
In Proceedings of the 2011 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning,
pp. 17--24, IEEE, 2011.

On Learning with Imperfect Representations

Shivaram Kalyanakrishnan and Peter Stone
Department of Computer Science, The University of Texas at Austin

1616 Guadalupe St Suite 2.408 Austin Texas 78701 USA

{shivaram, pstone}@cs.utexas.edu

Abstract—In this paper we present a perspective on the
relationship between learning and representation in sequential
decision making tasks. We undertake a brief survey of existing
real-world applications, which demonstrates that the classical
“tabular” representation seldom applies in practice. Specifically,
several practical tasks suffer from state aliasing, and most
demand some form of generalization and function approximation.
Coping with these representational aspects thus becomes an
important direction for furthering the advent of reinforcement
learning in practice. The central thesis we present in this position
paper is that in practice, learning methods specifically developed
to work with imperfect representations are likely to perform
better than those developed for perfect representations and
then applied in imperfect-representation settings. We specify an
evaluation criterion for learning methods in practice, and propose
a framework for their synthesis. In particular, we highlight the
degrees of “representational bias” prevalent in different learning
methods. We reference a variety of relevant literature as a
background for this introspective essay.

I. INTRODUCTION

Sequential decision making from experience, or reinforce-

ment learning (RL) [1], is a well-suited paradigm for agents

seeking to optimize long-term gains as they carry out sensing,

decision and action in an unknown environment. RL tasks are

commonly formulated as Markov Decision Problems (MDPs).

The solution of MDPs has benefited immensely from a strong

theoretical framework that has been developed over the years.

The cornerstone of this framework is the value function of

the MDP [2], which encapsulates the long-term utilities of

decisions. Control policies can be suitably derived from value

functions; indeed several algorithms provably converge to

optimal policies in finite MDPs [3], [4]. Further, near-optimal

behavior can be achieved after collecting a number of samples

that is polynomial in the size of the state space (|S|) and the

number of actions (|A|) [5], [6], using a memory bounded in

size by O(|S||A|) [7].

Unfortunately, a large section of the RL tasks we face in

the real world cannot be modeled and solved exactly as finite

MDPs. Not only are the traditional objectives of convergence

and optimality inapplicable to a predominant number of tasks

occurring in practice, in many of these tasks we cannot

even ascertain the best performance that can be achieved,

or how much training is necessary to achieve given levels

of performance. What is the chief difference between the

mainstream theory of RL — involving the learning of value

functions — and its practice? The answer becomes apparent

from a cursory survey of instances of RL in practice. In

Table I we list a collection of applications of RL from the last

two decades, gleaned by browsing several relevant journals,

conference proceedings and citations contained therein. In all

cases we ensure that the application itself, rather than the

RL algorithm employed, is the primary focus of the relevant

publication. Even if not comprehensive, Table I represents

applications from a wide spectrum of domains.1

An inevitable handicap to learning in realistic applications

is state aliasing (or partial observability), which affects a ma-

jority of the applications listed in Table I. In complex systems

such as stock markets [22], physical environments [16], and

cellular tissue [26], available measurements seldom suffice to

capture all the information that can affect decision making.

Nearly every agent embedded in the real world [18], [19],

[21] receives noisy sensory information. The inadequacy of

the sensory signal in identifying the underlying system state

hinders the assumption of a Markovian interaction between the

agent and the environment, on which the theoretical guarantees

associated with most learning methods rely. Whereas coping

with partial observability in a systematic manner is a well-

studied problem, it is yet to scale to complex tasks with high-

dimensional, continuous state spaces [30], [31].

Among the 20 applications presented in Table I, 11 involve

continuous state spaces, which necessitate the use of function

approximation in order to generalize. Indeed among the nine

applications that have discrete state spaces, too, seven use

some form of function approximation to represent the learned

policy: their state spaces are too large for enumeration, and

possibly even infinite. The use of function approximation

negates the theoretical guarantees of achieving optimal be-

havior. Often the function approximation scheme used might

not be capable of representing an optimal policy for a task;

even when it is, seldom is it guaranteed that a learning

algorithm will discover such a policy. Although there exist

convergence guarantees for certain algorithms that use linear

function approximation schemes [32], [33], [34], these do not

provide practically effective lower bounds for the values of

the learned policies. Also, convergence results rarely extend

to situations in which non-linear representations such as neural

networks are used; yet non-linear representations are used

commonly in practice, as apparent from Table I.

1Other independently-compiled surveys of sequential decision making
applications corroborate the observations we draw based on Table I. Langley
and Pendrith [8] describe several RL applications presented at a symposium
organized around the topic; Szepesvári lists numerous applications from
the control and approximate dynamic programming literature at this URL:
http://www.ualberta.ca/∼szepesva/RESEARCH/RLApplications.html.

TABLE I
CHARACTERIZATION OF SOME POPULAR APPLICATIONS OF

REINFORCEMENT LEARNING. “POLICY REPRESENTATION” DESCRIBES

THE UNDERLYING REPRESENTATION FROM WHICH THE POLICY IS

DERIVED. A “NEURAL NETWORK” REPRESENTATION IS NON-LINEAR,
INCORPORATING AT LEAST ONE HIDDEN LAYER OF UNITS. UNDER TILE

CODING, “#FEATURES” INDICATES THE NUMBER OF STATE VARIABLES,
RATHER THAN THE NUMBER OF INDIVIDUAL TILES.

