
Autonomous Agents Modelling Other Agents:
A Comprehensive Survey and Open Problems

Stefano V. Albrechta, Peter Stoneb

aThe University of Edinburgh, United Kingdom
bThe University of Texas at Austin, United States

Abstract

Much research in artificial intelligence is concerned with the development of autonomous agents
that can interact effectively with other agents. An important aspect of such agents is the ability
to reason about the behaviours of other agents, by constructing models which make predictions
about various properties of interest (such as actions, goals, beliefs) of the modelled agents. A
variety of modelling approaches now exist which vary widely in their methodology and underlying
assumptions, catering to the needs of the different sub-communities within which they were
developed and reflecting the different practical uses for which they are intended. The purpose of
the present article is to provide a comprehensive survey of the salient modelling methods which
can be found in the literature. The article concludes with a discussion of open problems which
may form the basis for fruitful future research.

Keywords: autonomous agents, multiagent systems, modelling other agents, opponent modelling

Contents

1 Introduction 2

2 Related Surveys 5

3 Assumptions in Modelling Methods 6

4 Modelling Methods 8
4.1 Policy Reconstruction . 10

4.1.1 Conditional Action Frequencies . 10
4.1.2 Case-Based Reasoning . 11
4.1.3 Compact Model Representations . 12
4.1.4 Utility Reconstruction . 12

4.2 Type-Based Reasoning . 14
4.3 Classification . 17
4.4 Plan Recognition . 19

4.4.1 Plan Recognition in Hierarchical Plan Libraries 20
4.4.2 Plan Recognition by Planning in Domain Models 21
4.4.3 Plan Recognition by Similarity to Past Plans 22

4.5 Recursive Reasoning . 23

Preprint submitted to Artificial Intelligence Submitted: September 2017; Accepted: January 2018

ar
X

iv
:1

70
9.

08
07

1v
2

 [
cs

.A
I]

 9
 F

eb
 2

01
8

4.6 Graphical Models . 26
4.7 Group Modelling . 28
4.8 Other Relevant Methods . 30

4.8.1 Implicit Modelling . 31
4.8.2 Hypothesis Testing for Agent Models 31
4.8.3 Using Models Safely . 31

5 Open Problems 32
5.1 Synergistic Combination of Modelling Methods 32
5.2 Policy Reconstruction under Partial Observability 33
5.3 Safe and Efficient Model Exploration . 33
5.4 Efficient Discovery of Decision Factors . 33
5.5 Computationally Efficient Implementations . 34
5.6 Modelling Changing Behaviours . 34
5.7 Modelling with Action Duration . 34
5.8 Modelling in Open Multiagent Systems . 35
5.9 Autonomous Model Contemplation and Revision 35

6 Conclusion 35

Appendix A Clarification for Assumption Tables 36

1. Introduction

A core area of research in modern artificial intelligence (AI) is the development of autonomous
agents that can interact effectively with other agents. An important aspect of such agents is the
ability to reason about the behaviours, goals, and beliefs of the other agents. This reasoning
takes place by constructing models of the other agents. In general, a model is a function which
takes as input some portion of the observed interaction history, and returns a prediction of some
property of interest regarding the modelled agent (cf. Figure 1). The interaction history may
contain information such as the past actions that the modelled agent took in various situations.
Properties of interest could be the future actions of the modelled agent, what class of behaviour it
belongs to (e.g. “defensive”, “aggressive”), or its current goals and plans.

An autonomous agent can utilise such a model in different ways, but arguably the most
important one is to inform its decision making. For example, if the model makes predictions about
the actions of the modelled agent1, then the modelling agent can incorporate those predictions in
its planning procedure to optimise its interaction with the modelled agent. If instead the model
makes predictions about the class of behaviour of the modelled agent, then the modelling agent
could choose a precomputed strategy which it knows to work well against the predicted class.
Besides informing decisions, an agent model can also be used for other purposes. For example, an
intelligent tutoring system could use a model of a specific human player in games such as Chess
to identify and point out weaknesses in the human’s play (Iida et al., 1996).

1We will use the term “modelling agent” to refer to the agent which is carrying out the modelling task, and “modelled
agent” or “other agent” to refer to the agent which is being modelled.

2

Figure 1: General agent model.

The process of constructing models of other agents, sometimes referred to as agent modelling
or opponent modelling,2 often involves some form of learning since the model may be based on
information observed from the current interaction and possibly data collected in past interactions.
For example, an agent may model another agent’s decision making as a deterministic finite
automaton and learn the parameters of the automaton (e.g. nodes, edges, labels) during the
interaction (Carmel and Markovitch, 1998b). Similarly, an agent may attempt to classify the
strategy of another agent by using classifiers which were trained with statistical machine learning
on data collected from recorded interactions (Weber and Mateas, 2009).

Modelling other agents in complex domains is a challenging task. In the above example
in which an agent models another agent’s behaviour as a finite automaton, the learning task is
known to be NP-complete in both the exact and approximate cases (Pitt, 1989; Gold, 1978). Many
other modelling techniques exist, each with their own complexity issues. For example, the task of
inferring an agent’s goals and plans based on complex action hierarchies often faces an exponential
growth in plan hypotheses (Geib, 2004). Yet, despite such difficulties, research in modelling other
agents continues to push the boundary, in part driven by innovative applications that necessitate
effective modelling capabilities in agents. For example, dialogue systems have to understand and
disambiguate the intentions and plans of users (Grosz and Sidner, 1986; Litman and Allen, 1984);
intelligent tutor systems must reason about the knowledge and misconceptions of students to
facilitate learning progress (McCalla et al., 2000; Anderson et al., 1990); autonomous military
and security systems must be able to reason about the decision making, beliefs, and goals of
adversaries (Borck et al., 2015; Jarvis et al., 2005; Tambe, 1995); and autonomous vehicles must
reason about the behaviours of other vehicles (Buehler et al., 2009). Beyond such applications
of “narrow AI”, there is also the grand vision of a general AI which is capable of completing
tasks, across different domains, that potentially require non-trivial interactions with other agents
(including humans). It is evident that such a general AI will require an ability to reason about
the goals, beliefs, and decision making of other agents. This is especially true in the absence of
coordination and communication protocols, where modelling other agents is a key requirement
for effective collaboration (Stone et al., 2010; Rovatsos et al., 2003).

There is a rich history of research on computational agents that model other agents. Some of
the earliest work can be traced back to the beginnings of game theory, in which opponent modelling
was studied as a means of computing equilibrium solutions for games. The classical example is
“fictitious play” (Brown, 1951), in which each player models the other player’s strategy as the
empirical frequency distribution of their past play. Another example is rational learning (Kalai
and Lehrer, 1993), in which players maintain Bayesian beliefs over a space of possible strategies
for the other players. In AI research and computational linguistics, methods for recognising the
goals and plans of agents (Schmidt et al., 1978) were applied in automated dialogue systems to
understand and disambiguate the intentions of users (Pollack, 1986; Litman and Allen, 1984).

2Because much of the early work was developed in the context of competitive games such as Chess, the term “opponent
modelling” was established to refer to the process of modelling other agents, and is still used by many researchers.

3

Modelling Methods (4.1) Policy Reconstruction

(4.2) Type-Based Reasoning

(4.3) Classification

(4.4) Plan Recognition

(4.5) Recursive Reasoning

(4.6) Graphical Models

(4.7) Group Modelling

(4.8) Other Methods

Figure 2: Surveyed modelling methods. Brackets show linked section numbers.

Adversarial games such as Chess were also an important driver of research in opponent modelling.
The dominant solution for such games was based on the “minimax” principle, in which agents
optimise their decisions against a worst-case, foolproof opponent (Campbell and Marsland, 1983).
However, it was recognised that real players often exhibit limitations in their strategic play, e.g.
due to cognitive biases or bounded computation, and that knowledge of such limitations could
be exploited to obtain superior results to minimax play (Iida et al., 1994, 1993; Carmel and
Markovitch, 1993; Reibman and Ballard, 1983). In addition to opponent modelling in game
playing, early models of recursive reasoning (“I believe that you believe that I believe...”) were
formulated (e.g. Gmytrasiewicz et al., 1991; Wilks and Ballim, 1986). Since these early works in
game theory and AI, the problem of modelling other agents has been an active area of research
in many sub-communities, including classic game playing (Fürnkranz, 2001), computer Poker
(Rubin and Watson, 2011), automated negotiation (Baarslag et al., 2016), simulated robot soccer
(Kitano et al., 1997), human user modelling (Zukerman and Albrecht, 2001; McTear, 1993),
human-robot interaction (Lasota et al., 2014), commercial video games (Bakkes et al., 2012), trust
and reputation (Ramchurn et al., 2004), and multiagent learning (Stone and Veloso, 2000).

Many different modelling techniques now exist which vary widely in their underlying assump-
tions and methodology, largely due to the different needs and constraints of the sub-communities
within which they were developed. Assumptions may pertain to aspects of the modelled agent, such
as whether the agent makes deterministic or stochastic action choices, and whether its behaviour
is fixed or may change over time. They may also pertain to aspects of the environment, such as
whether the actions of other agents and environment states are observed fully or only partially
with possible uncertainty. Current methodologies include learning detailed models of an agent’s
decision making as well as reasoning about spaces of such models; inferring an agent’s goals and
plans based on hierarchical action descriptions; recursive reasoning to predict an agent’s state of
mind and its higher-order beliefs about other agents; and many other approaches. While some arti-
cles have surveyed modelling methods specific to one of the aforementioned sub-communities
(see Section 2), there is a gap in the current literature in that there is no unified survey of the prin-
cipal modelling methods which can be found across the sub-communities. As a result, there has
been a missed opportunity to effectively communicate ideas, results, and open problems between
these sub-communities.

The purpose of the present article is to provide a comprehensive survey of methods which
enable autonomous agents to model other agents, and to highlight important open problems in
this area. We identify and describe seven salient modelling methods (plus other relevant methods)

4

which are shown in Figure 2. Works were included in the survey if a significant part of the work
was concerned with the problem of modelling other agents, which in most cases included the
proposal of novel algorithms and/or analysis of and experiments with existing algorithms.

After discussing related surveys in Section 2, we begin our survey in Section 3 with a discussion
of the different assumptions that modelling methods may be based on, to help the reader gain an
understanding of the applicability and limitations of methods. Section 4 then surveys a number of
different modelling methods by discussing the general idea underlying each method and surveying
the relevant literature. Section 5 concludes with a discussion of open problems which have not
been sufficiently addressed in the literature, and which may be fruitful avenues for future research.

2. Related Surveys

Several articles survey research on opponent modelling for specific domains. Baarslag et al.
(2016) provide a survey of opponent modelling in bilateral negotiation settings, in which two
agents negotiate the values of one or more “issues” (e.g. cost, size, and colour of a car) in an
exchange. Bakkes et al. (2012) and Karpinskyj et al. (2014) survey methods for player modelling
in commercial video games, where the purpose of modelling is to improve the playing strength of
game AI as well as player satisfaction. Pourmehr and Dadkhah (2012) provide an overview of
modelling methods used in 2D simulated robot soccer, in which two teams of agents compete in a
soccer match. Rubin and Watson (2011) survey research in Poker playing agents and dedicate a
section to opponent modelling methods. Lasota et al. (2014) survey research in safe human-robot
interaction and include a section on methods that predict the motions and actions of humans.
Several articles survey work in trust and reputation modelling in multiagent systems (e.g. Pinyol
and Sabater-Mir, 2013; Yu et al., 2013; Ramchurn et al., 2004). Other surveys of opponent
modelling include van den Herik et al. (2005), Olorunleke and McCalla (2005), and Fürnkranz
(2001). The above articles survey modelling methods for specific domains, and their discussions
are centred on the particular properties of interest (e.g. offer preferences, team formation, action
timing, human motion, trust levels) and constraints (e.g. limited computational resources, extensive
form games of imperfect information, modelling from raw data) in these domains.

Our article is a general survey of the major modelling methods that can be found across the
literature, including methods which are not or only sparsely addressed in the above surveys, such
as type-based reasoning, plan recognition, recursive reasoning, and graphical models. In contrast,
the above surveys primarily focus on specific interaction settings which differ significantly in their
rules, dynamics, and assumptions, with many of the surveyed methods being domain-specific.
While, ultimately, it is useful to exploit specific domain structure to achieve optimal performance,
a focus on domain-specific aspects can make it difficult for researchers unfamiliar with the
subject to gain an understanding of the general modelling approaches and, thus, contributes to
a fragmentation of the community, as evidenced by the fact that the above surveys have little
overlap in terms of cited works. Still, one can identify common ideas in methodology between
these communities, such as the use of machine learning methods to “classify” other agents and the
use of Bayesian beliefs to reason about the relative likelihood of alternative models. Our survey
aims to distil the broader context of such methodologies and to provide an overview of the relevant
works as well as discuss open problems and avenues for future research, thus documenting the
state-of-the-art in agent modelling methods.

In addition to the above surveys, there are also a number of surveys on the topic of multiagent
learning (Hernandez-Leal et al., 2017; Bloembergen et al., 2015; Tuyls and Weiss, 2012; Busoniu
et al., 2008; Panait and Luke, 2005; Alonso et al., 2001; Stone and Veloso, 2000; Sen and Weiss,

5

1999). Multiagent learning3 (MAL) is defined as the application of learning to facilitate interaction
between multiple agents, where the learning is typically carried out by the individual agents or
some central mechanism that has control over the agents. Modelling other agents often involves
some form of learning about the other agents and can, thus, be viewed as a part of MAL. However,
MAL may also involve other types of learning, such as learning to coordinate without constructing
models of other agents (e.g. Albrecht and Ramamoorthy, 2012; Bowling and Veloso, 2002; Hart
and Mas-Colell, 2001) and learning based on communication. Most of the cited MAL surveys
provide some discussion of research on modelling other agents, but due to the broader scope the
discussions are necessarily limited. Moreover, some of these surveys are somewhat dated now
(albeit still useful), and miss out on much of the more recent progress in modelling methods.

A complicating factor in complex domains such as human-robot interaction, simulated robot
soccer, and some commercial games is the fact that agents cannot directly observe the chosen
actions of other agents, but must instead infer these (with possible uncertainty) from other ob-
servations, such as changes in the environment. The task of identifying actions from raw sensor
data and changes in states is referred to as activity recognition, and it is itself an active research
area that has produced a substantial body of work (Sukthankar et al., 2014). Methods for activity
recognition are not covered in our survey. We assume that the modelling agent has some means to
identify actions during the interaction, e.g. by using domain-specific heuristics as is often done in
the robot soccer domain (e.g. Kaminka et al., 2002a), training an action classifier using supervised
machine learning (e.g. Ledezma et al., 2009), or reasoning about the probabilities of possible
observations (e.g. Panella and Gmytrasiewicz, 2017).

3. Assumptions in Modelling Methods

Before surveying the modelling methods, we will discuss some of their possible underlying
assumptions. This discussion will be useful for appreciating the applicability and limitations of
methods, as well as where some of the current open problems lie. We categorise assumptions into
assumptions about the modelled agents and assumptions about the environment within which the
agents interact. (For example, in a soccer game, the environment is defined by the soccer field and
ball/player positions, and the game dynamics.)

The following is a list of possible assumptions about the modelled agent. To make this discus-
sion a little more precise, we will use P(a j|H) to denote the probability with which the modelled
agent j chooses action a j after some history H = 〈o1, o2, ..., ot〉, where oτ is an observation at time
τ and t is the current time step. For example, under a fully observable setting, oτ may include the
environment state at time τ and the actions of other agents (if any) at time τ − 1.

Deterministic or stochastic action choices? An agent makes deterministic action choices if for
every history H, P(a j|H) = 1 for some action a j. The more general case are stochastic action
choices, in which actions may be chosen with any probabilities.4 Assuming deterministic
action choices can greatly simplify the modelling task because we can be sure that the
modelled agent will always choose the same action for a given history. This allows us to use
deterministic structures such as decision trees and deterministic state automata, for which
efficient learning algorithms exist. Besides simplifying the learning of models, assuming

3The 2017 International Joint Conference on Artificial Intelligence held a tutorial on “Multiagent Learning: Foundations
and Recent Trends”. Tutorial slides can be downloaded at: http://www.cs.utexas.edu/~larg/ijcai17_tutorial

4In the game theory literature, stochastic actions are often referred to as “mixed strategies” (e.g. Myerson, 1991)
6

http://www.cs.utexas.edu/~larg/ijcai17_tutorial

deterministic action choices can also simplify the planning of our own agent’s actions,
because the planning does not have to account for uncertainties in the modelled agent’s
actions. On the other hand, such an assumption precludes the possibility that the modelled
agent may randomise deliberately or that it may make mistakes, as human agents often do.
Therefore, modelling methods which allow for stochasticity in action choices can facilitate
more robust prediction and planning.

Fixed or changing behaviour? An important question in modelling methods is the degree to
which the modelled agent is allowed to change its decision making. The precise meaning
of change varies in the literature and also depends on the property of interest that is to
be predicted (e.g. actions, class, plan). The basic notion is that the modelled agent has
some ability to adapt its decision making based on its past observations. An example of a
non-changing (sometimes called “fixed”, “stationary”, or “non-learning”) agent often found
in the literature is a simple “Markovian” agent which chooses its actions based only on the
most recent observation and regardless of what happened before, i.e. P(a j|H) = P(a j|ot). In
contrast, an example of an adaptive/learning agent is one which itself tries to learn models
of other agents and bases its decisions on these models. Early modelling methods assumed
fixed behaviours to avoid the added complexity of tracking and predicting possible changes
in behaviours. Today, more methods allow for varying degrees of adaptability in order to
allow for greater complexity in modelled agents.

Decision factors known or unknown? Agents often make decisions based on some portion of
the history (e.g. the most recent n observations), or based on abstract features which were
calculated from the history. An example of an abstract feature is the average number of
times a particular action was observed in a specific situation. Given such dependencies
on factors, an important question in modelling methods is whether the relevant factors
in the modelled agent’s decision making are known a priori. Many methods assume that
this knowledge is available, or that the relevant factors can in principle be derived from
the information available in the observed history. In the worst case, the modelling method
can work on the entire history and the hope is that the relevant factors are approximately
reconstructed in the modelling process. However, if such a reconstruction is not possible
and knowledge of relevant factors is not available, then the predictions of the resulting
model can be very unreliable. Some methods attempt to solve this problem by reasoning
about a space of possible relevant factors (cf. Section 4.1.1).

Independent or correlated action choices? If the modelling agent is interacting with more than
one other agent, then a possible question is whether the other agents choose their actions
independently from each other. Independence means that the joint probability P(a j, a j′ |H)
for agents j and j′ can be factored into P(a j|H)P(a j′ |H). Otherwise, the agents are said
to have correlated action choices. Many modelling methods assume independent action
choices, which allows for the independent construction of models for each agent. Note that
independence does not mean that the agents ignore each other, since they may observe
each others’ past actions in the history H. However, if agents are correlated in their action
choices, e.g. due to joint plans and communication (Stone and Veloso, 1999; Grosz and
Kraus, 1996), then it may be important for the modelling method to capture such correlations.
For applications in which this is the case, such as robot soccer, researchers have developed
methods that model entire teams as opposed to individual agents.

7

Common or conflicting goals? Another possible assumption concerns the agents’ goals.5 A
goal may be to reach a specific state in the environment or to optimise a given objective
function, such as the payoff/reward functions used in game theory and reinforcement
learning. Goals are said to be common if they are identical for all agents. Many modelling
methods that attempt to predict an agent’s actions are unaffected by the goals of the agents,
since such methods primarily work on observed actions (cf. Sections 4.1 and 4.2). However,
methods which attempt to predict the intentions and beliefs of other agents can be influenced
significantly by assumptions about goals, since an observed action may yield different clues
when viewed in the context of common versus conflicting goals. Some modelling methods
attempt to learn the payoff functions used by other agents (cf. Section 4.1.4).

In addition to assumptions about the modelled agent, many methods make assumptions about
the environment within which the interaction takes place. Some common assumptions concern the
order in which agents choose their actions (simultaneous or alternating moves), and the representa-
tion of actions and environment states (discrete, continuous, mixed). However, the most important
assumptions usually concern the extent to which agents are able to observe what is happening in
the environment. Much of the early work in opponent modelling was developed in idealised set-
tings such as Chess, in which the state of the environment and the agents’ chosen actions are fully
observable by all agents. The domain of Poker added the problem of partial observability of en-
vironment states, since no player can see the private cards of other players. In domains such as
human-robot interaction and robot soccer, additional complications are that observations about the
environment state may be unreliable (e.g. due to noisy sensors), and that actions may no longer be
observed directly by the agents but have to be inferred (with some uncertainty) based on other
observations, such as changes in the environment. (For example, a soccer player may infer a pass-
ing action between two players based on changes in the position, velocity, and direction of the
ball.) Such partial observability can make the modelling task significantly more difficult, since
agents can make decisions based on private observations and the modelling method must take
such possibilities into account.

4. Modelling Methods

This section provides a comprehensive survey of the salient modelling methods that can be
found in the literature (cf. Figure 2). Specifically, we will survey methods of policy reconstruction
(Section 4.1), type-based reasoning (Section 4.2), classification (Section 4.3), plan recognition
(Section 4.4), recursive reasoning (Section 4.5), graphical models (Section 4.6), group modelling
(Section 4.7), and other relevant methods (Section 4.8). For each modelling method, we provide a
table6 which lists the assumptions in the surveyed papers, organised according to the dimensions
identified in Section 3. Table 1 provides a high-level summary of the surveyed modelling methods.

5Assumptions about the goals of agents may also be viewed as assumptions about the environment, since the pay-
off/reward functions are usually part of the task and environment specification. We view them as assumptions about agents
to allow for the more general notion of subjective goals, such as intrinsic rewards (Singh et al., 2005).

6See Appendix A for further clarifications on assumption tables.
8

Method Summary

Policy reconstruction (4.1) Model predicts action probabilities of modelled agent. Assume specific model structure and learn model
parameters based on observed actions.

+ Can learn arbitrary model (subject to chosen model structure)

+ Models often progressively generated during the interaction

− May require many observations to yield useful model

− Learning task can be complex (space/time)

Type-based reasoning (4.2) Model predicts action probabilities of modelled agent. Assume agent has one of several known types and
compute relative likelihood of types based on observed actions.

+ Types can be very general (e.g. blackbox)

+ Can lead to fast adaptation if true type of agent (or a similar type) is in type space

− Can lead to wrong predictions if type space is wrong

− Beliefs not expressive enough to tell if type space is wrong

Classification (4.3) Model predicts class label (or real number, if regression) for modelled agent. Choose model structure
and use machine learning to fit model parameters based on various information sources.

+ Can learn to predict various kinds of properties

+ Many machine learning algorithms available

− Learning may require large amount of data to yield useful model

− Model is usually computed before interaction and can be difficult to update during interaction

Plan recognition (4.4) Model predicts goal and (to some extent) future actions of modelled agent. Algorithms often use hierar-
chical plan library or domain model.

+ Knowledge of goal and plan extremely useful for long-term planning

+ Rich plan library can encode complex plans (e.g. with temporal and applicability conditions)

− Specifying plan library can be tedious/impractical; may be incomplete

− Most methods assume modelled agent is unaware of observer (“keyhole plan recognition”)

Recursive reasoning (4.5) Model predicts next action of modelled agent. Recursively simulate reasoning of modelled agent (“I
think that you think that I think...”).

+ Account for higher-order beliefs of other agents

− Recursion is computationally expensive

− Assumes modelled agent is rational

Graphical models (4.6) Model predicts action probabilities of modelled agent. Uses graphical model to represent agent’s decision
process and preferences.

+ Detailed model of agent’s domain conceptualisation (causal beliefs) and preferences

+ Graphical representation can lead to computational improvements

− Does not scale efficiently to sequential decision processes

Group modelling (4.7) Model predicts joint properties of group of agents (e.g. joint action/goal/plan of group).

+ Can capture correlations in action choices of group

+ Can exploit group structure to improve efficiency and quality of prediction

− Reasoning about agent groups is highly complex due to interdependencies among agents

Table 1: High-level summary of surveyed modelling methods, with an indication of some of their potential strengths (+)
and limitations (−). This summary does not apply to all surveyed papers; many variations exist, and not all potential
strengths and limitations are listed in this summary (see main text).

9

4.1. Policy Reconstruction
Policy reconstruction methods generate models which make explicit predictions about an

agent’s actions, by reconstructing the agent’s decision making. Most methods begin with some
arbitrary or idealised model and “fit” the internals of the model to reflect the agent’s observed
behaviour. The predictions of such a model can be utilised by a planner to reason about how
the modelled agent might react to various courses of actions. For example, Monte-Carlo tree
search (Browne et al., 2012) can naturally integrate such models to sample possible interaction
trajectories, which are used to find optimal actions with respect to the agent model.

The two central design questions in policy reconstruction methods are (1) what elements of
the interaction history should be used to make predictions, and (2) how should these elements be
mapped to predictions? The following discussion of methods gradually shifts emphasis from the
first question to the second question.

4.1.1. Conditional Action Frequencies
The archetypal example of a policy reconstruction method is “fictitious play” (Brown, 1951),

in which agents model each other as a probability distribution over their possible actions. The
probabilities are “fitted” via a maximum-likelihood estimation over the agents’ observed actions,
which corresponds to simply computing their average frequencies. This simple method has some
well-known convergence properties in matrix games (Fudenberg and Levine, 1998) and was
adopted early in multiagent reinforcement learning (Claus and Boutilier, 1998). Of course, a single
distribution is unable to capture agent behaviours with complex dependencies on the interaction
history. The key to making this method more capable is to condition the action distribution on
elements of the history. For instance, Sen and Arora (1997) and Banerjee and Sen (2007) propose
agents that learn the action frequencies of other agents conditioned on the modelling agent’s own
action, and Davison and Hirsh (1998) propose a user model which learns conditional probabilities
of user commands based on the user’s previous command. More complex methods may condition
distributions on more information from the history, such as the n most recent joint actions of all
agents (Powers and Shoham, 2005).

The difficulty with learning conditional action distributions is that we may not know what
elements of the history to use. If we condition distributions on too little or the wrong information
from the history, then the learned distributions may not produce reliable predictions. If we
condition on too much information, then the learning may be too slow and inefficient. To address
this issue, methods have been developed which automate the conditioning. Jensen et al. (2005)
propose a method which learns action frequencies for each possible subset of the n most recent
elements in the history. To manage the combinatorial explosion of subsets, some subsets are
removed if the entropy of their conditional distributions is above some threshold, meaning that
their predictions are not certain enough. To make a prediction, the method selects the subset with
the lowest entropy for the given history (i.e. most certain prediction). Similarly, Chakraborty and
Stone (2014) describe a method which learns action frequencies conditioned on the most recent
n, n − 1, n − 2, ... observations and plans its own actions using the “smallest” conditioning which
best predicts the modelled agent’s actions, in the sense that it is not too dissimilar to the largest
conditioning. Essentially the same method can be used to model agents which condition their
choices on abstract feature vectors derived from the history (Chakraborty and Stone, 2013).

The idea of monitoring conditional action frequencies of the modelled agents has also been
used in the context of extensive form games with imperfect information, such as Poker (Mealing
and Shapiro, 2017; Ganzfried and Sandholm, 2011; Southey et al., 2005; Billings et al., 2004).

10

Such games are characterised by the fact that agents may have private information (e.g. cards
in own hand) in addition to public information (e.g. cards on the table). Hence, agents make
decisions in “information sets”, which are sets of decision nodes that cannot be distinguished with
the available information. The decision making of other agents can be modelled as the observed
frequency with which they chose actions in the various information sets. For example, Southey
et al. (2005) associate an independent Dirichlet distribution for each information set and update
the corresponding distribution after each observed action. Dirichlet distributions are a natural way
to model uncertainty over finite probability distributions and can be updated efficiently. Rather
than learning such distributions from scratch, it is also possible to initialise the distributions to
some reasonable baselines. For example, Ganzfried and Sandholm (2011) first compute a Nash
equilibrium solution for the game which specifies action distributions for each information set and
agent. This solution can be used to initialise the agent models. During play, the distributions in the
models are gradually shifted toward the observed action frequencies of the modelled agents, to
reflect their true behaviours. The advantage of this method is that the modelling agent can initially
plan its actions against a rational (Nash) opponent model, rather than starting with an arbitrary
model. Billings et al. (2004) propose a method which learns action frequencies conditioned
on entire action sequences. To generalise observed actions more quickly, the method employs
a sequence of increasingly coarse abstractions over action sequences. Moreover, to allow for
changing behaviours, the method uses a decay factor such that more recent observations have
greater weight in the calculation of action frequencies.

4.1.2. Case-Based Reasoning
A limitation in the above methods is that they may lack a mechanism to extrapolate (or

“generalise”) past observations to previously unseen situations. Abstraction methods such as those
used by Billings et al. (2004) can achieve some level of generalisation by defining equivalence
relations over observations. Case-based reasoning (e.g. Kolodner, 2014; Veloso, 1994; Hammond,
1986) is a related method which uses similarity functions to relate observations. In essence, this
method maintains a set of “cases” along with the observed actions of the modelled agent in each
encountered case. To extrapolate between cases, a similarity function must be specified which
measures how similar two given cases are. For example, in simulated robot soccer, a case may be
defined by the state of the soccer field, and the similarity could measure the respective differences
of ball and players positions in two given cases. When presented with a new case, the method
searches for the most similar known cases and predicts an action as a function of these cases.

Albrecht and Ramamoorthy (2013) propose a method which stores observed cases (defined as
environment states) and the observed actions of the modelled agent in each case. When queried
with a new case, the method generates a prediction by searching for similar cases and aggregating
their predictions based on the relative similarity to the queried case and the recency of the observed
actions to allow for changing behaviours. Similar case-based methods for modelling the behaviour
of other agents were proposed by Borck et al. (2015) and Hsieh and Sun (2008). In all of the
above methods, a case is represented as a multi-attribute vector and similarity between vectors is
measured using domain-specific difference calculations. An interesting question in case-based
methods is whether the similarity function can be optimised automatically with respect to the
modelled agent (Steffens, 2005, 2004a; Ahmadi et al., 2003). For example, Steffens (2004a)
proposes a method in which the similarity function is defined as a linear weighting of differences
in the attributes of two given cases. The weighting is learned based on the goal of the modelled
agent and a “Goal Dependency Network” which specifies dependencies between sub-goals and
case attributes. Another important question in case-based methods is how to store and retrieve

11

cases efficiently. For example, Denzinger and Hamdan (2004) propose a retrieval method based
on tree search, and Borck et al. (2015) prune cases to reduce the number of the stored cases.

4.1.3. Compact Model Representations
Methods based on frequency distributions and case-based reasoning are general, since the

conditioning and cases can be based on any observable information. However, this generality
comes at the cost of exponential space complexity. For example, if action distributions of the
modelled agent are conditioned on the past n observations which each can assume m possible
values (or, equivalently, if a case consists of n different attributes with m possible values), then
there are (up to) mn distributions to be stored. An alternative method is to use more compact model
representations such as those found in the machine learning literature. For example, one may
attempt to model an agent’s decision making as a deterministic finite automaton (DFA) (Carmel
and Markovitch, 1998b, 1996c; Mor et al., 1995). Carmel and Markovitch (1996c) show how
such a model can be learned from observed actions. Essentially, each time the method observes a
new action, it checks if the current model is consistent with the observation in the sense that it
would have predicted the action, given the current state of the DFA. If it is not, the DFA model is
modified to account for the new observation, e.g. by adding new nodes and edges between nodes.
A useful property of this method is that it searches for the smallest DFA that is consistent with the
observations. Other representations that have been used to model agents include decision trees
(Barrett et al., 2013) and artificial neural networks (Silver et al., 2016; Davidson et al., 2000).

Machine learning methods can also be used to infer missing information from the observed
interaction. For example, in robot soccer an agent cannot directly observe what actions other
agents took; it only observes (if at all) the changes in the environment as a result of the agents’
actions. Ledezma et al. (2009) propose a method which trains multiple decision/regression tree
classifiers on recordings from past plays. One classifier is trained to predict the action that the
modelled agent took, given two consecutive environment states. Another classifier is trained to
predict the next action that the agent will take, given the current state and past action predicted by
the first classifier. Additional classifiers are trained to predict the continuous parameters of the
predicted actions. Panella and Gmytrasiewicz (2017) propose to use probabilistic DFAs (PDFAs)
to model the stochastic action choices of agents in domains in which neither the state of the
environment nor the other agents’ actions are observed with certainty. The proposed method uses
a Bayesian nonparametric prior over the space of all PDFAs, and updates the prior after new
observations to find a model which captures the behaviour of the modelled agent. Mealing and
Shapiro (2017) use an expectation-maximisation algorithm to infer the current information set of
the modelled agent in extensive form games.

4.1.4. Utility Reconstruction
One characteristic which is shared by all of the above methods is that they do not model the

preferences of the modelled agent, which are often expressed as some kind of utility function.
However, it can be difficult to generalise the observed actions from the modelled agent if its
preferences are unknown. An alternative is to assume that the modelled agent maximises some
utility function which is unknown to the modelling agent. This rationality assumption allows
the modelling agent to reason about the possible utility function of the modelled agent, given its
observed actions. Once an estimate of a utility function is obtained, one can predict the actions of
the modelled agent by maximising the utility function from the perspective of the modelled agent.

Based on this idea, Carmel and Markovitch (1996b, 1993) consider opponent modelling
in extensive form games (e.g. Checkers) and define a model as the search depth and utility

12

Paper Agents Environment

Stoc
ha

sti
c

ac
tio

ns
?

Cha
ng

ing

be
ha

vio
ur?

Fac
tor

s

kn
ow

n?
Ind

ep
en

de
nt

ag
en

ts? Com
mon

go
als

?
M

ov
e ord

er

Stat
e/a

cti
on

rep
res

en
tat

ion

Stat
e/a

cti
on

ob
ser

va
bil

ity

(Mealing and Shapiro, 2017) yes no yes yes no altern. discrete partial
(Panella and Gmytrasiewicz, 2017) yes yes yes yes no simult. discrete partial
(Silver et al., 2016) yes no yes yes no altern. discrete full
(Borck et al., 2015) no no yes yes no simult. mixed partial
(Chakraborty and Stone, 2014, 2013) yes no no yes no simult. discrete full
(Albrecht and Ramamoorthy, 2013) yes yes yes yes no simult. discrete full
(Barrett et al., 2013) no no yes yes yes simult. discrete full
(Ganzfried and Sandholm, 2011) yes no yes yes no altern. discrete partial
(Ledezma et al., 2009) no no yes yes no simult. mixed partial
(Hindriks and Tykhonov, 2008) no no yes yes no altern. discrete full
(Banerjee and Sen, 2007) yes no – yes no simult. discrete full
(Powers and Shoham, 2005) yes no no yes no simult. discrete full
(Jensen et al., 2005) yes no no yes no simult. discrete full
(Southey et al., 2005) yes no yes yes no altern. discrete partial
(Steffens, 2005, 2004a) no no no yes no simult. mixed/disc. full
(Billings et al., 2004) yes yes yes yes no altern. discrete partial
(Coehoorn and Jennings, 2004) no no yes yes no altern. discrete full
(Denzinger and Hamdan, 2004) no no yes yes no simult. discrete full
(Gal et al., 2004) yes no yes yes no simult. discrete full
(Ahmadi et al., 2003) no no no yes no simult. mixed/disc. full
(Chajewska et al., 2001) no no yes yes no altern. discrete full
(Davidson et al., 2000) yes no yes yes no altern. discrete partial
(Claus and Boutilier, 1998) yes no – yes yes simult. discrete full
(Davison and Hirsh, 1998) yes no – yes no –∗ discrete full
(Sen and Arora, 1997) yes no – yes no simult. discrete full
(Carmel and Markovitch, 1998b, 1996c) no no yes yes no simult. discrete full
(Carmel and Markovitch, 1996b, 1993) no no yes yes no altern. discrete full
(Mor et al., 1995) no no yes yes no simult. discrete full
(Brown, 1951) yes no – yes no simult. discrete full

Table 2: Assumptions in papers for policy reconstruction methods. ∗Does not specify move order.

function used by the opponent. The utility function is assumed to be a linear combination of
features in the game state, and the goal is to learn the weights in the combination. Given a set of
examples which consist of game states and the opponent’s chosen action in each state, the proposed
method learns multiple candidate models (one for each search depth) using hill-climbing search
to iteratively improve the weight estimates until no further improvement is possible. The model
which best describes the opponent’s moves is then used in the search routine of the modelling
agent. Chajewska et al. (2001) consider a similar setting and assume that the modelled agent’s
utility function is a linear weighting of “subutilities”. Here, the weighting is known and the goal
is to learn the subutilities. Given observed play trajectories, the proposed method generates linear
constraints on the space of possible utility functions, similar to methods of inverse reinforcement
learning (Ng and Russell, 2000). To select a utility function from the space of possible functions,
the authors propose to use a Bayesian prior which is conditioned on observed actions, and the
resulting posterior is used to sample a utility function. Gal et al. (2004) consider single-shot
normal-form games and model a human player’s utilities as a linear combination of social factors
such as social welfare and fairness. Data is collected from human play and utility weight profiles

13

are learned using expectation-maximisation and gradient ascent algorithms. A prior distribution
over the different profiles is used to compute expected payoffs for actions.

Learning the utility function, or preferences, of other agents is also a major line of research
in automated negotiation agents (see Baarslag et al. (2016) for a detailed description of many
domain-specific methods). For instance, Hindriks and Tykhonov (2008) consider a bilateral multi-
issue negotiation and define utility functions as weighted sums of issue evaluation functions. To
learn the weights and evaluation functions ascribed by the opponent to each issue, the authors
discretise the space of possible weights and evaluation functions by assuming special functional
forms. This results in a finite hypothesis space of utility functions over which a Bayesian prior is
defined and updated after new bids are received. The resulting posterior can be used to estimate
the opponent’s utility function. Coehoorn and Jennings (2004) also consider linearly additive
utility functions and learn the weights using kernel density estimation. (See also Section 4.6 for
utility reconstruction methods in graphical models.)

4.2. Type-Based Reasoning
Learning new models from scratch via policy reconstruction can be a slow process, since many

observations may be needed before the modelling process yields a useful model. This can be a
problem in applications in which an agent does not have the time or opportunity to collect many
observations about another agent. In such cases, it is useful if the agent is able to reuse models
learned in previous interactions with other agents, such that it only needs to find the model which
most closely resembles the observed behaviour of the modelled agent in the current interaction.
In fact, there may be cases in which we know a priori that the modelled agent has one of several
known behaviours, and we can provide specifications of those behaviours to the modelling agent.

Based on the above intuition, type-based reasoning methods assume that the modelled agent
has one of several known types. Each type is a complete specification (a model) of the agent’s
behaviour, taking as input the observed interaction history and assigning probabilities to the
actions available to the modelled agent. Types may be obtained in different ways: they may be
specified manually by a domain expert; they may have been learned in previous interactions or
generated from a corpus of historical data (e.g. Barrett et al., 2013); or they may be hypothesised
automatically from the domain and task to be completed (e.g. Albrecht et al., 2015b). Given a
specification of possible types, type-based reasoning begins with a prior belief which specifies the
expected probabilities of types before any actions are observed. During the interaction, each time
a new action is observed, the belief is updated according to the probability with which the types
predicted the observed action. The modelling agent can then use the updated belief and the types
in a planning procedure to compute optimal actions with respect to the types and belief. A useful
property of this method is that, if the true type of the modelled agent (or a sufficiently similar
type) is in the set of considered types, then the beliefs can often point to this type after only a few
observations, leading to fast adaptation. Moreover, since types are essentially blackbox mappings,
they can encapsulate policy reconstruction methods to learn new types during the interaction
(Albrecht and Ramamoorthy, 2013; Barrett et al., 2011).

Type-based reasoning was first studied by game theorists, who considered games in which
all players maintain beliefs about the possible types of the other players (Harsanyi, 1967). The
principal questions studied in this context are the degree to which players can learn to make
correct predictions through repeated interactions, and whether the interaction process converges
to solutions such as Nash equilibria (Nash, 1950). A well-known result by Kalai and Lehrer
(1993) states that, under a certain “absolute continuity” assumption regarding players’ beliefs,
their prediction of future play will get arbitrarily close to the true future play and convergence to

14

Nash equilibrium emerges. (The assumption states that every event with true positive probability
is assigned positive probability under the players’ beliefs.) Subsequent works studied the impact
of prior beliefs on equilibrium convergence and showed that if players have different prior beliefs,
their play may converge to a subjective equilibrium which is not a Nash equilibrium (Dekel et al.,
2004; Nyarko, 1998). Lastly, for certain games and conditions, there are results which show that
players cannot simultaneously have correct beliefs and play optimally with respect to their beliefs
(Nachbar, 2005; Foster and Young, 2001).

In AI research, type-based reasoning7 found popularity in problems of multiagent interaction
without prior coordination (Albrecht et al., 2017; Stone et al., 2010), in which the controlled agent
interacts with other agents whose behaviours are initially unknown. Albrecht et al. (2016) provide
a concise and compact definition of a type-based reasoning method via a recursive combination of
the Bayes-Nash equilibrium (Harsanyi, 1968a) and Bellman optimality equation (Bellman, 1957).
This combination results in a tree of all possible interaction trajectories as well as their predicted
probabilities and payoffs, where the probabilities take into account changes in beliefs along
the trajectories. The authors define different belief formulations and analyse their convergence
properties (Albrecht and Ramamoorthy, 2014). They also show empirically that prior beliefs
can have a significant long-term impact on payoff maximisation, and that they can be computed
automatically with consistent performance effects (Albrecht et al., 2015b). Barrett et al. (2011)
modify the sampling-based planner UCT (Kocsis and Szepesvári, 2006) such that each rollout in
UCT samples a type for each other agent based the current belief over types. The algorithm is
evaluated in the “pursuit” grid-world domain where it could perform well even if the true types
of other agents were not in the set of considered types, so long as sufficiently similar types were
known. In subsequent work, Barrett et al. (2013) show how transfer learning can be used to adapt
decision-tree types learned in previous interactions. Rovatsos et al. (2003) propose a method which
dynamically learns up to a certain number of types which are represented as deterministic finite
automata. When interacting with a new agent, the method finds the closest known type or adds a
new type for future reference. Optimal actions against a type are computed using reinforcement
learning methods such as Q-learning (Watkins and Dayan, 1992). Takahashi et al. (2002) propose
a “multi-module” reinforcement learning method where each module corresponds to a possible
agent type and a “gating signal” is used to determine how closely each module matches the
current agent. Type-based reasoning has also been studied under partial-observability conditions.
In Interactive POMDPs (Gmytrasiewicz and Doshi, 2005), agents have possible uncertainty about
the state of the environment, the types of other agents, and their chosen actions. (We defer a more
detailed discussion of this model to Section 4.5).

The above methods all use Bayes’ law or some modification thereof to determine the relative
likelihood of types, given the observed actions of the modelled agent. An alternative to Bayes’ law
is to use machine learning methods such as artificial neural networks, which can learn to predict
“mixtures” of types (represented as weight vectors) given the observed actions. For example,
Lockett et al. (2007) propose a method which consists of two neural networks: one network is
trained to predict a mixture of types, taking as input the observed actions of the modelled agent;
another network is trained to make decisions by assigning probabilities to available actions, taking
as input the observed actions and the predicted mixture from the first network. Similarly, He
et al. (2016) train a “gating network” which combines the predicted Q-values of several “expert
networks” corresponding to different agent types.

7The 2016 AAAI Conference on Artificial Intelligence held a tutorial on “Type-Based Methods for Interaction in
Multiagent Systems”. Tutorial slides can be downloaded at: http://thinc.cs.uga.edu/tutorials/aaai-16.html

15

http://thinc.cs.uga.edu/tutorials/aaai-16.html

Paper Agents Environment

Stoc
ha

sti
c

ac
tio

ns
?

Cha
ng

ing

be
ha

vio
ur?

Fac
tor

s

kn
ow

n?
Ind

ep
en

de
nt

ag
en

ts? Com
mon

go
als

?
M

ov
e ord

er

Stat
e/a

cti
on

rep
res

en
tat

ion

Stat
e/a

cti
on

ob
ser

va
bil

ity

(Albrecht and Stone, 2017) yes yes yes yes no simult. discrete full
(Sadigh et al., 2016) no no yes yes no simult. continuous full
(He et al., 2016) yes no∗∗ yes no no simult. mixed full
(Albrecht et al., 2016, 2015b) yes yes yes yes no simult. discrete full
(Albrecht and Ramamoorthy, 2014, 2013) yes yes yes yes no simult. discrete full
(Barrett et al., 2013, 2011) yes no yes yes yes simult. discrete full
(Lockett et al., 2007) yes no yes yes no altern. discrete partial/full
(Gmytrasiewicz and Doshi, 2005) yes yes yes yes no simult. discrete partial
(Nachbar, 2005) yes yes yes yes no simult. discrete full
(Southey et al., 2005) yes no yes yes no altern. discrete partial/full
(Dekel et al., 2004) yes yes yes yes no simult. discrete full
(Chalkiadakis and Boutilier, 2003) yes no yes yes no simult. discrete full
(Rovatsos et al., 2003) no no yes yes no simult. discrete full
(Takahashi et al., 2002) yes partial∗ yes yes no simult. mixed partial
(Foster and Young, 2001) yes yes yes yes no simult. discrete full
(Carmel and Markovitch, 1999) no no yes yes no simult. discrete full
(Nyarko, 1998) yes yes yes yes no simult. discrete full
(Kalai and Lehrer, 1993) yes yes yes yes no simult. discrete full

Table 3: Assumptions in papers for type-based reasoning methods. ∗Types are Markov (non-changing) but modelled agent
is assumed to change between types periodically. ∗∗Modelled agent may change types between episodes but not during
episode.

Most type-based reasoning methods use discrete (usually finite) type spaces, where each type
is a different decision function. Even inherently continuous hypothesis spaces can be discretised
to obtain discrete type spaces (e.g. Hindriks and Tykhonov, 2008). However, one may also rea-
son directly about continuous type spaces: essentially, we now have a single decision function
which has some number of continuous parameters, and the beliefs quantify the relative likelihood
of parameter values. A specific parameter setting can then be viewed as one type. For example,
Southey et al. (2005) maintain Gaussian beliefs over the continuous parameters of a specified
player function for Poker (cf. Table 1 in their paper). It is also possible to combine discrete and
continuous type spaces. Albrecht and Stone (2017) propose a method which reasons simultane-
ously about both the relative likelihood of a finite set of types and the values of any bounded
continuous parameters within these types. The method begins with an initial parameter estimate
for each discrete type. After new actions are observed, a subset of the types is selected and their
parameter estimates updated using methods such as approximate Bayesian updating and exact
global optimisation (Horst et al., 2000).

An interesting aspect of type-based reasoning is the possibility of deliberately choosing actions
to elicit information about an agent’s type. While it is possible to use schemes such as occasional
randomisation in action selection, such schemes ignore the risk that the exploratory actions may
influence the modelled agent in unintended ways (Carmel and Markovitch, 1999). In this regard,
type-based reasoning can naturally integrate a decision-theoretic “value of information” (Howard,
1966) into the evaluation of actions. For example, the methods proposed by Carmel and Markovitch
(1999) and Albrecht et al. (2016) recursively take into account the potential information that
actions may reveal about the type of the modelled agent and how this in turn may affect the future
interaction. Chalkiadakis and Boutilier (2003) propose a “myopic” approximation of this kind

16

of reasoning which considers only one recursion of belief change, after which beliefs are held
constant for the evaluation of actions. Sadigh et al. (2016) use a form of model predictive control
to optimise a heuristic tradeoff between minimising uncertainty in the modelled agent’s type and
maximising a given reward function. In the related context of goal recognition (cf. Section 4.4),
the “Proactive Execution Module” of Schmid et al. (2007) incorporates several criteria in the
selection of actions, including uncertainty minimisation, expected success, and minimising risk
values assigned to actions.

4.3. Classification
While policy reconstruction (Section 4.1) and type-based reasoning (Section 4.2) attempt to

predict the future actions of the modelled agent, there may be other properties or quantities of
interest which an agent model could predict. For example, an agent model may make predictions
about more abstract properties such as whether the play style of the modelled agent is “aggressive”
or “defensive” (e.g. Schadd et al., 2007), or it may predict quantities such as the expected times at
which the modelled agent will take certain actions (e.g. Weber and Mateas, 2009). The former
task of assigning one of a finite number of labels is referred to as classification, whereas the latter
task of predicting continuous values is referred to as regression. There are different ways in which
such predictions can be utilised by a modelling agent. For instance, an assigned class label can be
naturally incorporated into the decision procedure of the modelling agent using if-then-else rules
or decision trees. Alternatively, given a class label, the agent may employ a precomputed strategy
which is expected to be effective against that particular class label.

Classification methods8 produce models which assign class labels to the modelled agent (e.g.
“play-style = aggressive”) based on information from the observed interaction. Similarly to policy
reconstruction methods, there are two central design questions in classification methods: (1) what
observations from the interaction should be used and how should they be represented to facilitate
the classification, and (2) how should the classification be performed given the data representation?
The second question often includes a learning phase which is carried out prior to the current
interaction, using data collected from past interactions.

Several classification methods have been proposed to model players in complex strategy games.
Weber and Mateas (2009) propose methods to predict a player’s strategy and build times in the
game Starcraft. The models are trained on collected replay data from expert human players. Each
replay is tagged as one of six strategies and transformed into a feature vector which contains the
initial build times for the various unit types in the game. A number of machine learning algorithms
(e.g. decision trees, nearest neighbours) are tested on the data and the results show that the learned
models can successfully predict player strategies and build times. Using the same collected replay
data, Synnaeve and Bessiere (2011) propose methods to classify the opening strategy of Starcraft
players from a finite set of strategies, using expectation-maximisation and k-means algorithms.
Schadd et al. (2007) propose domain-specific classifiers to predict the play style (e.g. “aggressive”,
“defensive”) of players in the game Spring. To account for possible changes in play style, the
model prioritises recent observations over past observations. Spronck and den Teuling (2010)
use support vector machines (SVMs) (Cortes and Vapnik, 1995) to predict the “preferences” of
players in the game Civilization IV. Each player is characterised by integer-valued preferences

8We focus on classification methods since many of the surveyed papers in this section are in this category. Note also
that regression problems can be transformed into classification problems via a finite discretisation of values, albeit with an
exponential growth of class labels if multiple regression variables are jointly discretised.

17

Paper Agents Environment

Stoc
ha

sti
c

ac
tio

ns
?

Cha
ng

ing

be
ha

vio
ur?

Fac
tor

s

kn
ow

n?
Ind

ep
en

de
nt

ag
en

ts? Com
mon

go
als

?
M

ov
e ord

er

Stat
e/a

cti
on

rep
res

en
tat

ion

Stat
e/a

cti
on

ob
ser

va
bil

ity

(Synnaeve and Bessiere, 2011) yes no –∗ no no simult. mixed partial
(Bombini et al., 2010) no no –∗ no no simult. mixed partial
(Iglesias et al., 2010) yes yes –∗ yes no simult. mixed partial
(Spronck and den Teuling, 2010) yes no –∗ no no simult. mixed partial
(Laviers et al., 2009) no no yes no no simult. mixed full
(Weber and Mateas, 2009) yes no –∗ no no simult. mixed partial
(Iglesias et al., 2008) yes no –∗ no no simult. mixed partial
(Schadd et al., 2007) yes yes –∗ no no simult. mixed partial
(Sukthankar and Sycara, 2007) no no yes yes no simult. discrete full
(Huynh et al., 2006) yes no –∗ –∗∗∗ no –∗∗∗ mixed partial
(Steffens, 2004b) yes no yes∗∗ no no simult. mixed partial
(Mui et al., 2002) yes no –∗ yes no simult. discrete full
(Visser and Weland, 2002) yes no –∗ yes no simult. mixed partial
(Sabater and Sierra, 2001) yes no –∗ –∗∗∗ no –∗∗∗ mixed partial
(Abdul-Rahman and Hailes, 2000) yes no –∗ –∗∗∗ no –∗∗∗ –∗∗∗ –∗∗∗

(Riley and Veloso, 2000) yes no –∗ no no simult. mixed partial
(Schillo et al., 2000) yes no –∗ yes no simult. discrete full

Table 4: Assumptions in papers for classification methods. ∗This assumption does not apply here since the goal is not to
predict the actions of agents. ∗∗Method is in principle based on action prediction and requires specification of decision
factors (state descriptions). ∗∗∗Not specified.

in areas such as military, cultural, and scientific development. Training data are generated by
pitting predefined AI players with different preference settings against each other. The collected
data consist of game states which are transformed into feature vectors with attributes such as
the number of cities and units. Using the data, one SVM classifier is trained for each preference.
Laviers et al. (2009) use SVMs to classify the defensive play of opponent teams in the football
game Rush 2008. The game specifies finite sets of team formations and plays for offense and
defense. Using game data generated from all combinations of these team formations and plays, a
series of multi-label SVM classifiers is trained corresponding to increasing lengths in observation
sequences. Sukthankar and Sycara (2007) consider turn-based strategy games such as Dungeons
& Dragons and train SVMs to classify players into a finite set of roles (e.g. “scout”, “medic”)
using simulated game data for the various roles.

Another complex domain in which classification methods have been studied is simulated
robot soccer. Two notable differences to the above methods are that the models now predict the
identities of players or entire teams, and the (partial) use of symbolic methods in addition to
statistical machine learning methods. Steffens (2004b) proposes the “Feature-Based Declarative”
classification method. Therein, each model consists of a number of features which are defined
as pairs of logical state descriptions and the actions of one or more opponent players expected
to be seen in the described states. Compactness of models is achieved by limiting models to
features which are highly distinctive (relative to other models) and stable, meaning that they occur
frequently for the model. Given an observation of the game, consisting of the game state and
player actions, different symbolic approaches and a Bayesian approach can be used to match
features to observations. A successful match to the features of a model means that the opponent
has been identified. Bombini et al. (2010) propose a relational procedure which works on temporal

18

sequences of game events for a given team. Each sequence consists of high-level actions such
as passing and dribbling, which in turn consist of low-level (primitive) actions such as kicking
and turning. Inductive logic programming (Muggleton, 1991) is used to automatically select
a feature representation from these sequences. Given the feature vectors, the method uses a k-
nearest neighbour algorithm with a specified distance function between feature vectors to classify
teams. Similarly, Iglesias et al. (2008) extract symbolic sequences of game events from which
subsequences of a certain length are extracted and their frequencies represented in a “trie” structure
(Fredkin, 1960), which is compared to known models using statistical hypothesis testing. This
approach has been extended to allow for evolving agent behaviours, essentially by adding new
models when the existing ones are found to be insufficient (Iglesias et al., 2010). Other methods
proposed for simulated robot soccer include Riley and Veloso (2000), who classify teams based
on a grid discretisation of the playing field which is used to count the occurrence of certain events
(such as ball/player positions and pass/dribble events) in specific geographic areas, and Visser and
Weland (2002) who learn decision trees to classify the behaviour of the goal keeper (e.g. “leaving
goal”, “returning to goal”) and the passing behaviour of opponent players.

Trust and reputation in multiagent systems is an area of research which uses classification and
regression methods to model the trustworthiness of agents (see Pinyol and Sabater-Mir (2013),
Yu et al. (2013), and Ramchurn et al. (2004) for useful surveys). One definition of trust is the ex-
pectation with which an agent will realise its terms of a contract in a given context (many other
definitions exist, e.g. Dasgupta, 2000). Trust can be based on a multitude of information, includ-
ing own experiences from interactions with the modelled agent, communicated experiences from
other agents in the system, as well as the roles of the modelled agent and its social relations to
other agents. For example, Abdul-Rahman and Hailes (2000) classify agents as very trustworthy,
trustworthy, untrustworthy, or very untrustworthy based on direct experiences and reported expe-
riences about agents. Many other proposed methods quantify trust as a continuous value which
aggregates various information sources using relative importance weights, confidence values, time
discounting, etc. (e.g. Huynh et al., 2006; Mui et al., 2002; Sabater and Sierra, 2001; Schillo et al.,
2000). Such qualitative or quantitative predictions of trust levels can be used by the modelling
agent to tailor its interaction with the modelled agent, and, importantly, trust levels can be used to
decide which agents to interact with in the first place.

4.4. Plan Recognition
Plan recognition is the task of identifying the possible goals and plans of an agent, based on

the agent’s observed actions (Carberry, 2001). The focus is on predicting the intended end-product
(goal) of the actions that have been observed so far, as well as the sequence of steps (plan) with
which the agent intends to achieve its goal.9 Knowledge of the goals and plans of other agents
can be extremely useful in interactions with them. For example, an adaptive user interface may
suggest certain actions and display other relevant information if it knows what the human user
intends to accomplish (Oh et al., 2011; McTear, 1993), and an intrusion detection system may take
certain counter measures if it detects the goals and plan of an attacker (Geib and Goldman, 2001).

Many plan recognition methods employ a plan library which describes the possible plans and
goals that the observed agent may pursue. The representation of plans is a key element in plan
recognition methods, and many methods use a hierarchical10 representation in which “top-level”

9“Goal recognition design” is a closely related problem in which the goal is to modify the environment such that any
agent acting in it reveals its goal as early as possible (Wayllace et al., 2017; Keren et al., 2016, 2015, 2014).

10Two examples of hierarchical plan libraries are the network security domain of Geib and Goldman (2009) and the
pasta-making domain of Kautz and Allen (1986).

19

goals are decomposed into sub-plans which may be further decomposable. The leaves in this plan
hierarchy are the primitive (non-decomposable) actions that can potentially be observed. Plan
libraries may also include additional rules such as temporal orderings between the steps in plans,
and preconditions on the environment state which must hold in order to perform certain plan steps.
Given such a plan library and a set of observed actions, the plan recognition task is to generate
possible plan hypotheses that respect the rules of the plan library and explain (i.e. contain) all
observed actions. If multiple plan hypotheses exist that explain the observed actions, they may be
distinguished by additional factors such as how plausible or probable they are.

Plan recognition differs from policy reconstruction (Section 4.1) and type-based reasoning
(Section 4.2) in that the latter predict actions for given situations, but they do not predict the
intended end-product of these actions, such as that the modelled agent seeks to reach a certain goal
state in the environment. On the other hand, while plan recognition can also be used to predict
future actions, the resulting predictions are often less precise than predictions of models produced
by policy reconstruction and type-based reasoning (with some notable exceptions, e.g. Bui et al.
(2002)). For example, plans often specify a partial temporal order of actions, such as that some
actions have to occur before some other actions. While this flexibility is useful for planning, it
leaves open the precise order and probability of actions in a plan execution. Hence, a plan may
predict a set of possible actions but not necessarily which action will be taken next.

Plan recognition methods are sometimes categorised into “keyhole” and “intended” methods
(Cohen et al., 1981). The difference is in whether the modelled agent is assumed to be aware of the
modelling agent. The vast majority of current methods are designed for keyhole plan recognition,
in which the modelled agent is assumed to be unaware of the modelling agent.

4.4.1. Plan Recognition in Hierarchical Plan Libraries
Kautz and Allen (1986) propose a symbolic theory of plan recognition in which plans are rep-

resented using complex hierarchical actions that decompose into other complex and primitive
actions. This results in a graph representation in which edges denote plan decomposition, and root
nodes in the graph correspond to “top-level plans” which can be interpreted as goals. The recogni-
tion problem is then framed as a problem of graph covering given the observed (primitive) actions,
which the authors formulate using the concept of circumscription (McCarthy, 1980). Tambe and
Rosenbloom (1995) use a hierarchical plan hierarchy in which plan steps are conditioned on envi-
ronment states. The proposed method commits early to a single plan hypothesis and evaluates
new observations in the context of this hypothesis. If the current plan hypothesis is inconsistent
with new observations, the method attempts to repair the hypothesis via limited backtracking in
the plan hierarchy. Avrahami-Zilberbrand and Kaminka (2005) represent the plan library as a
directed acyclic graph which specifies decomposition, temporal orderings, and applicability condi-
tions of plan steps. The plan recognition is carried out via a “lazy” procedure which time-stamps
complete paths in the plan graph that match new observations and respect the temporal order-
ings and applicability conditions. A complete set of plan hypotheses can then be extracted when
needed (hence “lazy”). Several extensions to this method have been proposed: one which allows
for action duration, interleaved plan execution, and missing observations (Avrahami-Zilberbrand
et al., 2005); an extension to rank plan hypotheses by their expected utility to the modelling
agent (Avrahami-Zilberbrand and Kaminka, 2007); and an extension which incorporates timing
constraints on the plan recognition task (Fagundes et al., 2014).

Charniak and Goldman (1993) frame plan recognition as a problem of probabilistic inference
in Bayesian networks (Pearl, 1988). The plan library is represented as a set of decomposable
actions, based on which a set of Bayesian networks can be constructed. The root of each network

20

corresponds to a high-level plan for which prior probabilities must be specified, and the child
nodes correspond to plan decomposition. The “belief” in this plan hypothesis is expressed by
the probability that the value of the root node is true, which can be computed using standard
inference algorithms (Pearl, 1988). Bui et al. (2002) represent plans as a K-depth hierarchy of
abstract policies, where a policy at depth k selects a policy at depth k − 1, and policies at depth
k = 0 are the primitive actions. A notable difference from other formulations is that the policies
are defined over environment states, which is similar to models learned in policy reconstruction
(Section 4.1) and type-based reasoning (Section 4.2). The authors show how the recognition
process can be framed using dynamic Bayesian networks and they perform inference using the
Rao-Blackwellised particle filter (Doucet et al., 2000). A related method is based on probabilistic
state-dependent grammars which allow the plan production rules to depend on state information
(Pynadath and Wellman, 2000). Geib and Goldman (2009) represent plans based on AND/OR
trees, in which AND children are required steps in plans with possible temporal constraints and
OR children are alternative (choice) steps in plans of which one must be performed. Their method
uses a generative model of plan execution which specifies probabilities for how an agent decides
on a particular plan and how the steps in the plan are executed. This plan execution model can be
simulated and the authors show how the model can be used to infer plans based on observations.

4.4.2. Plan Recognition by Planning in Domain Models
Two potential drawbacks of using plan libraries are that their specification can be tedious, and

that they may be incomplete (i.e. the observed agent may use a plan that cannot be constructed
with the plan library). Ramı́rez and Geffner (2009) propose an alternative formulation of plan
recognition as a problem of planning in a domain model which is specified in the STRIPS planning
language (Fikes and Nilsson, 1971). Given a set of possible goals, the idea is that the potential
goals of the observed agent are those goals for which the optimal plans that achieve the goals
contain the observed actions in the order in which they were observed. This idea assumes that
the modelled agent is “rational” in that it only executes optimal plans with respect to a known
cost definition (similar to methods of utility reconstruction; cf. Section 4.1.4). The authors show
how existing exact and approximate planning methods can be adopted to compute this set of
goals, essentially by solving the planning problem for the modelled agent such that the solution is
consistent with the observed actions. This work is subsequently extended to compute Bayesian
probabilities over plan hypotheses (Ramı́rez and Geffner, 2010). Each possible goal now has a
specified prior probability, and the likelihood of the observed actions given a goal is defined as
the cost difference between the plan that optimally achieves the goal and the plan that optimally
achieves the goal and is consistent with the observed actions. This likelihood definition encodes
the assumption that an agent is more likely to pursue optimal plans than suboptimal ones. (See
also the work of Sohrabi et al. (2016) for an alternative probabilistic extension which allows for
unreliable observations, and the work of Vered and Kaminka (2017) for a heuristic extension
that works with continuous domains.) Baker et al. (2009, 2005) propose a very similar idea to
Ramı́rez and Geffner (2009) but formulate it within Markov decision processes (MDPs) (Bellman,
1957). Since MDPs allow for stochasticity in state transitions and action choices, any optimal
policy for an MDP that achieves a specific goal induces a likelihood of the observed actions given
the goal, which can be used to compute Bayesian posteriors over the alternative goals. Similar
goal recognition methods using MDPs were proposed by Nguyen et al. (2011) and Fern and
Tadepalli (2010). In subsequent work, both Baker et al. (2011) and Ramırez and Geffner (2011)
propose planning-based methods to infer the goals (and beliefs) of an agent in partially observable
MDPs (Kaelbling et al., 1998). Lesh and Etzioni (1995) and Hong (2001, 2000) propose symbolic

21

Paper Agents Environment

Stoc
ha

sti
c

ac
tio

ns
?

Cha
ng

ing

be
ha

vio
ur?

Fac
tor

s

kn
ow

n?
Ind

ep
en

de
nt

ag
en

ts? Com
mon

go
als

?
M

ov
e ord

er

Stat
e/a

cti
on

rep
res

en
tat

ion

Stat
e/a

cti
on

ob
ser

va
bil

ity

(Vered and Kaminka, 2017) yes no yes yes no –∗∗ continuous full
(Sohrabi et al., 2016) yes no yes yes no –∗∗ discrete partial
(Tian et al., 2016) yes yes –∗ yes no –∗∗ –∗/disc. partial
(Fagundes et al., 2014) no no yes yes no –∗∗ mixed/disc. full
(Baker et al., 2011) yes yes yes yes no –∗∗ discrete partial
(Ramırez and Geffner, 2011) yes no yes yes no –∗∗ discrete partial
(Nguyen et al., 2011) yes no yes yes yes simult. discrete full
(Fern and Tadepalli, 2010) yes no yes yes yes simult. discrete full
(Ramı́rez and Geffner, 2010) yes no yes yes no –∗∗ discrete full
(Gold, 2010) yes no yes yes no simult. discrete full
(Geib and Goldman, 2009) yes no –∗ yes no –∗∗ discrete partial
(Ramı́rez and Geffner, 2009) no no yes yes no –∗∗ discrete full
(Baker et al., 2009) yes yes yes yes no –∗∗ discrete full
(Avrahami-Zilberbrand and Kaminka, 2007) yes no yes yes no –∗∗ mixed/disc. partial
(Blaylock and Allen, 2006) yes no –∗ yes no –∗∗ discrete full
(Avrahami-Zilberbrand and Kaminka, 2005) no no yes yes no –∗∗ mixed/disc. full
(Avrahami-Zilberbrand et al., 2005) no no yes yes no –∗∗ mixed/disc. partial
(Baker et al., 2005) yes yes yes yes no –∗∗ discrete full
(Blaylock and Allen, 2004, 2003) yes no –∗ yes no –∗∗ discrete full
(Fagan and Cunningham, 2003) no yes yes yes no –∗∗ discrete full
(Kerkez and Cox, 2003) no yes yes yes no –∗∗ discrete full
(Bui et al., 2002) yes no yes yes no –∗∗ discrete partial
(Hong, 2001, 2000) no no yes yes no –∗∗ discrete full
(Pynadath and Wellman, 2000) yes no yes yes no –∗∗ discrete partial
(Albrecht et al., 1998, 1997) yes yes yes yes no –∗∗ discrete partial
(Lesh and Etzioni, 1995) no no yes yes no –∗∗ discrete full
(Tambe and Rosenbloom, 1995) no no yes yes no –∗∗ mixed/disc. full
(Baré et al., 1994) yes no yes yes no –∗∗ mixed partial
(Charniak and Goldman, 1993) no no –∗ yes no –∗∗ –∗/disc. full
(Kautz and Allen, 1986) no no –∗ yes no –∗∗ –∗/disc. full

Table 5: Assumptions in papers for plan recognition methods. ∗Does not model environment states. ∗∗Does not define
move order between agents.

graph-based methods for domains specified in extensions of the STRIPS language. Both methods
construct graph structures based on the domain model and observed actions, and utilise this
structure to find a subset of goals which are consistent with the observed actions.

4.4.3. Plan Recognition by Similarity to Past Plans
Plan hypotheses may also be generated based on similarity to past observed plans. This idea

was explored in the context of case-based reasoning methods for plan recognition (Kerkez and
Cox, 2003; Fagan and Cunningham, 2003; Baré et al., 1994). For example, Kerkez and Cox
(2003) represent a plan as a sequence of environment states and actions in each state. Given the
current state, a history of observed actions, and a case base consisting of previously observed
plans, the recognition task is to retrieve plans from the case base which are similar to the current
situation. One way to define similarity is by using state abstractions whereby states that share
certain properties are grouped together. A useful property of this approach is that the plan library
(case base) does not need to be fully specified ahead of time and can be expanded after new

22

plans have been observed. (See also Section 4.1.2 for case-based reasoning methods for policy
reconstruction.) Tian et al. (2016) formulate plan recognition as a problem of sentence completion
in natural language processing. A sentence (plan) is a sequence of words (actions), and the
corpus (plan library) consists of previously seen sentences. Based on the corpus, natural language
processing methods are used to learn probability distributions for how words may surround other
words. An incomplete sentence (plan) can then be completed by filling the missing words such that
the overall probability of the resulting sentence is maximised. (See also Geib and Steedman (2007)
for a discussion of the connections between plan recognition and natural language processing.)
Albrecht et al. (1998, 1997) seek to recognise what “quest” a player is pursuing in an online
adventure game, for which they use a dynamic Bayesian network (Dean and Kanazawa, 1989)
whose parameters are learned using a corpus of historical play data. Similarly, Gold (2010) trains
an Input-Output Hidden Markov Model (Bengio and Frasconi, 1995) to predict a player’s goal in
an action-adventure game. Closely related is the work of Blaylock and Allen (2004, 2003), who
compute goal probabilities as a product of conditional action probabilities which are learned using
a corpus of observed plan executions. This work was later extended to recognise hierarchical
sub-goals (Blaylock and Allen, 2006).

4.5. Recursive Reasoning
Autonomous agents often base their decisions on explicit beliefs about the state of the envi-

ronment and, possibly, the mental states of other agents. The mental states of other agents may, in
turn, also contain beliefs about the environment and mental states of other agents. This nesting of
beliefs leads to a possibly infinite reasoning process of the form “I believe that you believe that I
believe...”. While the modelling methods discussed in the previous sections do not model such
nested beliefs, methods of recursive reasoning use explicit representations of nested beliefs and
“simulate” the reasoning processes of other agents to predict their actions.

Game theorists first addressed infinitely nested beliefs in the context of incomplete information
games, in which some components of the game (such as players’ payoff functions) are not common
knowledge (Harsanyi, 1962). In Bayesian games (Harsanyi, 1967), an early precursor of type-based
reasoning (see Section 4.2), the infinite regress is resolved by assuming that the private elements
of players are drawn from a distribution that is common knowledge. While this assumption allows
for an elegant equilibrium analysis (Harsanyi, 1968b), creating such a setting is rather impractical
when designing an autonomous agent that is interacting with unknown other agents. Recursive
reasoning methods follow a more direct approach by approximating the belief nesting down to a
fixed recursion depth. As a prototypical example, assume agent A is modelling another agent B. In
order to choose an action, A predicts the next action of B by simulating the decision making of B
given what A believes about B. This requires a prediction of A’s next action from B’s perspective,
given what A believes B to believe about A, and so on. The recursion is terminated at some
predetermined depth by fixing the action prediction to some probability distribution, e.g. uniform
probabilities. The prediction at the bottom of this recursion is passed up to the above recursion
level to choose an optimal action at that level, which in turn is passed to the next higher level, and
so on, until agent A can make its actual choice at the beginning of the recursion. Note that the
recursion assumes that each agent believes to have more sophisticated (deeper) beliefs than the
other agent. Another central assumption is that each agent assumes the other agent to be rational11

in that it will choose optimal actions with respect to its beliefs.

11We already saw instances of this rationality assumption in utility reconstruction (Section 4.1.4) and some approaches
for plan recognition (Section 4.4).

23

The method proposed by Carmel and Markovitch (1996a) implements the recursion outlined
above for game tree search in games with alternating moves. Here, an agent model specifies the
agent’s evaluation function for game states as well as the evaluation function the agent believes
its opponent to use, and so on. As the authors point out, the well-known minimax algorithm for
zero-sum games (Campbell and Marsland, 1983) is a special case of this method in which the
evaluation function of the opponent is simply the negative of one’s own function. The “Recursive
Modeling Method” (RMM) (Gmytrasiewicz and Durfee, 2000, 1995; Gmytrasiewicz et al., 1991)
also implements the above recursion, with the added complexity that agents may be uncertain
about the exact model of other agents, such as their payoff function and recursion depth. In the
above example, agent A has additional probabilistic beliefs about the possible models of agent
B. During the recursion, A has to predict B’s action under each possible model, adding an extra
branching factor to the recursion. The resulting predictions are then weighted by the probabilities
in A’s beliefs about B’s models. Gmytrasiewicz et al. (1998) also show how these beliefs can
be updated after new observations, which involves the recursive updating of the beliefs of other
agents, such that A updates its own belief about B’s models, and B’s expected belief about A’s
possible models, and so on. Vidal and Durfee (1995) show how the recursion in RMM can be
made more efficient by pruning branches in the recursion tree which are expected to have no or
minimal influence on the final choice of the agent.

RMM is the precursor of the Interactive POMDP (I-POMDP) (Gmytrasiewicz and Doshi,
2005). In a POMDP (Sondik, 1971), an agent makes sequential decisions based on its belief about
the state of the environment, which is represented as a probability distribution over possible states
and updated based on incomplete and uncertain observations. I-POMDPs modify POMDPs by
adding model spaces to the environment state, such that an agent has beliefs about the environment
state and the models of other agents. Agent models are categorised into “sub-intentional” and
“intentional” models. A sub-intentional model defines any non-recursive mapping from observation
histories to action probabilities, such as the finite state automata used in the work of Panella and
Gmytrasiewicz (2017). In contrast, intentional models are themselves defined as I-POMDPs with
beliefs about the environment and models of other agents. I-POMDPs are solved via a finite
recursion as outlined above: To choose an optimal action, agent A has to solve the I-POMDP
of agent B for each of its intentional models, which in turn requires solving the I-POMDP of
agent A for each model ascribed to A by B, and so on, down to some fixed recursion depth. At
the bottom of the recursion are standard POMDPs in which other agents are treated as “noise” in
the transition and observation dynamics. These POMDPs can be solved directly using existing
methods (Kaelbling et al., 1998) and their solutions are passed up the recursion tree. Several exact
and approximate solution methods for I-POMDPs have been proposed, including methods based
on model equivalence (Rathnasabapathy et al., 2006), particle filtering (Doshi and Gmytrasiewicz,
2009), value iteration (Doshi and Perez, 2008), policy iteration (Sonu and Doshi, 2015), and
structural problem reduction (Hoang and Low, 2013). Ng et al. (2012) propose an even more
complex modification of I-POMDPs in which agents are also uncertain about the transition and
observation models of the environment.

An alternative to quantitative (probabilistic) representations of uncertainty (as used in RMM
and I-POMDPs) are qualitative belief representations based on logics, such as dynamic epistemic
logic (DEL) (Bolander and Andersen, 2011; Löwe et al., 2010). Epistemic logics are characterised
by a knowledge operator Kiφ (or Biφ) which expresses that agent i “knows” (or “believes”) the
formula φ. For example, KiK jKiφ corresponds to “agent i knows that agent j knows that agent i
knows φ”. The semantics of Kiφ are defined such that it holds true if φ is true in all world states
that agent i believes the world may be in. The dynamic aspect of DEL is given by event operators

24

Paper Agents Environment

Stoc
ha

sti
c

ac
tio

ns
?

Cha
ng

ing

be
ha

vio
ur?

Fac
tor

s

kn
ow

n?
Ind

ep
en

de
nt

ag
en

ts? Com
mon

go
als

?
M

ov
e ord

er

Stat
e/a

cti
on

rep
res

en
tat

ion

Stat
e/a

cti
on

ob
ser

va
bil

ity

(de Weerd et al., 2017) yes no yes yes no altern. discrete full
(Kominis and Geffner, 2015) no no yes yes no simult. discrete partial
(Muise et al., 2015) no no yes yes no simult. discrete partial
(Sonu and Doshi, 2015) yes yes yes yes no simult. discrete partial
(de Weerd et al., 2013) yes no yes yes no simult. discrete full
(Hoang and Low, 2013) yes yes yes yes no simult. discrete partial
(Ng et al., 2012) yes yes yes yes no simult. discrete partial
(Bolander and Andersen, 2011) no no yes yes no simult. discrete partial
(Löwe et al., 2010) no no yes yes no simult. discrete partial
(Doshi and Gmytrasiewicz, 2009) yes yes yes yes no simult. discrete partial
(Doshi and Perez, 2008) yes yes yes yes no simult. discrete partial
(Ghaderi et al., 2007) no no yes yes yes altern. discrete partial/full
(Rathnasabapathy et al., 2006) yes yes yes yes no simult. discrete partial
(Gmytrasiewicz and Doshi, 2005) yes yes yes yes no simult. discrete partial
(Camerer et al., 2004) yes no yes yes no simult. discrete full
(Van Der Hoek and Wooldridge, 2002) no no yes yes no simult. discrete partial
(Gmytrasiewicz and Durfee, 2000, 1995) yes no yes yes no –∗ discrete –∗∗

(Gmytrasiewicz et al., 1998) yes no yes yes no –∗ discrete partial
(Carmel and Markovitch, 1996a) no no yes yes no altern. discrete full
(Vidal and Durfee, 1995) yes no yes yes no –∗ discrete –∗∗

(Gmytrasiewicz et al., 1991) yes no yes yes no –∗ discrete –∗∗

Table 6: Assumptions in papers for recursive reasoning methods. ∗No explicit move order defined. ∗∗No explicit observation
model used.

(actions) that can modify ontic and epistemic facts in the world via pre/post-conditions, similar to
other planning languages such as STRIPS (Fikes and Nilsson, 1971). Several planning methods
have been proposed that use such epistemic logics. Muise et al. (2015) and Kominis and Geffner
(2015) both propose methods that solve epistemic planning problems using classical planning
algorithms. Van Der Hoek and Wooldridge (2002) solve epistemic planning problems using model
checking algorithms. Ghaderi et al. (2007) propose a framework based on the situation calculus
(McCarthy and Hayes, 1969) for reasoning about beliefs and coordination in agent teams.

Given the belief nesting, an important question is how deep the recursion should be to achieve
a robust interaction with humans and other agents. This question has been addressed extensively
by researchers in behavioural game theory and experimental psychology (Camerer et al., 2015;
Goodie et al., 2012; Wright and Leyton-Brown, 2010; Yoshida et al., 2008; Camerer et al.,
2004; Hedden and Zhang, 2002). For example, Camerer et al. (2004) develop a simple recursive
reasoning model in which an agent at recursion level k has probabilistic beliefs regarding what
level k′ < k the other agent uses. The beliefs are assumed to be correct, in that they are derived
from a population distribution over recursion depths which is represented as a Poisson distribution.
After “fitting” the model based on a large corpus of human play data, the authors find that humans
reason on average at depth 1.5, i.e. one or two levels down the recursion. In addition to experiments
with humans, some research pitted artificial recursive reasoning agents against each other to see
what reasoning depths are most useful. For example, de Weerd et al. (2017, 2013) test their specific
agents in domains such as repeated rock-paper-scissors and sequential negotiation, and find that
reasoning levels deeper than 2 do not provide significant benefits in their setting.

25

4.6. Graphical Models
The modelling methods discussed in the previous sections are based on rather abstract for-

mulations of multiagent systems, in which much of the system’s structure is left implicit. For
example, a common formulation describes an environment which at any time is in some abstract
state s, and transition probabilities between states are specified by some function T (s, a, s′) where
a is a tuple containing the agents’ actions. In addition, an agent’s utility is commonly defined as a
general function u(s, a) that depends on the state and joint action. What is left implicit in such
formulations are the precise relations between the state components s = (s1, ..., sm) (e.g. some
components may depend on other components); how state components interact with the agents’
decisions a = (a1, ..., an) (e.g. some agents may disregard certain components in their decisions);
and the precise dependencies of utilities on state components and actions (e.g. an agent’s utility
may depend on the actions of some agents but not on others).

Graphical models make such dependencies explicit by using graph representations of multia-
gent systems. The advantage of making this structure explicit is that, if the interaction is only over
a short horizon,12 it can lead to compact models and more efficient algorithms, similarly to how
Bayesian networks exploit conditional independence relations for compactness and efficient in-
ference (Koller and Friedman, 2009; Pearl, 1988). Moreover, graphical models can be used as
detailed mental models of how other agents may view the interaction.

The basic building block of many graphical models is the “Influence Diagram” (ID) (Howard
and Matheson, 2005, 1984). An ID is a graphical representation of a single-agent decision problem.
IDs use three types of nodes: chance nodes, which describe the components in the environment
state; decision nodes, whose values the agent has to choose; and utility nodes, which determine the
agent’s utilities. Directed edges between nodes indicate dependence relations, e.g. the parent nodes
of a decision node constitute the information that is used by the agent for that particular decision.
A solution to an ID is a set of optimal decision rules, one for each decision node, which specify
action probabilities for each input to the decision nodes (Shachter, 1986). Given a set of decision
rules, an ID can be reduced to a normal Bayesian network by replacing each decision node with a
chance node whose conditional probabilities are specified by the corresponding decision rule. One
can then use standard inference algorithms (Pearl, 1988) to compute a variety of queries, such
as expected utilities and the probability of certain events. The “Multi-Agent Influence Diagram”
(MAID) (Koller and Milch, 2003) extends IDs by assigning each decision and utility node to
one of several agents. Graphical games (Vickrey and Koller, 2002; Kearns et al., 2001; La Mura,
2000) can be viewed as a special type of MAID that have only decision and utility nodes. These
works on MAID and graphical games show how the graph structure can be exploited for efficient
computation of Nash equilibrium solutions (Nash, 1950).

Graphical models, such as IDs and MAIDs, can be used by an agent to model the decision
making and domain conceptualisation of other agents. For example, an existing parent relation
between a chance node X and a decision node D encodes the belief that the modelled agent
incorporates X in its decision for D; conversely, the absence of such a relation encodes the belief
that the modelled agent does not account for X in its decision for D (or not directly). Several
works have used graphical models for such mental representations of other agents. Suryadi and
Gmytrasiewicz (1999) use IDs to model the capabilities, beliefs, and preferences of other agents.

12Graphical models can represent sequential interactions by adding additional nodes for each time step in the interaction,
as well as dependencies between nodes in different time steps (Jensen and Nielsen, 2011). Unfortunately, this approach
does not scale efficiently with the number of time steps (e.g. Doshi et al., 2009; Gal and Pfeffer, 2003b).

26

Paper Agents Environment

Stoc
ha

sti
c

ac
tio

ns
?

Cha
ng

ing

be
ha

vio
ur?

Fac
tor

s

kn
ow

n?
Ind

ep
en

de
nt

ag
en

ts? Com
mon

go
als

?
M

ov
e ord

er

Stat
e/a

cti
on

rep
res

en
tat

ion

Stat
e/a

cti
on

ob
ser

va
bil

ity

(Cadilhac et al., 2013) yes no yes yes no altern. discrete partial/full
(Zeng and Doshi, 2012) yes yes yes yes no simult. discrete partial
(Doshi et al., 2010, 2009) yes yes yes yes no simult. discrete partial
(Gal and Pfeffer, 2008) yes yes yes yes no simult. discrete partial
(Nielsen and Jensen, 2004) yes yes yes yes no –∗∗∗ discrete full
(Gal and Pfeffer, 2003a) yes yes yes yes no simult. discrete partial
(Koller and Milch, 2003) yes no∗ yes yes no simult. discrete partial/–∗

(Vickrey and Koller, 2002) yes no∗ yes yes no simult. –∗∗/disc. –∗∗/–∗

(Kearns et al., 2001) yes no∗ yes yes no simult. –∗∗/disc. –∗∗/–∗

(La Mura, 2000) yes no∗ yes yes no simult. –∗∗/disc. –∗∗/–∗

(Milch and Koller, 2000) yes no yes yes no –∗∗∗ discrete partial
(Chajewska et al., 2000) yes no yes yes no altern. mixed partial/full
(Suryadi and Gmytrasiewicz, 1999) yes yes yes yes no simult. discrete full

Table 7: Assumptions in papers for graphical methods. ∗Does not model repeated interactions. ∗∗Does not model environ-
ment states. ∗∗∗Does not define move order.

They show how the parameters of an ID may be modified to reflect the observed behaviour of
an agent, focusing on learning the agent’s preferences by modifying the utility nodes in the ID.
Nielsen and Jensen (2004) also propose methods to learn the utility function in an ID for an
observed agent. They relax the usual rationality assumption, which requires that the agent choose
actions to strictly optimise its utilities, by allowing for random deviations from optimality. Milch
and Koller (2000) define a probabilistic epistemic logic (cf. Section 4.5) to represent and infer
the beliefs of agents, and use IDs to derive an agent’s decision rules given its inferred beliefs and
assuming the agent is rational. Cadilhac et al. (2013) use conditional preference (CP) networks
(Boutilier et al., 2004) to model the preferences of players based on their negotiation dialogues.
The resulting CP-nets are used to predict the players’ actions by computing an equilibrium
solution over the preferences encoded by the CP-nets. Chajewska et al. (2000) use IDs to represent
the preferences of patients in a clinical trial and propose an algorithm for effective preference
elicitation, which is the problem of deciding what questions to ask patients to obtain additional
information about their preferences.

Graphical models can also represent uncertainty over multiple hypothesised models of other
agents (as in type-based reasoning; see Section 4.2) and nested beliefs (as in recursive reasoning;
see Section 4.5). “Networks of Influence Diagrams” (NIDs) (Gal and Pfeffer, 2008, 2003a) achieve
this as follows: A NID is a single-rooted graphical model in which each node is a MAID. The root
node of a NID represents the perspective of the modelling agent, and directed edges A → j,D B
indicate that the agent whose view is represented by the MAID in node A believes that agent j uses
the MAID in node B to make some decision D. If multiple such edges exist for the same agent j
and decision D, then the MAID in A may contain a new chance node specifying the probabilistic
belief of the modelling agent for each edge. The MAID in node B may contain beliefs about other
agents, and cycles in a NID are used to represent recursive reasoning. NIDs are solved by first
solving the leaves of the NID, which are normal MAIDs that can be solved with existing methods
(Koller and Milch, 2003). The solutions are decision rules for the decision nodes, which are passed
to the parents in the NID, transforming them into MAIDs that can be solved, and so forth. A

27

related model is the “Interactive Dynamic ID” (I-DID) (Doshi et al., 2009) which was designed as
a graphical representation of I-POMDPs (Gmytrasiewicz and Doshi, 2005) (cf. Section 4.5). In
contrast to NIDs, which compute equilibrium solutions for a set of agents, I-DIDs are designed
for subjective decision making of a single agent in a system containing multiple agents. This
means that I-DIDs do not represent the decisions of other agents as decision nodes (as in MAIDs)
but rather as chance nodes whose conditional probabilities are governed by the possible models
ascribed to the agents, which may themselves be I-DIDs. Models and uncertainties over models
are represented in a new “model node”. I-DIDs represent temporal relations between nodes by
“unrolling” the network for each time step in the interaction, such that edges between nodes in
successive time steps indicate temporal dependencies (similar to dynamic Bayesian networks;
Dean and Kanazawa (1989)). To manage the exponential growth of possible agent models after
new observations, methods have been proposed which cluster behaviourally similar models (Zeng
and Doshi, 2012; Doshi et al., 2010, 2009).

4.7. Group Modelling
Most methods surveyed in the earlier sections use models that make predictions about a single

agent, following the agent model shown in Figure 1. For methods that predict an agent’s actions,
such as policy reconstruction (Section 4.1), type-based reasoning (Section 4.2), and recursive
reasoning (Section 4.5), modelling single agents is predicated on the assumption that agents
choose actions independently from each other, as defined in Section 3. Thus, many papers proceed
by explaining their methods for a single agent, with the underlying idea that the same method can
be used to maintain separate models for each other agent. Note that this separation does not mean
that agents ignore each other, since the models may base their predictions on the observed actions
of other agents. Nonetheless, there are important cases in which it may be preferable to use group
models which make joint predictions about a group of agents.

One such case is when agents have significant randomisation and correlation in their action
choices (cf. Section 3), which cannot be captured by independent models. An example of this case
is the concept of correlated equilibrium (Aumann, 1974), which generalises the Nash equilibrium
by defining the equilibrium as a joint distribution over agents’ actions rather than independent
distributions. Many of the existing methods for policy reconstruction and type-based reasoning
can be used to learn such action correlations, essentially by combining all other agents into a
single agent whose action space is the Cartesian product of the agents’ actions. This approach
allows a model to capture action correlations by making predictions about the joint probability of
actions. However, this approach may scale poorly since the action space of the “combined agent”
grows exponentially in the number of combined agents and actions. A middle-path is to partition
the other agents into smaller groups such that there is high expected correlation within groups but
only little or no correlation between groups (an approach commonly used in probabilistic state
estimation, e.g. Albrecht and Ramamoorthy, 2016; Boyen and Koller, 1998). The modelling agent
can then use separate group models for each group.

Even when there is no significant randomisation in action choices, group models can often be
more efficient and accurate by exploiting additional structure in the group. In particular, agent
groups may act as teams which utilise structure such as roles within teams, dynamic formation
of subteams, “divide-and-conquer” division of goals into sub-goals, as well as predefined joint
plans and communication protocols (Stone and Veloso, 1999; Tambe, 1997; Grosz and Kraus,
1996; Cohen and Levesque, 1991). Knowledge of such structure can be used by group models to
effectively limit the search space. For example, the behaviours of agents in a coordinated team,
when observed in isolation, may not be very informative (and even possibly misleading) as to the

28

intended goals of the agents. However, when the same behaviours are interpreted in the context of
a team, they may give important clues as to the goal and plan of the team (Tambe, 1996). In this
spirit, a number of methods have been proposed which model teams rather than individual agents.

Section 4.3 already surveyed several works which use classification methods to identify teams
and team strategies (Bombini et al., 2010; Laviers et al., 2009; Iglesias et al., 2008; Sukthankar and
Sycara, 2007; Steffens, 2004b; Riley and Veloso, 2000). In addition, methods have been developed
which model the physical formation and movement patterns of teams. Erdogan and Veloso (2011)
use a hierarchical clustering method to extract clusters of similar movement trajectories from log
data in the small size multi-robot league of RoboCup. During a game, the method observes an
incomplete trajectory from the opponent team and classifies it into one of the extracted clusters,
which allows it to predict future movements and compute counter-strategies. (Riley and Veloso,
2002) propose a method for simulated robot soccer which uses a predefined set of opponent models
that specify probabilities of field positions for each player in the opponent team, given their initial
positions and ball movements. Starting with a prior distribution over models, Bayesian updates are
performed after new movement observations and the most probable model is used in the planning
stage. Lattner et al. (2005) also consider simulated robot soccer and use unsupervised symbolic
learning to extract movement patterns from observations. Kuhlmann et al. (2006) propose a
method for the RoboCup simulated coach competition which can classify “patterns” (defined as
exploitable weaknesses in an opponent team’s strategy) by extracting feature vectors that include
formation statistics, and comparing them to previously learned models from log data.

While the above methods learn and use models of opponent teams, an agent may also need to
model its own team. This is important in problems of ad hoc (or impromptu) teamwork (Stone
et al., 2010; Bowling and McCracken, 2005), in which an agent has to collaborate “on the fly”
with an established but previously unknown team, without opportunities for prior coordination
with the team members. Bowling and McCracken (2005) consider such a setting in the context of
robot soccer, in which the team uses “plays” from a set of predefined plays, called the playbook.
Each play specifies roles for the agents in the team along with sequences of synchronised actions
for each role, as well as applicability and termination conditions for the play. A pickup player
joins an established team but is not informed about the currently used plays nor its role in the
plays. Assuming that the pickup player has access to a playbook, its task is to find the correct plays
and its role within the plays. One proposed method to achieve this task is to compute a matching
score for each play based on how well the play matches the observed actions in the team, and to
select the play that has the highest matching score. Barrett and Stone (2015) consider a similar
setting in the Half-Field Offense domain (Hausknecht et al., 2016) and use reinforcement learning
to learn optimal collaboration policies for the pickup player in a range of previously encountered
teams. During a new game, the pickup player uses the optimal policy for the past team which is
most similar to the new team. Bayesian probabilities are calculated to quantify similarity between
past teams and the new team, using models of past teams which predict transition probabilities
between observed game states.

In addition to a large body of work on plan recognition for single agents (cf. Section 4.4),
there is a growing body of work on multiagent plan recognition in which the modelling agent
attempts to infer the goals and plans of an entire team of agents. Thus, plan libraries specify team
plans that utilise additional structure such as roles within teams and division into subteams. Tambe
(1996) extends a previous method (Tambe and Rosenbloom, 1995, cf. Section 4.4.1) by using a
hierarchical team plan library. Teams can be divided into subteams which must be assigned to
exactly one role in the team. Similar to the original method, the new method quickly commits
to a single plan hypothesis and repairs inconsistencies via backtracking in the plan hierarchy.

29

Paper Agents Environment

Stoc
ha

sti
c

ac
tio

ns
?

Cha
ng

ing

be
ha

vio
ur?

Fac
tor

s

kn
ow

n?
Ind

ep
en

de
nt

ag
en

ts? Com
mon

go
als

?
M

ov
e ord

er

Stat
e/a

cti
on

rep
res

en
tat

ion

Stat
e/a

cti
on

ob
ser

va
bil

ity

(Barrett and Stone, 2015) yes no yes no yes simult. contin./disc. full/–∗

(Zhuo et al., 2012) no no yes no no simult. discrete partial
(Banerjee and Kraemer, 2011) no no yes no no simult. –∗∗/discrete partial
(Erdogan and Veloso, 2011) yes no yes yes no simult. contin. full/–∗

(Zhuo and Li, 2011) no no yes no no simult. –∗∗/discrete partial
(Banerjee et al., 2010) no no yes no no simult. –∗∗/discrete full
(Sukthankar and Sycara, 2008) no no yes no no simult. –∗∗/discrete partial
(Kuhlmann et al., 2006) yes no yes no no simult. contin. full/–∗

(Bowling and McCracken, 2005) no yes yes no yes simult. contin. full/–∗

(Lattner et al., 2005) yes no yes no no simult. contin. full/–∗

(Saria and Mahadevan, 2004) yes no yes mixed∗∗∗ yes simult. discrete partial
(Kaminka et al., 2002b) yes no yes mixed yes simult. –∗∗/discrete partial
(Riley and Veloso, 2002) yes no yes yes no simult. discrete full/–∗

(Tambe, 1996) no no yes no no simult. mixed/disc. full

Table 8: Assumptions in papers for group modelling. ∗Actions are not directly observed. ∗∗Does not define environment
states. ∗∗∗Actions may be correlated in team (joint) policies and independent in the lower (individual) policies.

Saria and Mahadevan (2004) propose an extension of the abstract hidden Markov model (Bui
et al., 2002, cf. Section 4.4.1) in which top-level joint policies for the team select lower-level
policies for individual agents which are executed in a decentralised way. The proposed method
proceeds similarly to the original work by defining the plan inference based on dynamic Bayesian
networks and using particle filtering to perform the inference. Sukthankar and Sycara (2008)
use a hierarchical plan library specified with AND/OR trees similar to the model of Geib and
Goldman (2009) (cf. Section 4.4.1), with extra elements to specify the number of agents needed
to commence a plan and special nodes in plan trees to generate and resolve subteams. The authors
show how this additional structure can be utilised to prune the search space in the recognition
task. Kaminka et al. (2002b) propose a method which infers a team’s current plan based on
overheard communications between team members, using plan and team hierarchies. Banerjee
et al. (2010) show NP-completeness in a restricted version of multiagent plan recognition, in
which team plans are defined as matrices that specify a sequence of synchronised actions for a
subset of agents. This work was subsequently extended to allow for interleaved plan execution
and incomplete observation traces (Banerjee and Kraemer, 2011). Zhuo and Li (2011) consider
a similar formulation to Banerjee et al. (2010) but allow for partial observations. The proposed
method frames the plan recognition problem as a satisfiability problem by automatically generating
a set of constraints from the plan library and observations, which are solved using a MAX-SAT
solver. In later work, Zhuo et al. (2012) propose a similar SAT-based recognition approach using
action specifications in the STRIPS planning language rather than matrix-based plan libraries.

4.8. Other Relevant Methods
In this section we briefly discuss several other relevant methods, namely implicit modelling,

hypothesis testing for agent models, and safe best-response methods.

30

4.8.1. Implicit Modelling
This survey focused on explicit modelling of other agents, in which agent models implement

the mapping shown in Figure 1. In contrast, implicit modelling does not produce explicit models
of other agents, but implicitly encodes aspects of other agents (such as their behaviours) in other
structures or reasoning processes. For example, “expert” algorithms, which learn to follow the
best expert policy from a given set of such policies (e.g. Crandall, 2014; de Farias and Megiddo,
2004), can be viewed as implicit modelling in that each expert policy may be optimal against a
particular opponent and, thus, implicitly encode the opponent’s behaviour without making explicit
predictions about that opponent. Implicit modelling based on expert algorithms has been shown to
be effective in variants of Poker (Bard et al., 2013; Hoehn et al., 2005). Other examples of implicit
modelling include learning logical action descriptions in the context of other agents (Illobre et al.,
2010; Guerra-Hernández et al., 2004); modelling other agents as part of the MDP transition
dynamics (Hernandez-Leal et al., 2017); and using opponent features in a neural network to learn
expected action utilities (He et al., 2016). A potential advantage of implicit modelling is that it may
more naturally exploit synergies between modelling and planning by merging the two processes.
Advantages of explicit modelling are that the models are decoupled from the planning and may
thus be used by different planning algorithms, and that explicit models are more amenable to
direct inspection. It is also possible to combine these two forms of modelling, e.g. Albrecht et al.
(2015a) combine expert algorithms with type-based reasoning (cf. Section 4.2).

4.8.2. Hypothesis Testing for Agent Models
Agent models may make incorrect or inaccurate predictions. This is one of the main motiva-

tions of type-based reasoning methods (Section 4.2), which consider a set of alternative models
and compute Bayesian posteriors to find the most accurate model. However, such Bayesian meth-
ods generally cannot tell us about the correctness of models, since the posteriors quantify a relative
likelihood of models but not absolute truth. Thus, even if all probability points to one model, that
model may still be almost arbitrarily incorrect in that it merely has to support the observations,
i.e. assign non-zero probabilities. An alternative approach is to view a model as a hypothesis and
to decide, based on the observations, whether or not to reject the model. For agent models that
predict actions, this question can be decided using methods for statistical hypothesis testing. For
example, agents have been proposed which maintain models of action frequencies of other agents
and conduct hypothesis tests over these models by comparing their predicted action probabilities
with the average action frequencies over some window of past actions (Chakraborty and Stone,
2014; Conitzer and Sandholm, 2007; Foster and Young, 2003). Albrecht and Ramamoorthy (2015)
propose an efficient sampling-based algorithm which uses “score functions” to compute test statis-
tics from observations and learns the test distribution during the interaction, based on which a
frequentist hypothesis test is performed. Given such methods, if an agent persistently rejects a
model, it may decide to change the model (e.g. by using a different learning method) or to resort to
some kind of default policy such as a minimax strategy (Von Neumann and Morgenstern, 1944).

4.8.3. Using Models Safely
An agent can utilise models of other agents by incorporating the models’ predictions into the

agent’s planning process. For example, if a model predicts the actions of another agent, then these
predictions can be used directly by a planner to evaluate different courses of actions, resulting
in an action policy that is strictly optimised with respect to the model. A potential problem with
this approach is that the computed policy may be exploitable by other agents if the used agent
models are inaccurate. To address this issue, several methods have been proposed which compute

31

Paper Agents Environment

Stoc
ha

sti
c

ac
tio

ns
?

Cha
ng

ing

be
ha

vio
ur?

Fac
tor

s

kn
ow

n?
Ind

ep
en

de
nt

ag
en

ts? Com
mon

go
als

?
M

ov
e ord

er

Stat
e/a

cti
on

rep
res

en
tat

ion

Stat
e/a

cti
on

ob
ser

va
bil

ity

(Hernandez-Leal et al., 2017) yes yes yes yes no simult. discrete full
(He et al., 2016) yes no∗∗∗ yes no no simult. mixed full
(Albrecht and Ramamoorthy, 2015) yes yes no yes no –∗ mixed/disc. full
(Albrecht et al., 2015a) yes no yes yes no simult. discrete full
(Bard et al., 2013) yes no no yes no altern. discrete partial/full
(Wang et al., 2011) yes yes yes yes no simult. discrete full
(Illobre et al., 2010) no no yes yes no simult. mixed/disc. full
(Johanson and Bowling, 2009) yes no no yes no altern. discrete partial/full
(Johanson et al., 2008) yes no no yes no altern. discrete partial/full
(Conitzer and Sandholm, 2007) yes yes yes yes no simult. –∗∗/discrete full
(Hoehn et al., 2005) yes no no yes no altern. discrete partial/full
(Markovitch and Reger, 2005) no no no yes no simult. discrete full
(McCracken and Bowling, 2004) yes yes no yes no simult. –∗∗/discrete full
(Guerra-Hernández et al., 2004) no yes no yes no –∗ discrete full
(Foster and Young, 2003) yes yes no yes no simult. –∗∗/discrete full
(Stone et al., 2000) yes no no yes no simult. mixed/disc. partial
(Carmel and Markovitch, 1996b) no no yes yes no altern. discrete full

Table 9: Assumptions in papers for other relevant methods. ∗Does not define move order. ∗∗Does not define environment
states. ∗∗∗Modelled agent may change behaviour between episodes but not during episode.

“safe” (or “robust”) best-response policies to models. These methods often use a parameter of
the form δ ∈ [0, 1] which regulates a tradeoff between safety and exploitability, such that one
extreme corresponds to strict optimisation with respect to the agent models (optimal if models
correct, but exploitable otherwise) and the other extreme corresponds to choosing a safe policy
which may not achieve optimal performance but is less exploitable (e.g. minimax). For example,
Wang et al. (2011) model an opponent as a space of models in the proximity of the empirical
frequency model, with distance bounded by δ, and compute a best-response against the worst-case
model from this space. Other examples of safe/robust best-response methods include the works of
Johanson and Bowling (2009); Johanson et al. (2008); McCracken and Bowling (2004); Carmel
and Markovitch (1996b). A related idea is the use of “ideal” agent models (Stone et al., 2000). For
example, Markovitch and Reger (2005) propose to learn the weaknesses of an opponent, which
are defined as states in which the opponent deviates from some ideal “teacher” policy.

5. Open Problems

We conclude our survey by discussing nine open problems which we believe have not been
sufficiently addressed in the literature and may provide fruitful avenues of future research.

5.1. Synergistic Combination of Modelling Methods

This survey has outlined a landscape of methodologies, each with their individual purposes,
strengths, and weaknesses. An interesting and relatively unexplored question is how these methods
might be combined to complement their strengths and weaknesses. As an example, type-based
reasoning methods have been combined with policy reconstruction methods, where the former
allow for fast initial adaptation while the latter generate new types during the interaction (Albrecht

32

and Ramamoorthy, 2013; Barrett et al., 2011). These examples use a modular combination, by
encapsulating the policy reconstruction methods into a special kind of type. In the long-term, an
important question is whether we can find a single representation and approach that can naturally
generate various modelling capabilities, including the ones discussed in this survey, such that
the modelling processes synergistically inform one another. We believe there is much ground for
fertile research investigating such combinations and approaches.

5.2. Policy Reconstruction under Partial Observability
Many domains are characterised by partial observability, in which agents receive incomplete

and uncertain observations about the environment and the actions of other agents (cf. Section 3).
The existence of partial observability can make the modelling task significantly more difficult,
since a modelling agent now has to take into account the possibility of incorrect and/or missing
information. Different symbolic and probabilistic approaches have been proposed to deal with
partial observability, especially in methods for classification, plan recognition, recursive/epistemic
reasoning, and graphical models. However, as can be seen in Table 2, relatively little work exists
on the problem of learning models of agent behaviours (i.e. policy reconstruction) under partial
observability conditions, with most efforts focusing on extensive form games with incomplete
information (e.g. Poker). Moreover, existing methods often assume that observation probabilities
can be derived via provided domain knowledge (e.g. Panella and Gmytrasiewicz, 2017; Southey
et al., 2005). Thus, additional research is needed for the development of methods which can
effectively reconstruct behaviour models under partial observability, and methods which can deal
with partial observability in the absence of domain knowledge.

5.3. Safe and Efficient Model Exploration
Agents that model other agents can consider the possibility of taking actions so as to explore

certain aspects of the other agents’ behaviours, and in the process gain new information which
may lead to better model predictions. However, such actions may carry a risk in that they may
modify the behaviour of the modelled agents in unintended ways. Although the importance of
safe model exploration was recognised almost 20 years ago (Carmel and Markovitch, 1998a), it
has since received relatively little attention in the community.13 Current solutions are based on
look-ahead exploration to estimate the value of information of available actions (Albrecht et al.,
2016; Chalkiadakis and Boutilier, 2003; Carmel and Markovitch, 1999). However, the exponential
complexity of such methods makes them intractable in complex settings, indicating the need for
new, more efficient approaches for safe model exploration. Closely related areas are active learning
(Settles, 2012), preference elicitation (Boutilier, 2002; Chajewska et al., 2000), and Bayesian
experimental design (Chaloner and Verdinelli, 1995). However, these problems usually assume
that the cost of experiments/queries and their possible outcomes are known beforehand, while in
our case the (long-term) cost of exploratory actions are initially unknown and there may be no
crisp definition of “outcomes”.

5.4. Efficient Discovery of Decision Factors
Closely related to safe model exploration, it remains a significant open question how to

efficiently and effectively discover the relevant factors in an agent’s decision making (cf. Section 3).

13Indeed, the vast majority of current plan recognition methods assume that the modelling agent does not interact at all
with the modelled agents (cf. Section 4.4).

33

Current methods either assume that this knowledge is given, include all possible decision factors
in the model, or engage in an exhaustive combinatorial search to identify the relevant factors (cf.
Section 4.1.1). However, these approaches are bound to be intractable or inefficient in complex,
realistic applications that involve large numbers of decision factors (such as long interaction
histories and high-dimensional state descriptions). Hence, more research is needed to develop
methods which can efficiently discover the relevant decision factors in an agent’s decision making.

5.5. Computationally Efficient Implementations

Modelling methods are part of a larger agent architecture which may include many other
elements, such as modules for perception (e.g. vision, natural language), communication, and plan-
ning. In domains such as commercial video games, the system will in addition have to graphically
render the game world and simulate its physics (Millington and Funge, 2009). All of these addi-
tional elements can be computationally expensive. As a result, the task of modelling other agents
will usually be allocated only a small fraction of the available computational resources. There-
fore, to be useful in practice, modelling methods need highly efficient implementations, similar to
other recent applications (Silver et al., 2016; Bowling et al., 2015). Efficient implementations may
include the use of efficient data structures, parallel computing architectures, and iterative model
updates which process only new observations rather than re-processing past observations. Such
implementation issues have received relatively little attention in the literature, thus additional
research is needed to develop efficient implementations.

5.6. Modelling Changing Behaviours

A common assumption still found in many modelling methods is that the modelled agent,
in particular its behaviour, will not change during the course of the interaction (cf. Section 3).
However, such an assumption is easily violated in applications in which other agents may learn
and adapt, and especially in interactions with humans. Modelling changing behaviours is noto-
riously difficult due to the essentially unconstrained nature of what other agents may do in the
future. Some methods attempt to address this issue by allowing for varying degrees of changing
behaviours, such as that behaviours must converge in the limit (Conitzer and Sandholm, 2007),
that agents may switch periodically between different stationary behaviours (Hernandez-Leal
et al., 2017; Bard and Bowling, 2007), by defining behaviours as blackbox mappings over the en-
tire interaction history (Albrecht et al., 2016), or by prioritising recent observations over past ones
(Albrecht and Ramamoorthy, 2013; Billings et al., 2004). Still, many methods are unable to deal
with changing behaviours, especially methods for classification, plan recognition, and recursive
reasoning. Hence, the design of methods which can effectively learn to identify, track, and predict
changing behaviours remains a significant open problem, one which will be a crucial element in
the quest for full autonomy.

5.7. Modelling with Action Duration

The vast majority of surveyed methods (with the exception of some plan recognition methods;
cf. Section 4.4) assume that actions have instant effects, meaning that actions are completed
immediately after they are taken. Even in domains such as robot soccer, where actions such as
passing the ball from one player to another have durations, current modelling methods work at a
level of abstraction that renders such actions as though they have instant effects (e.g. Bombini
et al., 2010; Kaminka et al., 2002a). It is not clear if existing modelling methods require non-trivial
modification to handle actions with durations, or if this can be addressed sufficiently via such

34

action abstractions. In fact, it is unclear if the notion of action duration may be better viewed as
an issue of activity recognition, which is the task of inferring action labels from state data and
usually takes place at a lower abstraction level than the modelling methods surveyed in this article
(cf. Section 3). Given that many realistic applications involve actions with durations, we believe
that such questions will require further research and clarification.

5.8. Modelling in Open Multiagent Systems

Virtually all of the surveyed works in this article assume closed multiagent systems, in which
the number of agents in the system remains constant throughout the interaction, and all agents begin
the interaction at the same time. This is in contrast to open multiagent systems, in which agents may
enter and leave the system at any time during the interaction, without necessarily notifying other
agents. Many important applications are characterised by such openness, such as ad-hoc wireless
networks (Royer and Toh, 1999) and web-based systems for collaborative computing (Miorandi
et al., 2014). In addition, a fully autonomous agent engaged in lifelong learning (Hawasly and
Ramamoorthy, 2013) may itself enter and leave many multiagent systems. While some works
investigated modelling other agents in open multiagent systems (Chandrasekaran et al., 2016;
Huynh et al., 2006; Rovatsos et al., 2003), it remains a significant open challenge to develop
efficient modelling methods for such systems. Transfer learning, which is the process of reusing
past experiences to improve learning in new tasks, could be a useful element in such methods (e.g.
Barrett et al., 2013).

5.9. Autonomous Model Contemplation and Revision

While the methods discussed in this survey enable an autonomous agent to reason about other
agents in highly sophisticated ways, they do not generally tell the agent if the used methods are
the right ones in any given setting. As a result, it is possible that the agent may use inadequate and
possibly misleading models of other agents, without ever realising it. For example, learning-based
methods for policy reconstruction are usually restricted by the structure of the model (e.g. decision
trees, finite state automata) but do not tell the modelling agent if the model structure is even
capable of capturing an agent’s behaviour. Type-based reasoning can utilise a space of models, but
the Bayesian beliefs do not generally tell an agent if the model space is sufficient. Methods for plan
recognition that use plan libraries suffer from essentially the same limitation (cf. Section 4.4.2). To
detect such insufficiencies, a modelling agent requires the ability to introspectively reason about
the adequacy and correctness of its modelling processes, and ultimately the ability to autonomously
revise its model structures and modelling processes. Statistical hypothesis testing can be used to
reason about the incorrectness of models (cf. Section 4.8.2), but such methods do not tell us why
a model is incorrect and how it may be revised. In fact, it is likely that the conventional notion
of correctness is too strict, and that different notions of adequacy (such as the degree to which a
model allows the modelling agent to complete its task) may be needed. The current generation of
intelligent agents fall short of full autonomy in part because they lack the ability to contemplate
such questions, and we believe there is much research to be done to address these issues.

6. Conclusion

This survey identified seven major methodologies for agents modelling other agents. Surveyed
methods include policy reconstruction, which seeks to reconstruct an agent’s decision making
based on its observed actions; type-based reasoning, which maintains beliefs over a space of

35

alternative decision-making models to identify the most likely models based on observed actions;
classification methods, which use machine learning to predict additional properties of interest
such as behaviour classes and agent identities; plan recognition, which seeks to identify an agent’s
goals and plans using hierarchical action descriptions or domain models; recursive reasoning,
which predicts an agent’s actions by modelling its beliefs and the beliefs it ascribes to other agents;
graphical models, which utilise graph structures to represent detailed dependence relations in an
agent’s decision making; and group modelling, in which models make joint predictions about
a group of agents rather than single agents. We also covered other relevant methods, including
implicit modelling, hypothesis testing for agent models, and safe best-response methods. Finally,
we identified a number of open problems which can provide fertile grounds for future research.
Our survey of the literature shows that there exists a very large body of work on the topic of
agents modelling other agents, broadly addressing questions of algorithmic design, experimental
evaluation, theoretical guarantees, computational complexity, and observational constraints. As
research in artificial intelligence continues to pursue the goal of creating autonomous agents
that interact with other agents to accomplish tasks in complex dynamic domains, we expect to
see continued development towards addressing these questions. Our hope is that this survey
will contribute to this continued development by summarising the current state of research and
exposing important open problems.

Acknowledgements

This survey benefited from comments and suggestions of many colleagues, which we would
like to thank here: Michael Rovatsos, Nolan Bard, Michael Littman, Karl Tuyls, Christopher Geib,
Subramanian Ramamoorthy, Alex Lascarides, Gal Kaminka, and three anonymous reviewers. This
work took place in the Learning Agents Research Group (LARG) at The University of Texas at
Austin. LARG research is supported in part by grants from the National Science Foundation (IIS-
1637736, IIS-1651089, IIS-1724157), Intel, Raytheon, and Lockheed Martin. Stefano Albrecht is
supported by a Feodor Lynen Research Fellowship from the Alexander von Humboldt Foundation.
Peter Stone serves on the Board of Directors of Cogitai, Inc. The terms of this arrangement have
been reviewed and approved by The University of Texas at Austin in accordance with its policy
on objectivity in research.

Appendix A. Clarification for Assumption Tables

Tables 2–9 list assumptions for each surveyed paper in the corresponding sections. Assump-
tions are in the order in which they are discussed in Section 3. The first five assumptions concern
the agents to be modelled and include:

(1) whether they make stochastic or deterministic action choices

(2) whether they have changing or non-changing behaviours

(3) whether their relevant decision factors are a priori known

(4) whether they make independent or correlated action choices

(5) whether they have common or conflicting goals

The last three assumptions concern the environment within which the interaction takes place
and include:

36

(6) the order in which agents take actions (simultaneous, alternating)

(7) the representation used for environment states and actions (discrete, continuous, mixed)

(8) the observability of environment states and actions (full, partial)

For assumptions (7) and (8), we may distinguish between states and actions by using a
“state/action” notation. Additional comments are provided in the table captions.

We note that while many works state all or most of the above assumptions explicitly, there
are also many works which are rather vague about some assumptions. In vague cases, we tried to
infer assumptions based on our understanding of the provided descriptions.

References

Abdul-Rahman, A., Hailes, S., 2000. Supporting trust in virtual communities. In: Proceedings of the 33rd Annual Hawaii
International Conference on System Sciences. IEEE.

Ahmadi, M., Lamjiri, A., Nevisi, M., Habibi, J., Badie, K., 2003. Using a two-layered case-based reasoning for prediction
in soccer coach. In: Proceedings of the International Conference on Machine Learning; Models, Technologies and
Applications. pp. 181–185.

Albrecht, D., Zukerman, I., Nicholson, A., 1998. Bayesian models for keyhole plan recognition in an adventure game.
User Modeling and User-Adapted Interaction 8 (1), 5–47.

Albrecht, D., Zukerman, I., Nicholson, A., Bud, A., 1997. Towards a Bayesian model for keyhole plan recognition in large
domains. In: User Modeling: Proceedings of the Sixth International Conference. Springer, pp. 365–376.

Albrecht, S., Crandall, J., Ramamoorthy, S., 2015a. E-HBA: Using action policies for expert advice and agent typification.
In: AAAI’15 Workshop on Multiagent Interaction without Prior Coordination.

Albrecht, S., Crandall, J., Ramamoorthy, S., 2015b. An empirical study on the practical impact of prior beliefs over policy
types. In: Proceedings of the 29th AAAI Conference on Artificial Intelligence. pp. 1988–1994.

Albrecht, S., Crandall, J., Ramamoorthy, S., 2016. Belief and truth in hypothesised behaviours. Artificial Intelligence 235,
63–94.

Albrecht, S., Liemhetcharat, S., Stone, P., 2017. Special issue on multiagent interaction without prior coordination: Guest
editorial. Autonomous Agents and Multi-Agent Systems 31 (4), 765–766.
URL http://dx.doi.org/10.1007/s10458-016-9358-0

Albrecht, S., Ramamoorthy, S., 2012. Comparative evaluation of MAL algorithms in a diverse set of ad hoc team problems.
In: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems. pp. 349–356.

Albrecht, S., Ramamoorthy, S., 2013. A game-theoretic model and best-response learning method for ad hoc coordination
in multiagent systems. Tech. rep., School of Informatics, The University of Edinburgh.
URL http://arxiv.org/abs/1506.01170

Albrecht, S., Ramamoorthy, S., 2014. On convergence and optimality of best-response learning with policy types in
multiagent systems. In: Proceedings of the 30th Conference on Uncertainty in Artificial Intelligence. pp. 12–21.

Albrecht, S., Ramamoorthy, S., 2015. Are you doing what I think you are doing? Criticising uncertain agent models. In:
Proceedings of the 31st Conference on Uncertainty in Artificial Intelligence. pp. 52–61.

Albrecht, S., Stone, P., 2017. Reasoning about hypothetical agent behaviours and their parameters. In: Proceedings of the
16th International Conference on Autonomous Agents and Multiagent Systems. pp. 547–555.

Albrecht, S. V., Ramamoorthy, S., 2016. Exploiting causality for selective belief filtering in dynamic Bayesian networks.
Journal of Artificial Intelligence Research 55, 1135–1178.

Alonso, E., D’Inverno, M., Kudenko, D., Luck, M., Noble, J., 2001. Learning in multi-agent systems. The Knowledge
Engineering Review 16 (3), 277–284.

Anderson, J., Boyle, C., Corbett, A., Lewis, M., 1990. Cognitive modeling and intelligent tutoring. Artificial Intelligence
42 (1), 7–49.

Aumann, R., 1974. Subjectivity and correlation in randomized strategies. Journal of mathematical Economics 1, 67–96.
Avrahami-Zilberbrand, D., Kaminka, G., 2005. Fast and complete symbolic plan recognition. In: Proceedings of the 19th

International Joint Conference on Artificial Intelligence. pp. 653–658.
Avrahami-Zilberbrand, D., Kaminka, G., 2007. Incorporating observer biases in keyhole plan recognition (efficiently!). In:

Proceedings of the 22nd AAAI Conference on Artificial Intelligence. pp. 944–949.
Avrahami-Zilberbrand, D., Kaminka, G., Zarosim, H., 2005. Fast and complete symbolic plan recognition: Allowing for

duration, interleaved execution, and lossy observations. In: IJCAI’05 Workshop on Modeling Others from Observations.

37

http://dx.doi.org/10.1007/s10458-016-9358-0
http://arxiv.org/abs/1506.01170

Baarslag, T., Hendrikx, M., Hindriks, K., Jonker, C., 2016. Learning about the opponent in automated bilateral negotiation:
a comprehensive survey of opponent modeling techniques. Autonomous Agents and Multi-Agent Systems 30 (5),
849–898.

Baker, C., Saxe, R., Tenenbaum, J., 2009. Action understanding as inverse planning. Cognition 113 (3), 329–349.
Baker, C., Saxe, R., Tenenbaum, J., 2011. Bayesian theory of mind: Modeling joint belief-desire attribution. In: Proceedings

of the Cognitive Science Society. pp. 2469–2474.
Baker, C., Tenenbaum, J., Saxe, R., 2005. Bayesian models of human action understanding. In: Proceedings of the 18th

International Conference on Neural Information Processing Systems. pp. 99–106.
Bakkes, S., Spronck, P., van Lankveld, G., 2012. Player behavioural modelling for video games. Entertainment Computing

3 (3), 71–79.
Banerjee, B., Kraemer, L., 2011. Branch and price for multi-agent plan recognition. In: Proceedings of the 25th AAAI

Conference on Artificial Intelligence. pp. 601–607.
Banerjee, B., Kraemer, L., Lyle, J., 2010. Multi-agent plan recognition: Formalization and algorithms. In: Proceedings of

the 24th AAAI Conference on Artificial Intelligence. pp. 1059–1064.
Banerjee, D., Sen, S., 2007. Reaching pareto-optimality in prisoner’s dilemma using conditional joint action learning.

Autonomous Agents and Multi-Agent Systems 15 (1), 91–108.
Bard, N., Bowling, M., 2007. Particle filtering for dynamic agent modelling in simplified poker. In: Proceedings of the

22nd AAAI Conference on Artificial Intelligence. pp. 515–521.
Bard, N., Johanson, M., Burch, N., Bowling, M., 2013. Online implicit agent modelling. In: Proceedings of the 12th

International Conference on Autonomous Agents and Multiagent Systems. pp. 255–262.
Baré, M., Canamero, D., Delannoy, J., Kodratoff, Y., 1994. XPlans: Case-based reasoning for plan recognition. Applied

Artificial Intelligence 8 (4), 617–643.
Barrett, S., Stone, P., 2015. Cooperating with unknown teammates in complex domains: A robot soccer case study of ad

hoc teamwork. In: Proceedings of the 29th AAAI Conference on Artificial Intelligence. pp. 2010–2016.
Barrett, S., Stone, P., Kraus, S., 2011. Empirical evaluation of ad hoc teamwork in the pursuit domain. In: Proceedings of

the 10th International Conference on Autonomous Agents and Multiagent Systems. pp. 567–574.
Barrett, S., Stone, P., Kraus, S., Rosenfeld, A., 2013. Teamwork with limited knowledge of teammates. In: Proceedings of

the 27th AAAI Conference on Artificial Intelligence. pp. 102–108.
Bellman, R., 1957. Dynamic Programming. Princeton University Press.
Bengio, Y., Frasconi, P., 1995. An input output HMM architecture. In: Advances in Neural Information Processing Systems

8. pp. 427–434.
Billings, D., Davidson, A., Schauenberg, T., Burch, N., Bowling, M., Holte, R., Schaeffer, J., Szafron, D., 2004. Game-tree

search with adaptation in stochastic imperfect-information games. Proceedings of the 4th International Conference on
Computers and Games, 21–34.

Blaylock, N., Allen, J., 2003. Corpus-based, statistical goal recognition. In: Proceedings of the 18th International Joint
Conference on Artificial Intelligence. pp. 1303–1308.

Blaylock, N., Allen, J., 2004. Statistical goal parameter recognition. In: Proceedings of the 14th International Conference
on Automated Planning and Scheduling. pp. 297–304.

Blaylock, N., Allen, J., 2006. Fast hierarchical goal schema recognition. In: Proceedings of the 21st AAAI National
Conference on Artificial Intelligence. pp. 796–801.

Bloembergen, D., Tuyls, K., Hennes, D., Kaisers, M., 2015. Evolutionary dynamics of multi-agent learning: A survey.
Journal of Artificial Intelligence Research 53, 659–697.

Bolander, T., Andersen, M., 2011. Epistemic planning for single- and multi-agent systems. Journal of Applied Non-Classical
Logics 21 (1), 9–33.

Bombini, G., Di Mauro, N., Ferilli, S., Esposito, F., 2010. Classifying agent behaviour through relational sequential patterns.
Agent and Multi-Agent Systems: Technologies and Applications, 273–282.

Borck, H., Karneeb, J., Alford, R., Aha, D., 2015. Case-based behavior recognition in beyond visual range air combat. In:
Proceedings of the 28th International Florida Artificial Intelligence Research Society Conference. pp. 379–384.

Boutilier, C., 2002. A POMDP formulation of preference elicitation problems. In: Proceedings of the 18th National
Conference on Artificial Intelligence. pp. 239–246.

Boutilier, C., Brafman, R., Domshlak, C., Hoos, H., Poole, D., 2004. CP-nets: A tool for representing and reasoning with
conditional ceteris paribus preference statements. Journal of Artificial Intelligence Research 21, 135–191.

Bowling, M., Burch, N., Johanson, M., Tammelin, O., 2015. Heads-up limit hold’em poker is solved. Science 347 (6218),
145–149.

Bowling, M., McCracken, P., 2005. Coordination and adaptation in impromptu teams. In: Proceedings of the 20th National
Conference on Artificial Intelligence. pp. 53–58.

Bowling, M., Veloso, M., 2002. Multiagent learning using a variable learning rate. Artificial Intelligence 136 (2), 215–250.
Boyen, X., Koller, D., 1998. Tractable inference for complex stochastic processes. In: Proceedings of the 14th Conference

on Uncertainty in Artificial Intelligence. pp. 33–42.

38

Brown, G., 1951. Iterative solution of games by fictitious play. In: Proceedings of the Conference on Activity Analysis of
Production and Allocation, Cowles Commission Monograph 13. pp. 374–376.

Browne, C., Powley, E., Whitehouse, D., Lucas, S., Cowling, P., Rohlfshagen, P., Tavener, S., Perez, D., Samothrakis, S.,
Colton, S., 2012. A survey of Monte Carlo tree search methods. IEEE Transactions on Computational Intelligence and
AI in games 4 (1), 1–43.

Buehler, M., Iagnemma, K., Singh, S., 2009. The DARPA urban challenge: autonomous vehicles in city traffic. In: Springer
Tracts in Advanced Robotics 56. Springer.

Bui, H., Venkatesh, S., West, G., 2002. Policy recognition in the abstract hidden Markov model. