋𝒟(𝑎|𝑠)) in (5) is converted

to an exact expectation over 𝜋𝜃 (
∑︀

𝑎∈𝒜 𝜋𝜃(𝑎|𝑠)) and 𝑔mc is
an unbiased estimator of this exact expectation. □

From Claim 2, it follows that ΣS will be the same for both
𝑔mc and 𝑔sec. Since ΣS is identical for both terms and ΣA is
zero for 𝑔sec, the variance of 𝑔sec can be no more than that
of 𝑔mc. □

Our claim that the variance of 𝑔sec is less than that of
𝑔mc has been shown under a limiting set of assumptions.
The assumption that all actions have been observed in all
sampled states and that we can estimate 𝜋𝒟 exactly limits
the analysis to discrete state and action domains. Analyzing
the estimators’ variances under relaxed assumptions is an
interesting direction for future work.

Finally, we note that in typical policy gradient implemen-
tations the assumption that ̂︀𝑄𝜋𝜃 is computed independently
of 𝒟 is typically violated. In this case, the variance decompo-
sition will have a third term that is due to variance in the
return estimates:

Σ𝜏 = ES,A [Var (𝑔({S,A}|S,A))]
This term may not necessarily be less for either estimator
and we leave its analysis to future work. We also discuss
in our future work section how the sec estimator could be
modified to lower the variance of the return estimates.

5 EMPIRICAL RESULTS
In this section we present an empirical evaluation of the
sampling error corrected policy gradient estimator. While
the analysis in the previous section was based on limiting
assumptions, we now evaluate whether 𝑔sec can lead to faster
learning in practice, even when these assumptions are violated.
Specifically, we study 𝑔sec in both continuous and discrete
state spaces, in discrete and continuous action spaces, and
when the return estimates are not independent of the gradient
estimate. Our main empirical question is, "Does replacinĝ︀𝑄𝜋(𝑠, 𝑎) with 𝜋(𝑎|𝑠)

𝜋𝜑(𝑎|𝑠)
̂︀𝑄𝜋(𝑠, 𝑎) lead to faster learning within

a policy gradient method?"

5.1 Empirical Set-up
We first describe four reinforcement learning tasks and the
motivation for evaluating sec in these domains.

Gridworld. Our first domain is a 4× 4 gridworld and we
use REINFORCE [27] as the underlying policy gradient al-
gorithm. The agent begins in grid cell (0, 0) and trajectories
terminate when it reaches (3, 3). The agent receives a reward
of 100 at termination, −10 at (1, 1) and −1 otherwise. The
agent’s policy is a state-dependent softmax distribution over
actions. The sec estimator estimates the policy by counting
how many times each action is taken in each state. This do-
main closely matches the assumptions made in our theoretical
analysis. Specifically, the state and action spaces are discrete
and 𝜋𝜑 is exactly equal to 𝜋𝒟. While we do not explicitly
enforce the assumption that all actions are observed in all

states, the small size of the state and action space (|𝒮| = 16
and |𝒜| = 4) makes it likely that this assumption holds.

Tabular Mountain Car. Our second domain is a discretized
version of the classic mountain car domain. We use REIN-
FORCE as the policy gradient algorithm. The agent attempts
to move an under-powered car up a steep hill by accelerating
to the left or right. The agent’s policy is a state-dependent
softmax distribution over the two discrete actions. The sec
estimator estimates the policy by counting how many times
each action is taken in each state. This domain has a large
number of discrete states and it is unlikely that all actions
are observed in all states. In this setting, 𝑔sec will have higher
bias. This domain matches our theoretical setting in that
states and actions are discrete and 𝜋𝜑 is exactly equal to 𝜋𝒟.