Task
State Ob- State Policy Represen-
servability Space tation (#Features)

Backgammon [9] Complete Discrete
Neural network
(198)

Job-shop
Complete Discrete

Neural network
scheduling [10] (20)

Tetris [11], [12] Complete Discrete Linear (20-50)

Elevator
Partial Continuous

Neural network
dispatching [13] (46)

Acrobot
Complete Continuous

Tile coding
control [14] (4)

Dynamic channel
Complete Discrete Linear (100’s)

allocation [15]

Active guidance of
Partial Continuous

Neural network
finless rocket [16] (14)

Fast quadrupedal
Partial Continuous

Parameterized
locomotion [17] policy (12)

Robot sensing
Partial Continuous Linear (36)

strategy [18]

Helicopter
Partial Continuous

Neural network
control [19] (10)

Dynamic bipedal
Partial Continuous

Feedback control
locomotion [20] policy (2)

Robot obstacle
Partial Continuous Linear (10)

negotiation [21]

Optimized trade
Partial Discrete Tabular (2-5)

execution [22]

9 × 9 Go [23] Complete Discrete
Linear
(≈1.5 million)

Ms. Pac-Man [24] Complete Discrete Rule List (10)

General game
Complete Discrete

Tabular (over part
playing [25] of state space)

Adaptive epilepsy
Partial Continuous

Extremely random-
treatment [26] ized trees (114)

Computer memory
Complete Discrete Tile coding (6)

scheduling [27]

Motor skills [28] Partial Continuous
Motor primitive
coefficients (100’s)

Combustion
Partial Continuous

Parameterized
Control [29] policy (2-3)

The theoretical justifications of algorithms derived to work

with the classical “tabular” representation are nullified in

practice by several factors (e.g., demands on exploration, con-

straints on computation and memory, and the dimensionality of

the action space). As the “first order” factors among these, we

focus on state aliasing and generalization, which determine

the quality of the representation used for learning. By the

representational bias of a learning method we mean the extent

to which the method’s success depends on having a good

representation. Thus, a method that will only succeed with

a perfect tabular representation (say it will diverge if there is

any state aliasing at all) has the strongest representational bias;

methods that can still achieve reasonable performance in the

presence of state aliasing and poor generalization would have

a weak representational bias.

As evidenced by the references included in Table I, a

common strategy adopted in practice is to apply algorithms

derived under strong representational biases, and to empiri-

cally verify that they remain effective when assumptions on the

representation are relaxed. To facilitate this approach, much

manual effort is expended in designing schemes to mitigate

the adverse effects of partial observability and function ap-

proximation. In addition, active lines of research focus on

developing adaptive methods for reducing state aliasing [31]

and improving function approximation [35].

It remains that even in situations where representation can

be adaptively improved, the undesirable effects of state alias-

ing and function approximation are invariably only reduced,

and not eliminated. Recognizing that this is an inevitable short-

coming in practice, we propose that representation discovery

needs to be complemented by developing learning methods

that can operate with varying degrees of representational

strength. As depicted in Figure 1, we view the relationship

between representation and learning as a conjunctive one,

aimed at maximizing performance in the task at hand. The

learning mechanism is in charge of adapting a set of “weights”

(typically real-valued), while other modules undertake feature

and hierarchy construction, state estimation, and so on. In this

paper we specifically consider the natural implication of this

relationship on the design and analysis of learning algorithms:

How well do different reinforcement learning meth-

ods perform in the presence of state aliasing and

function approximation; can we develop methods

that are both sample efficient and capable of achiev-

ing high asymptotic performance in their presence?

The main contributions of this paper are (a) the insight and

detailed argument that we need to develop learning algorithms

specifically for imperfect representations, (b) an extensive

survey of relevant background literature, and (c) the outline

of broad research agenda for developing performance-oriented

learning methods. This paper is organized as follows. We sur-

vey existing lines of research that have specifically addressed

issues in state aliasing (Section II), and generalization and

function approximation (Section III). Concluding that a perfect

representation is an impractical ideal, in Section IV we specify

the desirable properties for a learning method to possess in

practice. Section V then lays down an instructive framework

for developing effective learning methods for practical sequen-

tial decision making tasks. We conclude with a summary in

Section VI.

method

Learning

REPRESENTATION

Generalization and
Function approximation

State
estimation

Fig. 1. A schematic depiction of the conjunctive relationship between
learning and representation discovery (itself comprising state estimation and
generalization). The modules need to complement each other in order to
achieve high long-term reward on a specified task.

II. STATE ALIASING

In an MDP the current system state and action completely

determine the dynamics of the ensuing transition. However,

in a number of RL applications, perceptual aliasing [36]

and noisy sensors [21] deny an agent direct access to the

underlying system state. Thus, it becomes necessary to dis-

tinguish the agent’s observation at any instant of time from

the environment’s state at the same instant. For example, in

a soccer game, the state of the system might be fixed by the

positions and velocities of the players and the ball. However,

for a player who can only see within a restricted field of view,

his visual percepts do not convey information about objects

that lie outside it. Even with an unrestricted field of view, a

single visual snapshot would not identify the velocities of the

players and the ball. Further, a camera with finite resolution

and noisy pixels would lead to incorrect estimates of the

objects’ positions, too. In all these cases and in a vast number

of practical applications, the agent’s observation at any instant

does not uniquely identify the underlying system state.

In practice, significant manual effort is expended in de-

signing an observed state signal that encapsulates as much

information as possible about the underlying state. Past obser-

vations and actions, and other useful sources of information

are combined to construct the observed state, making extensive

use of domain knowledge. Thus, it is common for robot

soccer agents to use particle filtering to estimate positions and

velocities of objects based on their past configurations, and by

applying the laws of physics.

In principle, an agent can use a record of its entire history of

past observations and actions in order to reconstruct the system

state. The seminal work of Åström [37] demonstrates that by

keeping a “belief state” that is updated based on incoming

observations, an agent can eventually disambiguate states

perfectly. However, the complexity of solving the resulting

Partially Observable MDP (POMDP) [38] is forbidding even

in the context of planning (with known transition dynam-

ics) [30], and is yet to scale to large problems [31].

In early work in the context of learning under state aliasing,

McCallum [39] designs a Utile Distinction Memory (UDM)

in which states are distinguished only if doing so increases the

utility of decision making. The appeal of this approach is that

the agent has a dynamic memory size that is adapted based on

the needs of decision making, rather than on the underlying

complexity of the state space. Prediction suffix trees (PSTs)

can be used as the data structure indexing memory: they can

speed up learning significantly [40] while achieving perfect

disambiguation of states in finite MDPs with deterministic

transition and observation functions [41].

