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Abstract

RoboCup@Home is an international robotics competition
based on domestic tasks requiring autonomous capabilities
pertaining to a large variety of Al technologies. Research
challenges are motivated by these tasks both at the level
of individual technologies and the integration of subsys-
tems into a fully functional, robustly autonomous system.
We describe the progress made by the UT Austin Villa 2019
RoboCup@Home team which represents a significant step
forward in Al-based HRI due to the breadth of tasks accom-
plished within a unified system. Presented are the competi-
tion tasks, component technologies they rely on, our initial
approaches both to the components and their integration, and
directions for future research.

Introduction

RoboCup@Home is an international robotics competition
dedicated to advancing the state of the art in human-robot
interaction for service robots. The 2019 event in Sydney,
Australia was the first using a new rulebook defining a vari-
ety of domestic tasks requiring autonomous capabilities per-
taining to a large variety of Al technologies including visual
object recognition, person recognition and tracking, naviga-
tion, manipulation, natural language understanding and gen-
eration, knowledge representation and reasoning, and plan-
ning. Research challenges abound, both at the levels of these
individual technologies, and especially at their integration
into a fully functional, robustly autonomous system.

This paper describes the UT Austin Villa 2019
RoboCup@Home team, a collaborative effort between Pls
and students in the Computer Science, Mechanical Engi-
neering and Aerospace Engineering departments at the Uni-
versity of Texas at Austin. While we were unable to demon-
strate our capabilities fully at the competition itself due to
hardware issues,' the progress made leading up to the com-
petition represents a significant step forward in Al-based
HRI due to the breadth of tasks accomplished within a uni-
fied system. The robot used in Robocup@Home Domestic
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!"The robot we shipped to the competition did not clear customs
in time, and the replacement we were loaned had some faulty hard-
ware.

Standard Platform League tasks is a Toyota Human Support
Robot (HSR).

Competing with the new rules for the first time, we aimed
to take the simplest possible approach to each task, and as
such, many challenges remain. The main contribution of this
paper is to describe the tasks we attempted in the competi-
tion, the component technologies they rely on, our initial ap-
proaches both to the components and their integration, and
directions for future research. In each case, we document,
through videos and/or descriptions, our most successful tri-
als, as a way of demonstrating both progress made to date
and the room for improvement in future years. We particu-
larly emphasize the AI-HRI aspects of the challenges.

The Standard Platform Robot

RoboCup@Home includes three different subleagues, one
of which requires designing the robot itself, and the other
two of which use standard platforms such that all teams have
exactly the same hardware. UT Austin Villa participates in
the Domestic Standard Platform League (DSPL), in which
all teams use the Toyota HSR robot (Yamamoto et al. 2019).
Figure 1 shows the HSR, which has a holonomic omnidirec-
tional base, a 4 DoF arm, a 1 DoF torso lift, a head RGBD
sensor, and an RGB fisheye hand camera. For fast neural net-
work computation, an external laptop with an Nvidia RTX
2070 GPU is mounted to the robot. The competition thus
amounts to a software competition: the raw perception and
actuation capabilities available to all the teams is identical.

Task Descriptions
This section roughly describes the tasks we attempted in the
competition, and identifies the Al component technologies
needed for each one. For full task descriptions, we refer the
reader to the RoboCup@Home rulebook (Matamoros et al.
2019).

All of the tasks take place in a mock apartment (the arena)
consisting of 4 rooms furnished as a living room, a kitchen,
a study, and a bedroom. There are two doors to the exterior.
An example arena is pictured in Figure 2. The robot is able
to map the arena prior to performing any of the tasks.

Storing Groceries

In this task, a kitchen is set up with a table and a multi-
shelf pantry cupboard, each of which contains common gro-



Figure 1: The HSR Robot.

cery items. After navigating to the kitchen table, the robot
must pick up objects from the table and place them onto the
pantry cupboard. A constraint, however, is that objects must
be placed next to similar items. For example, the robot can
place a box of orange juice next to a box of cereal since
both are breakfast items. Another challenge of this task is
its aggressive time limit of five minutes. As such, the stor-
ing groceries task requires fast perception and manipulation
for general picking and placing of objects, as well as an un-
derstanding of human shelving preferences for determining
where in the pantry cupboard to place objects.