Linear Dynamical System. Our third domain is a two-
dimensional linear dynamical system with additive Gaussian
noise. The reward is the agent’s distance to the origin and
trajectories last for 20 time-steps. In this domain the learning
agent uses a linear Gaussian policy to select continuous valued
accelerations in the 𝑥 and 𝑦 direction. We use the OpenAI
Baselines [3] implementation of trust-region policy optimiza-
tion (trpo) as the underlying policy gradient algorithm [20].
We set the generalized advantage estimation parameters (𝛾,
𝜆) both to 1. Unless noted otherwise, we use the default Ope-
nAI Baselines default values for all other hyper-parameters.
We estimate 𝜋𝜑 with ordinary least squares and estimate a
state-independent variance parameter. In this domain, none
of our theoretical assumptions hold. We include it to evaluate
𝑔sec with simple function approximation. We estimate the
trpo surrogate objective and constraint with 1000 steps per
batch and set the KL-Divergence constraint, 𝜖 = 0.01.

CartPole. Our final domain is the CartPole-v0 domain
from OpenAI Gym and we again use trpo. We estimate the
trpo surrogate objective and constraint with 200 steps per
batch and set the KL-Divergence constraint, 𝜖 = 0.001. The
policy representation is a two layer neural network with 32
hidden units in each layer. The output of the network is the
parameters of a softmax distribution over the two actions.
We consider two parameterizations of 𝜋𝜑:

(1) 𝜋𝜑 is a neural network with the same architecture as
𝜋𝜃. We estimate 𝜋𝜑 with batch gradient descent. This
method is labeled SEC Neural Network.

(2) 𝜋𝜑 is a linear policy that receives the activations of
the last hidden layer of 𝜋𝜃 as input. The dual 𝜋𝜑 and
𝜋𝜃 architecture is shown in Figure 2. We estimate the
weights of 𝜋𝜑 with gradient descent. This method is
labeled SEC Linear.

Again, this domain violates all assumptions made in our
theoretical analysis. We include this domain to study 𝑔sec
with more complex function approximation. This setting
allows us to study 𝑔sec with neural network policies but is
simple enough to avoid extensive tuning of hyper-parameters.

5.2 Empirical Results
We now present our empirical results.



(a) Linear Dynamical System (b) Cart Pole (c) Mountain Car

Figure 3: Learning results for the Linear Dynamical System, Cart Pole, and Mountain Car domains. The x-axis is the
number of timesteps and the y-axis is the average return of a policy. We run 25 trials of each method using different
random seeds. Error bars show a 95% confidence interval. In both domains we see that all variants of Sampling Error
Corrected policy gradient outperforms standard Monte Carlo policy gradient in either time to optimal convergence or
final performance.

Figure 2: A simplified version of the neural network ar-
chitecture used in CartPole. The true architecture has 32

hidden units in each layer. The current policy 𝜋𝜃 is given
by a neural network that outputs the action probabilities
as a function of state (black nodes). The estimated policy,
𝜋𝜑, is a linear policy that takes as input the activations
of the final hidden layer of 𝜋𝜃. Only the weights on the
red, dashed connections are changed when estimating 𝜋𝜑.

5.2.1 Main Results. Results for Mountain Car, Linear Dy-
namical System (lds), and Cart Pole environment are given
in Figure 3. In all three domains, we see that the sec methods
lead to learning speed-up compared to the Monte Carlo based
approaches. In the lds and Mountain Car environments, sec
outperforms Monte Carlo in time to convergence to optimal.
In Cart Pole, both variants of sec learn faster initially, how-
ever, Monte Carlo catches up to the neural network version
of sec. This result demonstrates that we can leverage inter-
mediate representations of 𝜋𝜃 (in this case, the activations
of the final hidden layer) to learn 𝜋𝜑 with a simpler model
class. In fact, results suggest that fitting a simpler model
improves performance. We hypothesize that simpler models

require less hyper-parameter re-tuning throughout learning
and so we get a more accurate estimate of 𝜋𝒟 which leads to
a more accurate sampling error correction.