It remains that the principled approaches discussed above

seldom scale to problems with large, possibly continuous state

spaces. With the small, finite number of samples typically

available to a learning agent in practice, it is rarely possible

to disambiguate aliased states perfectly. The predominant

approach adopted in these cases — for example, in several

applications listed in Table I — is to treat an “observed state”

as though it were a state obeying the Markov property, even if

it does not. Of course, this approach devalues the theoretical

justifications for the learning algorithm being used, and the

performance achieved essentially depends on the (unknown)

degree of the devaluation [22]. If observed states do not

contain all the “sufficient statistics” of the true underlying

state, is it better to learn policies using optimization methods

that do not treat observed states as states in an MDP?

Glickman and Sycara [42] show that even in severely

occluded maze tasks, a small neural network with recurrent

connections, interpreted as a stochastic policy, can be evolved

to achieve excellent performance. Loch and Singh demonstrate

that the use of eligibility traces — through Sarsa(λ) with high

values of λ, which favor true returns more than bootstrapped

estimates — perform reasonably well on a suite of benchmark

POMDPs. In Section V we essentially argue the need to

develop similar learning methods, which explicitly account for

the possibility of state aliasing. The other important aspect

affecting the performance and properties of learning methods

is function approximation, which we next visit.

III. GENERALIZATION AND FUNCTION APPROXIMATION

State aliasing handicaps learning by invalidating the Markov

property in observed state transitions. However, even in fully

observable worlds — when an agent’s observation can un-

ambiguously identify the system state — the sheer size of

the state space can pose a formidable challenge to learning.

Consider: a policy maps observed states to actions, and hence

a general representation for learning must maintain a data

structure that can assign an arbitrary action to every observed

state. The number of parameters that would have to be stored

and updated during learning in order to do so would be too

large for most tasks occurring in practice. This necessitates

the use of generalization, whereby a smaller set of parameters

approximates the learned policy. Even if generalization is

strictly not necessary for learning over finite state and action

spaces (as it is for infinite state and action spaces), it can still

promote quicker learning in finite MDPs.

As with other areas of artificial intelligence and machine

learning, feature design has a significant effect on the per-

formance of RL algorithms [9]. In nearly every deployed

application, much manual effort is invested in designing

effective features and a representation. In addition, several

ideas have been proposed towards adaptive generalization and

function approximation. These include architectures for state

abstraction [43], subgoal discovery [44], and the hierarchical

organization of control [45]. Temporal abstraction is achieved

through the framework of options [46]. Mahadevan’s “proto-

value” functions [47] identify low-dimensional manifolds in

the state space. Other feature selection and discovery ap-

proaches apply in the specific contexts of kernels [48], variable

resolution discretization [49], genetic programming [50] and

Gaussian processes [51].

It is convenient to conceptually separate the overall repre-

sentation of a policy into (a) a vector of features, φ, describing

the observed state, (b) a functional form, ρ, such as a linear

representation, a decision tree or a multi-layer neural network,

and (c) a vector of weights w, which are the parameters

updated during learning. As seen in examples cited previously,

in some cases these components are conflated, and adapted

simultaneously. Yet, separating the learning agent’s architec-

ture into φ, ρ, and w as above enables us to ponder how w

should be treated if φ and ρ are necessarily insufficient for

representing the optimal value function or policy. Within the

mainstream RL literature, the predominant focus has been on

updating w such that the representation approximates the value

function well. In the remainder of this section, we summarize

the long line of research in value function approximation.

A bulk of the research in learning with function approxi-

mation has focused on linear architectures, and mostly so in

the context of prediction, i.e., estimating the value function of

a fixed policy (without policy improvement). An early result

due to Sutton [52] establishes that TD(0) with linear function

approximation converges when the features used are linearly

independent; Dayan and Sejnowski [53] extend this result to

TD(λ), ∀λ ∈ [0, 1], while Tsitsiklis and Van Roy [54] show

convergence for the more realistic case of infinite state spaces

and linearly dependent features. Although most results for

the convergence of linear TD (temporal difference) learning

are for estimating values of the policy that is used to gather

experiences, the more general case of off-policy learning has

also been addressed [55], [56].

The main challenges in learning approximate value func-

tions on-line arise due to the nonstationarity and bias in

the targets provided to the function approximator [57]. As

a consequence, the best theoretical guarantees for learning

control policies with approximate schemes come with several

restrictions. Most results are again limited to linear function

approximation schemes; in addition, some make demands such

as Lipschitz continuity of the policy being learned [33], and

favorable initial conditions [58]. In recent work, Maei et

al. [34] introduce the Greedy-GQ algorithm, which provably

converges while making off-policy learning updates to a linear

function approximator. However, Greedy-GQ requires that the

policy followed while learning stay fixed, preventing the agent

from actively exploring based on the experiences it gathers.

Such a requirement curtails the algorithm’s practical utility.

In addition to on-line TD methods, batch and model-based

methods have also been studied for use in conjunction with

linear function approximation. For instance, recent work has

provided convergence guarantees under certain restrictions for

a linear implementation of Dyna [59], a classical model-based

RL algorithm. In the context of batch RL, the most popular

approaches with linear architectures are least squares methods.

Least Squares Temporal Difference (LSTD) learning [60] is

an efficient procedure to compute a value function from a

given batch of transition data; given infinite data the algo-

rithm converges to the same set of weights as TD(0). Least

Squares Policy Iteration (LSPI) [61] extends LSTD to control

problems, computing a sequence of policies from a fixed set

of data, such that successive iterations are likely to yield

better policies. An advantage of batch least squares approaches

when compared to on-line methods is that they involve less

parameter tuning (they do not need a learning rate parameter).

In turn, batch methods incur greater overheads in memory and

computation.

In general, approximate architectures are incapable of repre-

senting the optimal action value function Q∗. Even with archi-

tectures capable of representing Q∗, it is not guaranteed that

an optimal set of parameters w will be found, as intermediate

value functions encountered during learning might yet prove

problematic for approximation [62]. Further, even if a value

function is approximated well, as defined by its Bellman error

weighted by some distribution of states, greedy action selec-

tion might yet pick suboptimal actions in regions of inaccurate

approximation, resulting in low long-term returns [63]. Thus,

guarantees on the convergence of algorithms do not necessarily

translate into effective guarantees about the long-term reward

that will be accrued at convergence [33], [34].