Take out the Garbage

The goal of this task is for the robot to enter inside the
arena when the entrance door is opened, navigate to two dif-
ferent trash cans located at known positions and transport
the trash bags located therein to a designated deposit loca-
tion. For bonus points, the trash cans can start with lids on
top that need to be removed. As one of the most straight-
forward tasks in the competition, this task requires mainly
navigation, manipulation of at least the trash bags and op-
tionally the lids, and potentially rudimentary perception for
fine-tuning of navigation and manipulation. While there is
an option to ask for help removing the lid, the HRI aspects
of this task are minimal. A particular challenge is that both
bags must be deposited within five minutes, placing a pre-
mium on efficiency.

Serving Drinks

In the Serving Drinks task, the robot is to enter into a party
and act as a waiter to deliver drinks to people at their request.
The drinks are placed on a predefined bar located near the
living room. There are a number of possible drinks, but only
a subset of them are available for serving. There are sev-
eral guests in the living room, three of which are sitting and
the rest standing, two of whom already have drinks in their
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Figure 2: The 2019 competition arena mapped by a Toyota
Human Support Robot.

hands. The robot is to identify the guests that are in need of a
drink, take their order, and deliver it. Guests are aware of the
menu that is available, and, for bonus points, the robot can
preemptively tell the patron that their order is not available.
When the robot leaves the living room to retrieve a drink
item for a guest, the guests are shuffled around to new posi-
tions. The task is aimed at requiring the robot to implement
high-level HRI and combine it with object recognition and
manipulation.

Serve the Breakfast

In Serve the Breakfast, the goal is for the robot to pour cereal
into a bowl without spilling it. The robot begins outside of
the kitchen, and must navigate to the kitchen when the door
opens. Once inside, the robot must set the table or any flat
surface. This requires the robot to navigate to the bowl, pick
it up, and then place it gently on the table or a counter. For
bonus points, the robot can place a spoon next to the bowl.
Once the table is set, the robot must navigate to the cereal,
pick it up, and return to the bowl to pour a bowl of cereal.
For additional bonus points, the robot may pour milk into
the bowl without spilling.

Carry My Luggage

In this task, the robot helps the operator carry a bag to a
car parked at an unknown location outside of the arena. At
the start of the task, an operator points to a paper bag with
handles. The robot can pick up the bag from the floor for
extra points, or request a hand-over. The only way for the
robot to reach the destination is by following the operator.
The main challenge of this task is for the robot to keep track
of the operator while its path is obstructed by other people,
small objects, and barriers.
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Figure 3: The mock apartment setup as seen from the Living
Room.
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Figure 4: Mock apartment with the Bedroom and Study
Room visible.

Restaurant

Designed to capture the complexity of busy restaurants, the
Restaurant task has the robot act as a waiter in a gastropub-
style restaurant, ideally one serving real customers. The
robot must detect the bar where food and drinks are re-
quested by waiters and prepared by the kitchen. Customers
can call for waiters, usually by waving or shouting, and
the robot must move to these customers and take their or-
ders. These orders should be propagated to the kitchen, after
which, the robot should deliver the prepared meals from the
bar back to the customers’ tables. Many challenges of this
task come from the fact that the restaurant is situated in the
real world and not known beforehand. Thus, navigation must
be done in a very crowded and unmapped environment. Fur-
thermore, gesture recognition, perception, and manipulation
should be developed enough to be able to detect and deliver

Figure 5: Trash can with the trash bag used at the arena.

Figure 6: The HSR identifies available drinks at the bar.

orders.

Clean the Table

After a family dinner, the robot is tasked with clearing a din-
ing table. This involves picking up plates and small spoons
from a table and placing them in a dishwasher. Extra credit
is given for opening the dishwasher and placing a detergent
pod in the machine’s soap slot. A challenge is the manipula-
tion of small and uniquely shaped objects: cutlery and plates,
respectively.

Component Al Technologies

This section describes the component technologies we de-
veloped across multiple tasks for our robot architecture, se-
mantic perception, and object manipulation on top of the
HSR software stack (Yamamoto et al. 2019).