5.2.2 Gridworld Ablations. Figure 4 shows several results
in the Gridworld domain. First, Figure 4(a) shows sec leads
to faster convergence compared to Monte Carlo. This domain
most closely matches our theoretical assumptions where we
showed sec has lower variance than Monte Carlo gradient
estimates. The lower variance translates into faster learning.

We also use the Gridworld domain to perform a quantita-
tive evaluation of sampling error. As a measure of sampling
error we use the Earth Mover’s distance between the current
policy 𝜋𝜃 and the empirical frequency of actions, 𝜋𝒟. Intu-
itively, for any state, 𝑠, the Earth Mover’s distance measures
how much probability mass must be moved to transform
𝜋𝒟(·|𝑠) into 𝜋𝜃(·|𝑠).5 Figure 4(b) shows that sampling error
increases and then decreases during learning. Peak sampling
error is aligned with where the learning curve gap between the
two methods is greatest. Note that sampling error naturally
decreases as learning converges because the policy becomes
more deterministic. Figure 4(c) shows that the entropy of the
current policy goes to zero, i.e., becomes more deterministic.
A more deterministic policy will have less sampling error
and so we expect to see less advantage from sec as learning
progresses.

Finally, we also verify the importance of using the same
data to both estimate 𝜋𝜑 and estimate the policy gradient.
Figure 4(d) introduces two alternatives to sec:
∙ independent: Estimates 𝜋𝜑 with a separate set of 𝑚

samples and then uses this estimate to estimate 𝒟𝑖

5We choose the Earth Mover’s distance (also known as the Wasserstein
distance) as opposed to the more commonly used KL-divergence since
𝜋𝒟 and 𝜋𝜃 may not share support. That is, there may be an action, 𝑎,
where 𝜋𝒟(𝑎|𝑠) is 0 and 𝜋𝜃(𝑎|𝑠) > 0.



∙ random: Instead of computing importance weights, we
randomly sample weights from a normal distribution
and use these in place of the learned sec weights.

Figure 4(a) shows that independent hurts performance
compared to Monte Carlo. random performs marginally
worse than Monte Carlo. This result demonstrates the need
to use the same set of data to estimate 𝜋𝜑 and the gradient.

6 RELATED LITERATURE
There is a wide body of literature on variance reduction for
policy gradient methods. One of the most common techniques
is to use a state-dependent baseline which preserves unbiased-
ness while lowering variance [4]. Recently multiple works have
studied action-dependent baselines [5, 13] though the benefit
of this approach has been questioned [25]. Schulman et al. use
generalized advantage estimation which allows the user to bet-
ter control the bias-variance trade-off of advantage estimation
with a parameter, 𝜆 [20]. Thomas [24] and Schulman et al.
[20] also consider the use of a discount factor in undiscounted
problems (i.e., 𝛾 = 1) as a method for variance reduction at
the cost of some bias. Stochastic policy actor-critic methods
reduce variance with a learned value-function replacing part
or all of a Monte Carlo return estimate. All of these variance
reduction techniques use Monte Carlo sampling in some form
and could be improved with sampling error corrections.

Deterministic policy gradient (DPG) methods avoid sam-
pling in the action space by learning a deterministic policy
[12, 22]. Since there is no action-space sampling, the vari-
ance reduction presented here is inapplicable to DPG based
methods. However, DPG methods may have high bias that
makes them unstable and thus stochastic policy gradient
methods may be preferred in practice. An alternative to
DPG and action-space sampling stochastic policy gradient
methods is the expected policy gradient (EPG) approach of
Ciosek and Whiteson [1]. This method learns a stochastic
policy but avoids sampling by analytically integrating over
the action-space. This approach requires learning a critic (an
approximation of 𝑄𝜋𝜃 ) and requires the policy and critic to
have a form that can be analytically integrated.

Our sec method is related to applications of importance
sampling that first estimate the data sampling distribution
(i.e., the behavior policy, 𝜇) and then apply importance
sampling with the estimated behavior policy instead of the
true behavior policy. Though it may be natural to assume
that such an estimator will perform worse than using the
true behavior policy, much work in the causal inference [9,
18], Monte Carlo integration [2, 8], and multi-armed bandit
literature [11] has shown that this is not in fact the case. More
recently, Hanna et al. have shown that this approach can lower
the variance of importance sampling policy evaluation in off-
policy evaluation in Markov decision processes [7]. Our work
contrasts with this earlier work in that we are concerned with
policy gradient reinforcement learning and are in the on-policy
setting. Using off-policy data with an estimated behavior
policy to improve data-efficiency could be an interesting step
for future work.

Our proposed approach combines importance sampling
with policy gradient RL. Importance sampling has been used
before in policy gradient learning to incorporate off-policy
data [10]. Both trpo and ppo use importance sampling to
correct for the policy shift during a line search on a policy
performance objective [19, 21]. The acer algorithm uses
importance sampling and the Retrace method [15] to incor-
porate off-policy trajectory segments [26]. In contrast, we use
importance sampling to correct the empirical distribution of
actions to better match the true distribution over actions
when sampling in an on-policy fashion.

7 DISCUSSION AND FUTURE WORK
We have proposed the sampling error corrected policy gra-
dient estimator and showed that empirically it can increase
the data-efficiency of REINFORCE and Trust Region Pol-
icy Optimization. In this section, we discuss our proposed
approach and highlight next steps for extending our results.

Policy gradient methods typically have lower bias updates
than other RL algorithms. The sec gradient estimator trades-
off some of this bias to achieve lower variance estimates.
Though there is a benefit to doing this when the base al-
gorithm is a low-bias, high-variance method such as trpo
or reinforce, it is less clear that the benefit would remain
when incorporating sampling error corrections into higher
bias methods such as actor-critic methods. Exploring sec
with actor-critic methods is one direction for future work.

Replacing ̂︀𝑄𝜋𝜃 (𝑎|𝑠) with 𝜋𝜃(𝑎|𝑠)
𝜋𝜑(𝑎|𝑠)

̂︀𝑄𝜋𝜃 (𝑎|𝑠) was shown to
reduce variance and speed-up policy improvement. However,
this approach only reduces variance in the initial action
selection and fails to account for variance in the ̂︀𝑄𝜋𝜃 (𝑎|𝑠)
estimates. Since ̂︀𝑄𝜋𝜃 (𝑎|𝑠) is dependent on future action se-
lection it may be possible to further lower variance by using
a full trajectory sec estimator:

𝑔sec(𝒟) =
1

𝑚

𝑚∑︁
𝑗=0

̂︀𝑄𝜋𝜃 (𝑎𝑗
0|𝑠

𝑗
0)∇𝜃 log 𝜋𝜃(𝑎

𝑗
𝑡 |𝑠

𝑗
𝑡)

∞∏︁
𝑡=0

𝜋𝜃(𝑎
𝑗
𝑡 |𝑠

𝑗
𝑡)

𝜋𝜑(𝑎
𝑗
𝑡 |𝑠

𝑗
𝑡)
.

This advantage estimator would reduce sampling error in
action sampling after the first step, however, a poorly fit 𝜋𝜑

could have its error amplified over the long horizon.
The biggest limitation of our current approach is that esti-

mating 𝜋𝜑 requires solving a supervised learning problem at
every iteration. Since RL changes the policy and thus the data
distribution at every iteration, the best hyper-parameters
of the selected supervised learning algorithm may change
at every iteration as well. On our experimental results to
date we have not found the need to re-tune these parameters
across iterations, however, re-tuning could be more necessary
on more complex domains. For RL domains where the policy
is typically represented by a convolutional neural network
this supervised learning problem also bears a prohibitive com-
putational cost. We have shown that the computational cost
of training a more complex 𝜋𝜑 can be avoided by training a
simpler model on the learned representation of 𝜋𝜃. However,
more work is needed to fully understand whether such simpler
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Figure 4: Sampling Error Corrections in the Gridworld Domain. Figure 4(a) shows the average return for sec and mc.
Figure 4(b) shows earth mover’s distance between the current policy and estimated policy at each iteration. Figure
4(c) shows policy entropy at each iteration. Figure 4(d) shows two alternative weight corrections. Results are averaged
over 25 trials and confidence bars are for a 95% confidence interval.

𝜋𝜑 representations can always suffice when a more complex
model is otherwise necessary.

8 CONCLUSION
In this paper we have proposed the sampling error corrected
policy gradient estimator (sec). sec attempts to weight
the observed samples by their true probability of occurring
when executing the current policy 𝜋𝜃𝑖. This contrasts to the
commonly used Monte Carlo policy gradient estimator that
weights each sample by its empirical frequency. Theoreti-
cal results show that under a limiting set of conditions sec
has lower variance than the Monte Carlo estimator. We also
presented an empirical study of sec and found that it can
increase the learning speed of REINFORCE and trust-region
policy optimization even when these theoretical conditions
fail to hold.
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A PROOF OF THEORETICAL
RESULTS

In this appendix we prove several properties of the sec policy
gradient estimator that are used in the variance analysis
presented in the main paper. Before we present the proofs,
we recall the assumption made in Section 4.1 of the main
text:

(1) The action space is discrete and if a state is observed
then all actions have also been observed in that state.

(2) The return estimates ̂︀𝑄𝜋𝜃 for any (𝑠, 𝑎) is a fixed con-
stant that is independent of 𝒟.

(3) For all observed states, our estimated policy 𝜋𝜑 is equal
to 𝜋𝒟, i.e., if action 𝑎 occurs 𝑘 times in state 𝑠 and 𝑠
occurs 𝑛 times in 𝒟 then 𝜋𝜑(𝑎|𝑠) = 𝑘

𝑛
.

Under these assumptions, we make the following two claims
about 𝑔sec:

Claim 1. VarA (𝑔sec({S,A}|S)) = 0.

Claim 2. EA [𝑔sec({S,A})|S] = EA [𝑔mc(S,A)|S].
Recall that we can write either 𝑔mc or 𝑔sec as:

𝑔sec({S,A}) =
∑︁
𝑠∈𝒮

𝜌𝒟(𝑠)
∑︁
𝑎∈𝒜

𝜋𝒟(𝑎|𝑠)𝑤(𝑠, 𝑎)𝑓(𝑠, 𝑎) (6)

where 𝑓(𝑠, 𝑎) = ̂︀𝑄(𝑠, 𝑎)∇𝜃 log 𝜋𝜃(𝑎|𝑠).
In both Claim 1 and Claim 2, the sampled states are fixed

and variance only arises from 𝜋𝒟 and 𝑤(𝑠, 𝑎) which vary for
different realizations of A. When we choose 𝑤(𝑠, 𝑎) = 𝜋𝜃(𝑎|𝑠)

𝜋𝒟(𝑎|𝑠)
(as sec does) the 𝜋𝒟(𝑎|𝑠) factors cancel in 6. Since 𝜋𝒟 is
the only part of 𝑔sec that depends on the random variable A,
using 𝑤(𝑠, 𝑎) eliminates variance due to action selection in
the estimator. This proves Claim 1.

Claim 2 also follows from the above discussion. The can-
cellation of the 𝜋𝒟(𝑎|𝑠) factors converts the inner summation
over actions into an exact expectation under 𝜋𝜃. Since 𝑔mc
is an unbiased estimator, the inner summation over actions
must be equal to the exact expectation under 𝜋𝜃 in expecta-
tion. Thus the expectation of both estimators conditioned on
S is:

EA [𝑔({S,A})|S] =
∑︁
𝑠∈𝒮

𝜌𝒟(𝑠)
∑︁
𝑎∈𝒜

𝜋𝜃(𝑎|𝑠)𝑤(𝑠, 𝑎)𝑓(𝑠, 𝑎) (7)

This proves Claim 2.
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