Typical bounds on the sub-optimality of a policy that is

greedy with respect to the best approximate value func-

tion [64], [65] are (a) directly proportional to ǫ, an error term

expressing the inherent limitations of the feature combination,

and (b) inversely proportional to (1 − γ), where γ is the

discount factor in the MDP. These bounds are extremely loose

in most practical settings: typically ǫ is not even known, and γ

is set close to 1 (often 0.9 or higher [26], [27]). Interestingly

enough, it is not necessary to approximate the optimal action

value function well in order to induce the optimal policy [66].

This observation motivates our specification of what a learning

method need indeed strive to achieve, which we next present.

IV. DEMANDS OF A PRACTICAL LEARNING METHOD

Let us assume that a learning agent employs an underlying

function representation ρ, and at each time step t, receives

as input a vector of features φ
t
, depending on the state st.

The applications mentioned in Table I and the discussion in

the previous sections affirm that it is realistic, and perhaps

most appropriate, to expect that ρ and φ
t
facilitate some

amount useful generalization, but they are not perfect. Given

this limitation, what is demanded of the learning method in

adapting the representation parameters w?

The output of the learning agent at time t is an action at,

based on which the environment will generate a next state

st+1 (partially visible to the agent through features φ
t+1) and

a reward rt. In some situations it is necessary to measure

the rewards accrued while learning (on-line) [27], while in

others we can assume that the learner outputs an entire policy

at every step, which can then be evaluated off-line, with

no further learning [13], [19]. In either case, the learner is

evaluated based on the long-term reward it accrues. In fact,

the greatest appeal of RL [1] lies in the manner desirable

behavior can be specified succinctly through a scalar-valued

reward function. Correspondingly, we find it natural that the

objective of learning must be to maximize expected long-

term reward. Surely, the developers of the 20 applications

mentioned in Table I will agree!

Of late, several problems in machine learning have profited

through “declarative” specifications of an objective function

to optimize by adapting a vector of parameters. For example,

classification is posed as the problem of finding real-valued

coefficients to maximize a separating margin, or to minimize

squared error. Our specification for learning in sequential

decision making problems is similar:

Given φ and ρ, adapt w based on experience such

that the expected long-term reward of the resulting

policy is maximized, while the number of learning

samples is minimized.

It is amply clear that if an agent possesses a perfect rep-

resentation, maximizing long-term reward is exactly achieved

by learning the optimal action value function [2], which it is

possible to achieve in a sample-efficient manner [6]. However,

the key implication of our definition is on learning with

imperfect representations. If state aliasing and generalization

handicap the representation, how can w be adapted such

that a policy with high long-term reward is achieved with

relatively few training samples? Approximating the model or

value function is no longer the obvious, provably correct

answer to our question. In some cases, the predictive power

of such approaches might be desired as an end in itself, but

here we solely demand performance, a pragmatic measure.

Our formulation of the problem as above does not auto-

matically imply a solution strategy.2 In fact, our formalisms

of φ, ρ and w are not even defined rigorously enough

that performance and sample efficiency can be characterized

precisely in terms of them. Nevertheless, our rough, qualitative

statement is a fair reflection of the true needs of a majority

of practical learning agents. Equally, we believe a quest for

answers must be in the spirit exhorted by the famed American

statistician, John Tukey [67, see pp.13–14]:

“... Far better an approximate answer to the right

question, which is often vague, than an exact answer

to the wrong question, which can always be made

precise.”

In the following section, we outline a framework for better

understanding and utilizing relationships between learning

methods and representations. We consider such a strategy

a practical approach for developing general, automatic RL

solutions for realistic tasks.

V. TOWARDS LEARNING METHODS FOR PRACTICE

In an early paper on the subject of representation in RL,

Cobb [68] separates the inductive biases in a reinforcement

learner into “language” and “procedural” biases. In rough

terms, the former bias corresponds to the representation used

by the learner (what we call “representational” bias), while

the latter bias corresponds to the learning method itself. The

argument that falls out, and which this paper reiterates, is the

2Throughout this paper, by “reinforcement learning” we refer to the problem
of sequential decision making from experience, and not to any specific class
of learning methods. Such an interpretation is consistent with Sutton and
Barto [1, see ch. 3].

need to appropriately match the two biases in order to improve

performance. A wealth of evidence suggests that the greatest

benefit can be achieved by adapting the representation while

learning [35], [69].

With the ultimate aim of maximizing an agent’s long-term

gains, indeed we believe representation and learning must

go hand in hand. Methods to develop better representations

have long been researched; yet, as detailed in Sections II

and III, we believe that there are practical limits to what

representation discovery alone can achieve. In this paper we

consider the complementary question: how learning methods

must be adapted to work with imperfect representations. We

propose a two-stage program for organizing future research

on this question. First, we argue the need for systematically

evaluating the representational bias of existing classes of RL

methods: in Section V-A we put forth a candidate hypothesis,

derived from qualitative arguments, to serve as a basis for an

evaluative study. Next, in Section V-B we motivate the need

for developing general strategies of selecting and integrating

learning methods for sequential decision making.

A. Evaluative Study

Solutions to sequential decision making problems are poli-

cies, which are mappings from states (implicitly assumed

observed) to actions. In order to learn policies, methods

generalize based on a set of experiences that register the effects

of actions an agent has taken from the states it has visited.

We posit that the fewer the assumptions a method makes

about associations between states (and between states and

values), the less it will suffer due to state aliasing and function

approximation, both of which constrain the scope of functions

that can be learned over the state space. On the other hand,

exploiting associations between states is precisely the route

to achieving sample efficiency. Thus, there exists a tension

between sample efficiency on the one hand, and resilience

to imperfect representations on the other (henceforward, re-

ferred to as a method’s robustness). How do different classes

of methods trade off these conflicting objectives? Figure 2

summarizes our candidate hypothesis for ordering different

classes of methods, which we now describe.

Model-based methods [1, see ch. 9] rely on simulated

experiences that are generated by an environmental model;

this model is itself computed from transition samples. Hence,

the assumption on which model-based methods bank is that

an accurate model of the environmental transition and reward

functions can be represented and learned based on observed

experiences. This is a stronger assumption than that made

by on-line model-free value function-based (VF) methods [3],

[70], which only assume that observed samples can be used

in computing state-action values. We consider batch RL meth-

ods [61], [71] similar to model-based methods in that they

perform multiple passes, or aggregate updates, based on a

set of experiences. Note that VF methods make only a single

update based on each transition. In line with the view that the

data used by batch methods themselves constitute an implicit

model [7], [72], we treat model-based and batch methods as

Model−based and Batch methods

Fully bootstrapping methods

Eligibility trace−based methods

Monte Carlo methods

Actor−critic methods

Policy gradient methods

Policy search methods"PS"

"PG"

"AC"

"MB"

"VF"

HIGHHIGH

bias

LOW

Sample
efficiency

Robustness

HIGHLOWLOW

Representational

Fig. 2. A candidate hypothesis ordering classes of learning methods based
on the strength of their reliance on observed samples for learning. Eligibility
trace methods span a segment of the spectrum between fully bootstrapping
methods (λ = 0) and Monte Carlo methods (λ = 1).

one category (abbreviated “MB”): the one with the highest

representational bias.

VF methods make progress towards the goal of approxi-

mating the value function by constantly shifting their current

estimates towards “better” estimates derived from transition

samples. Among this class itself, the extent of bootstrap-

ping could determine the sample efficiency and robustness

of different methods. Fully bootstrapping methods such as

Sarsa(0) [70] estimate values of states using the estimated

values of next states, while Monte Carlo methods such as

Sarsa(1) estimate state values based on samples of long-term

reward. This makes Monte Carlo methods less dependent on

the state signal and value function representation than fully

bootstrapping methods. In general, controlling the eligibil-

ity trace parameter λ yields intermediate methods, such as

Sarsa(λ), which implement varying extents of bootstrapping.

While VF methods still try to estimate state-action values,

policy gradient (PG) methods [73], [74] only estimate the

gradient of the value of a policy with respect to its parameters,

which is achieved by summing actual returns, as under Monte

Carlo methods. Policies contain less information than their

action value functions, and consequently, can be expressed

with a smaller number of parameters. The aggregation of

information gathered from multiple transitions to perform

an update on a small number of parameters has the effect

of making PG methods less dependent on each individual

transition. Actor-critic (AC) methods [32] are much like PG

methods, but they rely on a “critic” learning values (to reduce

the variance in gradient estimates), as under VF methods. The

values learned by the critic do not directly yield a control

policy; rather, they guide the improvement of the “actor’s”

control policy. Thus, we place AC methods in between VF

and PG methods in the spectrum shown in Figure 2.

By “policy search” (PS) methods we refer to a generic

class of optimization algorithms (for example, genetic and

evolutionary algorithms [75], hill climbing, and CMA-ES [76])

that primarily rely on estimating the ranks among a population

of policies with respect to their values. Ranks are typically

easier to estimate than gradients; indeed PS methods can

work perfectly well on policies that do not have analytically

computable gradients, which PG methods usually require.

Their disregard for everything but the relative order of the

values among the current set of policies makes PS methods

the least dependent on atomic state transitions for the purpose

of learning.

It is unlikely that across so broad a scope as practical RL

applications, different learning algorithms will fall neatly into

the pockets presented in Figure 2 and exhibit characteristics

consistent with the order predicted. The proposed order is

merely intended as a pivot around which a broad experimental

study can be undertaken. A lack of space prevents us from

providing a detailed account of existing studies comparing

algorithms for RL [77], [78], [79], [80]. By and large, such

studies have been confined to isolated tasks such as pole

balancing, Mountain Car and Keepaway soccer, and typically,

different learning methods have been paired with different

representations. Nonetheless, the trends reported in the liter-

ature predominantly concur with our supposition about the

representational bias of different classes of methods, which

is directly correlated with sample efficiency, and inversely

with robustness. Essentially, we call for further studies of this

nature, in particular with an emphasis on (a) carefully con-

trolling representational aspects, and (b) comparing methods

from the entire spectrum we have presented. A general theory

on representation and learning is essential for developing

automated RL techniques, since in practice, representation is

imperfect to varying degrees.

B. Method Selection and Integration

As we hone our understanding of which methods perform

best under different representations, the next step would be

to automate the selection of the method to apply to the task

at hand, assuming the quality of its representation can be

estimated. Today “meta-learning” [81] and “algorithm port-

folio” techniques [82] are being applied quite successfully to

problems such as search [83]. Successfully replicating these

strategies for RL is surely easier said than done, given the

sheer complexity and the number of dimensions underpinning

RL problems. We intend the ideas presented in this paper to

serve as a guide for a more concrete research program.

In moving forward, another important strategy to actively

explore is the development of more hybrid learning architec-

tures, which can combine the strengths of existing methods.

A growing line of research already addresses this need. Under

the “Value and Policy Search” algorithm introduced by Baird

and Moore [84], VF and PG methods can be combined

naturally in a specified ratio. The “NEAT+Q” algorithm [35]

undertakes Q-learning during fitness evaluations of members

of a neural network population whose topologies are being

evolved. Menache et al. [85] employ an optimization method

for tuning the widths and positions of basis functions, which

are linearly combined to approximate the value function. Sev-

eral approaches have considered quickly learning a reasonable

policy using VF methods, and then refining it through policy

search [78], [86]. The famous helicopter control application

due to Ng et al. [19] is an instance of policy search performed

within a model inferred from grounded experiences. All these

examples illustrate the merits of combining qualitatively dif-

ferent learning methods to obtain both sample efficiency and

resistance to deficient representations. It would indeed be a

worthwhile pursuit to translate the lessons learned from such

isolated instances into general design principles.

VI. SUMMARY

At the root of the reasoning that motivates a majority of RL

methods is the formulation of sequential decision making tasks

as finite, discrete MDPs. When these methods are applied to

tasks in practice, they lose many of their desirable properties,

such as achieving optimality or even converging. The chief

reason for this disparity between theory and practice is the

insufficiency of representation: specifically the inability to

overcome state aliasing and inevitable errors in generalization

and function approximation. Several existing lines of research

address the important question of automatically improving

representation. In this paper we argue for the relevance of

the complementary perspective: to pick and tailor learning

methods to work with imperfect representations. In this con-

text, we specify that the ultimate objective of learning is to

achieve high long-term reward after a minimal amount of

training. It is incidental that this objective is exactly achieved

using model-based and value function-based methods when the

representation is perfect. When representations are imperfect,

approximating the model or value function is to be taken as a

means, and not the end.

Recognizing the need to embrace learning and represen-

tation in conjunction, we propose to undertake an extensive

experimental study to order qualitatively different classes of

RL methods as a function of their representational bias. We

advance a plausible conjecture for such a study, which could

lay the seeds for automatically selecting the best method for

a given task and representation, and subsequently combining

the strengths of different methods through hybrid architectures.

Ultimately, the methodology we propose is an early and nec-

essary step in the direction of realizing robust and automated

learning methods for sequential decision making in practice.

ACKNOWLEDGMENTS

The authors thank Matthew Hausknecht, Todd Hester, and

anonymous reviewers of this paper for their suggestions to-

wards improving it. This work has taken place in the Learning

Agents Research Group (LARG) at the University of Texas at

Austin. LARG is supported in part by NSF (IIS-0917122),

ONR (N00014-09-1-0658), and the FHWA (DTFH61-07-H-

00030).

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT Press, 1998.

[2] R. Bellman, Dynamic Programming. Princeton University Press, 1957.
[3] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8,

no. 3–4, pp. 279–292, May 1992.
[4] S. Singh, T. Jaakkola, M. L. Littman, and C. Szepesvári, “Convergence

results for single-step on-policy reinforcement-learning algorithms,”
Mach. Learn., vol. 38, no. 3, pp. 287–308, 2000.

[5] M. Kearns and S. Singh, “Near-optimal reinforcement learning in
polynomial time,” Mach. Learn., vol. 49, no. 2–3, pp. 209–232, 2002.

[6] R. I. Brafman and M. Tennenholtz, “R-MAX - a general polynomial
time algorithm for near-optimal reinforcement learning,” J. Mach. Learn.

Res., vol. 3, pp. 213–231, 2003.
[7] A. L. Strehl, L. Li, E. Wiewiora, J. Langford, and M. L. Littman, “PAC

model-free reinforcement learning,” in Proc. ICML 2006. ACM, 2006,
pp. 881–888.

[8] P. Langley and M. Pendrith, “Symposium on applications of
reinforcement learning: Final report for NSF Grant IIS-9810208,”
Institute for the Study of Learning and Expertise, Tech. Rep., March
1998. [Online]. Available: http://www.isle.org/symposia/reinf/final.pdf

[9] G. Tesauro, “Practical issues in temporal difference learning,” Mach.

Learn., vol. 8, no. 3–4, pp. 257–277, May 1992.
[10] W. Zhang and T. G. Dietterich, “A reinforcement learning approach to

job-shop scheduling,” in Proc. IJCAI 1995. Morgan Kauffman, 1995,
pp. 1114–1120.

[11] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming.
Athena Scientific, 1996.

[12] C. Thierry and B. Scherrer, “Building controllers for Tetris,” Int. Comp.
Games Assoc. J., vol. 32, no. 1, pp. 3–11, March 2010.

[13] R. H. Crites and A. G. Barto, “Improving elevator performance using
reinforcement learning,” in Advances in Neural Information Processing

Systems 8. MIT Press, 1996, pp. 1017–1023.
[14] R. S. Sutton, “Generalization in reinforcement learning: Successful ex-

amples using sparse coarse coding,” in Advances in Neural Information

Processing Systems 8. MIT Press, 1996, pp. 1038–1044.
[15] S. Singh and D. Bertsekas, “Reinforcement learning for dynamic chan-

nel allocation in cellular telephone systems,” in Advances in Neural

Information Processing Systems 9. MIT Press, 1997, pp. 974–980.
[16] F. J. Gomez and R. Miikkulainen, “Active guidance for a finless rocket

using neuroevolution,” in Proc. GECCO 2003. Springer, 2003, pp.
2084–2095.

[17] N. Kohl and P. Stone, “Machine learning for fast quadrupedal locomo-
tion,” in Proc. AAAI 2004. AAAI Press, 2004, pp. 611–616.

[18] C. Kwok and D. Fox, “Reinforcement learning for sensing strategies,”
in Proc. ICRA 2004. IEEE, 2004, pp. 3158–3163.

[19] A. Y. Ng, H. J. Kim, M. I. Jordan, and S. Sastry, “Autonomous helicopter
flight via reinforcement learning,” in Advances in Neural Information

Processing Systems 16. MIT Press, 2004.
[20] R. Tedrake, T. W. Zhang, and H. S. Seung, “Stochastic policy gradient

reinforcement learning on a simple 3D biped,” in Proc. IROS 2004.
IEEE, 2004, pp. 2849–2854.

[21] H. Lee, Y. Shen, C.-H. Yu, G. Singh, and A. Y. Ng, “Quadruped robot
obstacle negotiation via reinforcement learning,” in Proc. ICRA 2006.
IEEE, 2006, pp. 3003–3010.

[22] Y. Nevmyvaka, Y. Feng, and M. Kearns, “Reinforcement learning for
optimized trade execution,” in Proc. ICML 2006. ACM, 2006, pp.
673–680.

[23] D. Silver, R. S. Sutton, and M. Müller, “Reinforcement learning of local
shape in the game of Go,” in Proc. IJCAI 2007, 2007, pp. 1053–1058.

[24] I. Szita and A. Lőrincz, “Learning to play using low-complexity rule-
based policies: Illustrations through Ms. Pac-Man,” J. Art. Int. Res.,
vol. 30, pp. 659–684, 2007.

[25] H. Finnsson and Y. Björnsson, “Simulation-based approach to General
Game Playing,” in Proc. AAAI 2008. AAAI Press, 2008, pp. 259–264.

[26] A. Guez, R. D. Vincent, M. Avoli, and J. Pineau, “Adaptive treatment of
epilepsy via batch-mode reinforcement learning,” in Proc. AAAI 2008.
AAAI Press, 2008, pp. 1671–1678.

[27] E. İpek, O. Mutlu, , J. Martı́nez, and R. Caruana, “Self-optimizing
memory controllers: A reinforcement learning approach,” in Proc. ISCA

2008. IEEE Press, 2008, pp. 39–50.
[28] J. Peters and S. Schaal, “Reinforcement learning of motor skills with

policy gradients,” Neural Networks, vol. 21, no. 4, pp. 682–697, 2008.
[29] N. Hansen, A. S. Niederberger, L. Guzzella, and P. Koumoutsakos,

“A method for handling uncertainty in evolutionary optimization with
an application to feedback control of combustion,” IEEE Trans. Evo.

Comp., vol. 13, no. 1, pp. 180–197, February 2009.
[30] A. R. Cassandra, L. P. Kaelbling, and M. L. Littman, “Acting optimally

in partially observable stochastic domains,” in Proc. AAAI 1994. AAAI
Press, 1994, pp. 1023–1028.

[31] J. Pineau, G. J. Gordon, and S. Thrun, “Anytime point-based approx-
imations for large POMDPs,” J. Art. Int. Res., vol. 27, pp. 335–380,
2006.

[32] V. R. Konda and J. N. Tsitsiklis, “On actor-critic algorithms,” SIAM J.

Control Opt., vol. 42, no. 4, pp. 1143–1166, 2003.

[33] T. J. Perkins and D. Precup, “A convergent form of approximate policy
iteration,” in Advances in Neural Information Processing Systems 15.
MIT Press, 2003, pp. 1595–1602.

[34] H. R. Maei, C. Szepesvári, S. Bhatnagar, and R. S. Sutton, “Toward
off-policy learning control with function approximation,” in Proc. ICML

2010. Omnipress, 2010, pp. 719–726.
[35] S. Whiteson and P. Stone, “Evolutionary function approximation for

reinforcement learning,” J. Mach. Learn. Res., vol. 7, pp. 877–917, 2006.
[36] S. D. Whitehead and D. H. Ballard, “Learning to perceive and act by

trial and error,” Mach. Learn., vol. 7, no. 1, pp. 45–83, 1991.
[37] K. J. Åström, “Optimal control of Markov Processes with incomplete

state information,” J. Math. Analysis App., vol. 10, pp. 174–205, January
1965.

[38] G. E. Monahan, “A survey of Partially Observable Markov Decision
Processes: Theory, models, and algorithms,” Management Sci., vol. 28,
no. 1, pp. 1–16, January 1982.

[39] R. A. McCallum, “Overcoming incomplete perception with utile dis-
tinction memory,” in Proc. ICML 1993. Morgan Kauffman, 1993, pp.
190–196.

[40] A. K. McCallum, “Reinforcement learning with selective perception and
hidden state,” Ph.D. dissertation, Comp. Sci. Dept., U. Rochester, 1996.

[41] M. P. Holmes and C. L. Isbell, Jr, “Looping suffix tree-based inference
of partially observable hidden state,” in Proc. ICML 2006. ACM, 2006,
pp. 409–416.

[42] M. R. Glickman and K. Sycara, “Evolutionary search, stochastic policies
with memory, and reinforcement learning with hidden state,” in Proc.

ICML 2001. Morgan Kauffman, 2001, pp. 194–201.
[43] T. G. Dietterich, “Hierarchical reinforcement learning with the MAXQ

value function decomposition,” J. Art. Int. Res., vol. 13, pp. 227–303,
2000.

[44] B. L. Digney, “Learning hierarchical control structures for multiple tasks
and changing environments,” in From animals to animats 5. MIT Press,
1998, pp. 321–330.

[45] R. E. Parr, “Hierarchical control and learning for Markov Decision
Processes,” Ph.D. dissertation, U. California Berkeley, 1998.

[46] R. S. Sutton, D. Precup, and S. P. Singh, “Between MDPs and Semi-
MDPs: A framework for temporal abstraction in reinforcement learning,”
Art. Int., vol. 112, no. 1–2, pp. 181–211, 1999.

[47] S. Mahadevan, “Learning representation and control in Markov decision
processes: New frontiers,” Found. Trends Mach. Learn., vol. 1, no. 4,
pp. 403–565, 2009.

[48] D. Ormoneit and S. Sen, “Kernel-based reinforcement learning,” Mach.

Learn., vol. 49, no. 2–3, pp. 161–178, 2002.
[49] R. Munos and A. Moore, “Variable resolution discretization in optimal

control,” Mach. Learn., vol. 49, no. 2–3, pp. 291–323, 2002.
[50] S. Girgin and P. Preux, “Feature discovery in reinforcement learning

using genetic programming,” in Proc. EuroGP 2008. Springer, 2008,
pp. 218–229.

[51] T. Jung and P. Stone, “Feature selection for value function approximation
using Bayesian model selection,” in Proc. ECML PKDD 2009. Springer,
2009, pp. 660–675.

[52] R. S. Sutton, “Learning to predict by the methods of temporal differ-
ences,” Mach. Learn., vol. 3, no. 1, pp. 9–44, August 1988.

[53] P. Dayan and T. J. Sejnowski, “TD(λ) converges with probability 1,”
Mach. Learn., vol. 14, pp. 295–301, 1994.

[54] J. N. Tsitsiklis and B. Van Roy, “An analysis of temporal-difference
learning with function approximation,” IEEE Trans. Auto. Cont., vol. 42,
no. 5, pp. 674–690, 1997.

[55] D. Precup, R. S. Sutton, and S. Dasgupta, “Off-policy temporal dif-
ference learning with function approximation,” in Proc. ICML 2001.
Morgan Kaufmann, 2001, pp. 417–424.

[56] R. S. Sutton, H. R. Maei, D. Precup, S. Bhatnagar, D. Silver,
C. Szepesvári, and E. Wiewiora, “Fast gradient-descent methods for
temporal-difference learning with linear function approximation,” in
Proc. ICML 2009. ACM, 2009, pp. 993–1000.

[57] S. Thrun and A. Schwartz, “Issues in using function approximation for
reinforcement learning,” in Proc. 1993 Connectionist Models Summer

School. Lawrence Erlbaum, 1993, pp. 255–263.
[58] F. S. Melo, S. P. Meyn, and M. I. Ribeiro, “An analysis of reinforcement

learning with function approximation,” in Proc. ICML 2008. ACM,
2008, pp. 664–671.

[59] R. S. Sutton, C. Szepesvári, A. Geramifard, and M. Bowling, “Dyna-
style planning with linear function approximation and prioritized sweep-
ing,” in Proc. UAI 2008. AAAI Press, 2008, pp. 528–536.

[60] S. J. Bradtke and A. G. Barto, “Linear least-squares algorithms for
temporal difference learning,” Mach. Learn., vol. 22, pp. 33–57, 1996.

[61] M. G. Lagoudakis and R. Parr, “Least-squares policy iteration,” J. Mach.

Learn. Res., vol. 4, pp. 1107–1149, 2003.
[62] J. A. Boyan and A. W. Moore, “Generalization in reinforcement learn-

ing: Safely approximating the value function,” in Advances in Neural

Information Processing Systems 7. MIT Press, 1995, pp. 369–376.
[63] S. Kalyanakrishnan and P. Stone, “Batch reinforcement learning in a

complex domain,” in Proc. AAMAS 2007. IFAAMAS, 2007, pp. 650–
657.

[64] S. P. Singh and R. C. Yee, “An upper bound on the loss from approximate
optimal-value functions,” Mach. Learn., vol. 16, no. 3, pp. 227–233,
1994.

[65] R. J. Williams and L. C. Baird III, “Tight performance bounds on
greedy policies based on imperfect value functions,” in Proc. Tenth Yale

Workshop on Adaptive and Learning Systems. Center for Systems
Science, Yale University, 1994.

[66] J. Baxter and P. L. Bartlett, “Infinite-horizon policy-gradient estimation,”
J. Art. Int. Res., vol. 15, pp. 319–350, 2001.

[67] J. W. Tukey, “The future of data analysis,” Annals Math. Stat., vol. 33,
no. 1, pp. 1–67, March 1962.

[68] H. G. Cobb, “Inductive biases in a reinforcement learner,” Navy Center
for Applied Research in Artificial Intelligence, Washington DC, USA,
Tech. Rep. AIC-92-013, 1992.

[69] H. G. Cobb and P. Bock, “Using a genetic algorithm to search for
the representational bias of a collective reinforcement learner,” in Proc.

PPSN III. Springer, 1994, pp. 576–587.
[70] G. A. Rummery and M. Niranjan, “On-line Q-learning using connec-

tionist systems,” Cambridge U. Engg. Dept., CUED/F-INFENG/TR 166,
September 1994.

[71] L.-J. Lin, “Self-improving reactive agents based on reinforcement learn-
ing, planning and teaching,” Mach. Learn., vol. 8, no. 3–4, pp. 293–321,
1992.

[72] J. A. Boyan, “Least-squares temporal difference learning,”Mach. Learn.,
vol. 49, no. 2–3, pp. 233–246, 2002.

[73] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy
gradient methods for reinforcement learning with function approxima-
tion,” in Advances in Neural Information Processing Systems 12. MIT
Press, 2000, pp. 1057–1063.

[74] S. Kakade, “A natural policy gradient,” in Advances in Neural Informa-

tion Processing Systems 14. MIT Press, 2001, pp. 1531–1538.
[75] K. O. Stanley, “Efficient evolution of neural networks through complex-

ification,” Ph.D. dissertation, Dept. Comp. Sci., U. Texas Austin, 2004.
[76] N. Hansen, The CMA Evolution Strategy: A Tutorial, January 2009.

[Online]. Available: http://www.lri.fr/∼hansen/cmatutorial.pdf
[77] S. Whiteson, M. E. Taylor, and P. Stone, “Critical factors in the empir-

ical performance of temporal difference and evolutionary methods for
reinforcement learning,” Autonomous Agents and Multi-Agent Systems,
vol. 21, no. 1, pp. 1–35, 2010.

[78] S. Kalyanakrishnan and P. Stone, “An empirical analysis of value
function-based and policy search reinforcement learning,” in Proc.

AAMAS 2009. IFAAMAS, 2009, pp. 749–756.
[79] V. Heidrich-Meisner and C. Igel, “Similarities and differences between

policy gradient methods and evolution strategies,” in Proc. ESANN 2008.
D-side Publication, 2008, pp. 149–154.

[80] F. Gomez, J. Schmidhuber, and R. Miikkulainen, “Accelerated neural
evolution through cooperatively coevolved synapses,” J. Mach. Learn.

Res., vol. 9, pp. 937–965, 2008.
[81] R. Vilalta and Y. Drissi, “A perspective view and survey of meta-

learning,” Art. Int. Rev., vol. 18, no. 2, pp. 77–95, 2002.
[82] C. P. Gomes and B. Selman, “Algorithm portfolios,” Art. Int., vol. 126,

no. 1–2, pp. 43–62, 2001.
[83] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “SATzilla:

Portfolio-based algorithm selection for SAT,” J. Art. Int. Res., vol. 32,
pp. 565–606, 2008.

[84] L. Baird and A. Moore, “Gradient descent for general reinforcement
learning,” in Advances in Neural Information Processing Systems 11.
MIT Press, 1999, pp. 968–974.

[85] I. Menache, S. Mannor, and N. Shimkin, “Basis function adaptation in
temporal difference reinforcement learning,” Annals Op. Res., vol. 134,
no. 1, pp. 215–238, 2005.

[86] C. Guestrin, M. G. Lagoudakis, and R. Parr, “Coordinated reinforcement
learning,” in Proc. ICML 2002. Morgan Kauffman, 2002, pp. 227–234.