To the extent possible, we built our approach in a man-
ner consistent with our ongoing Building-Wide Intelligence
project (Khandelwal et al. 2017). While using a different
hardware platform, many of the objectives and capabilities
are the same. Indeed we have previously designed an under-
lying architecture that is common to the two platforms (Jiang
et al. 2018).

Robot Architecture

Our architecture is designed for service robots to handle dy-
namic interactions with humans in complex environments.
The three-layer architecture, as shown in Figure 7, outlines



integration of the robot’s skill components, such as percep-
tion and manipulation, with high-level reactive and deliber-
ative controls. The top layer sequences and executes skills,
and is reactive during execution to respond to changes. A
central knowledge base facilitates knowledge sharing from
all the components. The deliberative control layer uses the
knowledge base to reason about the environment, and can
be invoked to plan for tasks that cannot be statically de-
composed. Details on implementation of these layers can be
found in our recent paper (Jiang et al. 2018).

Perception

We employ a semantic perception module whose purpose is
to process raw video and depth data from the robot’s sensors
and extract information that can be processed by the ma-
nipulation, navigation, and knowledge reasoning modules.
The main output representations are a query-able point cloud
of objects in the environment and a partial 3D map of the
world.

The main input to our semantic perception module is
RGBD camera data. Compressed RGB and depth images
from the robot are streamed to an offboard computer that
runs the perceptual system. This image data is then con-
sumed by finding objects via the YOLO object detection net-
work (Redmon and Farhadi 2016), and constructing a point
cloud.

Next, semantic information about the world is synthesized
in two main ways: a partial 3D environmental map and ob-
ject cloud. For the former, regions of the point cloud corre-
sponding to detected objects are fused together over time in a
probabilistic Octree representation based on Octomap (Hor-
nung et al. 2013), which allows for the realtime construction
of a partial 3D map of the world. For the latter, point esti-
mates of the locations of objects are stored in a KD-Tree and
wrapped with an efficient querying interface that integrates
with our knowledge representation system.

The synthesized semantic information is then made avail-
able to plugins in an event-based model, where a plugin can
request access to semantic information that it wants to oper-
ate on. Plugins used include custom RANSAC edge detec-
tors used to detect surfaces, and bounding box fitting on the
3D map for use in manipulation.

A significant limitation is the partial nature of the 3D en-
vironmental map. Only a partial map is constructed due to
the realtime processing constraint; namely, full views of the
world cannot be stitched together at framerate using the Oc-
tomap technology. Alternatively, GPU-based techniques for
combining full point clouds could potentially overcome this
limitation, and thus provides a direction for future devel-
opment. Benefits of having full 3D environmental maps in-
clude the ability to directly localize objects with respect to
the robot.

Manipulation

The purpose of our manipulation system is to enable the pick
up and put down of diverse objects of different shapes and
sizes. Our manipulation stack consists of three main com-
ponents which we describe below: grasp pose generation,
parallel motion planning, and closed-loop correction.

Grasp poses refer to poses of the robot’s gripper that allow
it to pick up an object. First, our semantic perception system
provides 3D bounding boxes for objects worth manipulating.
Based on these bounding boxes, potential grasp poses are
computed that place the gripper on the top of the object as
well as on all sides, with multiple possible rotations of the
wrist. Of these poses, invalid configurations are filtered out
by projecting the gripper onto the object and seeing if there
is a collision.

Once grasp poses are determined, motion plans need to
be determined in order for the robot to achieve a desired
grasp pose. In order to do this quickly, we employ a paral-
lel motion planning architecture built on top of the Moveit
framework (Coleman et al. 2014). Our motion planning ar-
chitecture is comprised of primary and secondary nodes. The
secondary nodes handle generating motion plans for each
potential grasp pose, while the primary node coordinates
and handles executing motion plans. Specifically, secondary
nodes plan in parallel, and the first motion plan found is what
is executed. The rationale behind this is that different grasp
poses will require different yet unknown amounts of time for
finding motion plans. Since motion planning takes a signifi-
cant amount of time, reducing this bottleneck greatly speeds
up the entire manipulation pipeline. Furthermore, the Moveit
framework can sometimes crash when trying to find plans.
In our setup, this problem is mitigated: If a secondary node
dies from such a crash, then the other secondary nodes are
still present, allowing the system to continue functioning.

Next, executing a motion plan precisely is usually not fea-
sible. This is because, as the plan is executed, the software
solely uses odometry to control its position and the resultant
drift can cause errors in how much the robot thinks it has
moved. To overcome this obstacle, we slightly modify de-
sired grasp poses by having the gripper be some offset away
from the object. This way, after a motion plan is generated
and executed, the robot’s gripper is close to the object, but
there remains a small gap. We take advantage of this small
gap by employing a proportional controller based on object
detections from the robot’s hand camera to correct for odom-
etry drift. This practically means that the robot shifts slightly
to align the gripper perfectly with the centroid of the object.
The gap is then closed by moving in a straight line towards
the object, leading to a successful grasp.

Task Approaches

This section provides, for each task attempted, a summary of
our approach, the challenges overcome, successes and lim-
itations of the approach, and directions for future improve-
ments.

Storing Groceries

Fast perception and manipulation are crucial in this time-
constrained task, which has shaped our approach. First, the
robot identifies and localizes the kitchen table by exploiting
two known pieces of information: the location of the pantry
cupboard and the height of the table. Namely, the robot nav-
igates to the pantry cupboard, and then scans around for an
edge that is exactly the height of the table. Next, as objects
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Figure 7: Implementation of our robot architecture on HSR.

have been passively perceived throughout the previous step,
our semantic perception system is queried for all objects that
are on the table. Of these, a random object is chosen and
pushed through our manipulation system which causes the
robot to pick up the object. Subsequently, the pantry cup-
board is localized in a similar way as the table, and we query
for all objects that are currently in the pantry. The final com-
ponent of the task is deciding where to place the grasped
object in our gripper. The simplest case is when the knowl-
edge base knows a priori that two objects are part of the
same category (e.g. sprite and ginger ale). Otherwise, we
use a word2vec (Mikolov et al. 2013) model fine-tuned on a
custom corpus to decide the similarity between our grasped
object and the objects in the pantry.

Our manipulation system is designed to work with a va-
riety of object shapes and sizes. However, increased speed
and reliability can come from exploiting the fact that most
objects are quite small. Specifically, complex motion plan-
ning could be abandoned in favor of positioning the robot’s
gripper above the table and executing a simple motion down-
wards until the gripper hits the table. While not all objects
can be picked up this way, many reliably can.

A video of a run? shows the robot successfully executing
the above behavior.

Take out the Garbage

This task relies mainly on quick navigation and manipu-
lation, with emphasis on speed and accuracy. A particular
challenge is precise localization near the trash cans. As the
locations of the trash cans are known beforehand, the HSR
is able to navigate to a position in the arena where it is di-
rectly facing the trash can. Once facing the trash can, the
HSR reaches out its arm and points its arm with the hand
camera facing directly downward. From there, a 2D bound-
ing box of the target is generated by YOLO object detection
on the hand camera image. If the lid is on the can, it will be
detected and become the target for the HSR to grab. Other-
wise, the trash bag with the trash can will be detected and
used as the grab target.

The HSR uses the position of the generated 2D bounding
box to align its hand with the target. A proportional con-
troller is used to publish a velocity command to the robot
base based on the distance between the center of the hand

2https://youtu.be/HAAaP7vTfmY
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Figure 8: Sequence of actions for taking out a trash bag to
the collection zone. Ordered from top left to bottom right.

camera image and the center of the bounding box. Once this
distance is within a certain tolerance, the hand is directly
above the target and the velocity command is set to zero.
With the height of the trash can also known ahead of time,
the HSR can then lower its arm straight down until it is at
the height of the lid handle. If the lid is already removed, the
HSR will instead lower its hand down into the trash can to
grab the bag.

This strategy for grabbing the lid and bag worked con-
sistently on multiple trials, so the primary concern of this
task was completing it within the five minute time limit. Ma-
nipulation was made as efficient as possible by removing
unnecessary movements and pauses in motion. Navigation
speed was improved by setting waypoints in between desti-
nations. These waypoints were strategically placed in open
areas on the map, so the robot would not have to spend extra
time navigating around known obstacles in the arena. The
main drawback of this navigation strategy was that the robot
would come to a complete stop at a waypoint before moving
on to the next one, thus taking more time to reach the des-



tination. Examples where this strategy worked are, in some
runs, we noticed the robot reaching a state near doors where
it gets to a pose from which it cannot plan its way through a
door. To mitigate this issue, we place waypoints before and
after the door frame, following which the robot is success-
fully able to navigate through open door frames. This strat-
egy also ensures the robot always plans through the door in
a straight path, avoiding collisions with the door frames and
task interruptions due to bumper collision triggers.

Figure 8 shows the sequence of states for the robot to
pickup and deposit trash. In Step 1, the robot navigates to
the trash can and places its hand facing downward. In Step 2
and 3, the robot performs closed loop control using propor-
tional controller to reduce the 2D translational error between
hand camera plane and trash can lid plane. The robot then
picks up the trash can lid, followed by the trash bag in steps
4,5,6 and 7. In step 8, the robot navigates to the collection
zone, navigating through the arena avoiding obstacles along
the way. Finally in step 9, the robot deposits the trash bag.
‘We noticed that in step 8, the trash bag sometimes blocks the
HSR’s LIDAR and hence the navigation stack is unable to
charter a plan to the goal as a blocked LIDAR is equivalent
to a static obstacle infront of the robot. To solve this prob-
lem, we raise the height at which the HSR holds the trash
bag while transporting it. In Step 9, we noticed the trash
bag getting stuck on the gripper sometimes. To avoid this,
we perform a bidirectional roll motion on the wrist, which
helped in destabilizing the bag from the gripper and placing
it successfully on the ground.

A video® shows the above behavior including a pick up of
one of the trash lids for extra points.

Serving Drinks

This task presents perception and manipulation challenges
alongside HRI. First, the robot navigates to the bar to check
which drinks are available. Once this is done, we utilize
OpenPose (Cao et al. 2018) to detect and then navigate to
people in the living room that require beverages. The clos-
est person is asked for their name and drink order through
Google Cloud’s speech-to-text service. The speech recogni-
tion often misinterpreted the order or the name and to catch
when a robot misheard their order, the person’s speech was
checked against a dictionary of rhyming words (e.g. to cor-
rect Santa to Fanta). However, this method has potential lim-
itations should two drinks off the menu have similar names
and improved recognition would facilitate human-robot in-
teraction in this task. The robot proceeds to query our se-
mantic perception system for the requested drink and then
attempts to grab it. Ideally, the drink should be delivered
to the same person that requested it, but facial recognition
proved to be highly unreliable and therefore there was fail-
ure in delivering the drink back to the same person.

A video®* shows the robot’s execution of the above behav-
ior.

3https://youtu.be/Z8G2p7bkx3k
*https://youtu.be/ZBA3b2RTVIE

Serve the Breakfast

This task challenges perception and manipulation capabili-
ties. Using our semantic perception and manipulation sys-
tems, the HSR is able to recognize and pick up the bowl
and cereal box located in the pantry cupboard. The bowl is
first picked up and placed gently on top of the table. Using
the known location of the table, a position near the close
edge of the table is easily selected for object put down. The
joint limits of the HSR compel a clever pouring configu-
ration which required the hand to be upside down relative
to the world vertical axis when picking up the cereal. To
accomplish this, grasp poses from our manipulation system
are sorted to remove those not fulfilling the aforementioned
hand configuration requirement. Since only enough cereal
to fill the bowl needs to be poured, the whole box cannot be
emptied, which requires detecting how much cereal has been
poured. One challenge is that the wrist force/torque sensor
is quite noisy, which renders measuring the weight of cereal
poured implausible. Adding to this challenge are the mor-
phology of the HSR and the task time limit; the morphology
forces the HSR to assume a side view to visually detect the
amount of cereal poured. Performing this body rotation and
computation adds significant time delay. Accurately measur-
ing the amount of cereal poured is an essential development
for meeting the demands of this task in the future.

Carry My Luggage

The key challenge of this task is to follow the operator in a
crowded environment. We implement person tracking with a
combination of leg tracking, OpenPose, clothes color match-
ing, and waving detection in a tight loop. Before following,
the robot takes a photo of the person and sets the target legs.
Since the LIDAR has a wider angle than head camera, the
leg tracker results are preferred. When the target’s legs are
no longer visible, the head turns around to reidentify the
target. For each person detected by OpenPose, a similarity
score is computed using the color histogram of the person’s
body region and the original photo of the target. If the high-
est similarity score is above a threshold, the person is reset
as the target; otherwise, the robot asks the target to wave,
and looks for the closest waving person. We use the be-
havior tree framework (Colledanchise 2017) to coordinate
following and searching for target. Our solution is able to
follow and regain the target with fair responsiveness in un-
crowded spaces. To achieve robustness in uncontrolled en-
vironments, more accurate person identification will be re-
quired. We have plans to explore better sensor fusion tech-
niques and special-purpose neural networks for person re-
identification.

Restaurant

As the most dynamic task, Restaurant requires navigation,
perception, and manipulation in an unseen and chaotic en-
vironment. For increased reliability, we bypass all manipu-
lation in this task and focus our efforts on the navigational
and human interaction challenges this task has to offer. First,
the bar is detected by asking the bartender to raise his or her
hands. Next, waiting customers are detected by employing



a velocity-based hand waving gesture classifier; arms from
OpenPose skeletons are identified, and the velocity of the
wrist relative to the shoulder is checked over a few frames.
This allows the robot to see which customers are waving.
Once detected, the customer must be maplessly navigated
towards.

A challenge however is determining where to move to.
After all, moving to exactly the customer’s location would
be equivalent to running them over, which would lead to im-
mediate disqualification. Instead, just like a normal waiter,
the robot should move close to the customer, such as right
beside their table. Though, since we are in a previously un-
seen area, the robot has no knowledge of where tables are or
what areas would be appropriate to move to. To that end, the
robot looks at its local obstacle map, and finds the island”
the the customer is on. By island we mean an occupied re-
gion surrounded by free space. Generally, the customer, the
chairs they are sitting on, and their table, will be an island
surrounded by free space that the robot can move to. The
shortest path to the customer is planned, and the farthest
point on that path which does not collide with the island is
where the robot moves to.

Clean the Table

Core challenges in this task include the manipulation of
small and uniquely shaped objects. We chose to bypass pick-
ing up of objects, so we have the robot first navigate to the
dining table and ask for cutlery and dishes to be handed over.
Afterwards, we navigate to the known location of the dish-
washer. Now, objects must be placed precisely into the dish-
washer. Failure to do so for even a single object leads to
disqualification, and so localization cannot be solely relied
on for the dishwasher’s location. Instead, we use localiza-
tion for an initial rough estimate of where the dishwasher is.
To correct for any error, the robot looks at its local costmap
(which fuses LIDAR measurements and a projected point
cloud) for the corner of the dishwasher, which it aligns itself
to. Now certain of being reliable aligned to the dishwasher,
the robot places an object in its gripper into the dishwasher
rack.

Related Work

Our participation in RoboCup@Home has initiated several
research efforts in Al and HRI in previous years. We de-
veloped the robot architecture for general purpose service
robots and performed a case study on the HSR (Jiang et al.
2018). We proposed a knowledge representation and plan-
ning approach to handle human requests that involve un-
known objects (Jiang et al. 2019). Further, we discussed
challenges and synergies in building a unified system for
RoboCup@Home and our custom office robot platform,
BWIBot (Khandelwal et al. 2017). This paper focuses on
our approaches to tasks in the new rulebook in 2019.

The variety of rich tasks in RoboCup@Home have led
to diverse approaches and research by other teams in the
league. For one, Contreras et. al. describe a different sys-
tem that team Er@sers’ fielded in the clean the table task
(Contreras, Yokoyama, and Okada 2018), where they use

an active object interaction system with multimodal feed-
back. Savage et. al. present the architecture used by team
PUMAS in which a layered architecture is combined with
semantic modules for executing competition tasks (Savage
et al. 2019). Team Northeastern has described their system
for mobile manipulation, with a focus on its deployment in
the Storing Groceries task (Kelestemur et al. 2019).

Summary and Conclusion

Overall, the current RoboCup@Home rulebook defines an
inspirational stretch goal for modern human-interactive ser-
vice robots. This paper describes the UT Austin Villa 2019
approach to the full variety of challenges presented - both
to the component Al and HRI technologies and to their in-
tegration. While important progress has been made, as we
document fully in the paper, there remains much room for
improvement and we look forward to continuing our re-
search and development towards the 2020 competition in
Bordeaux!
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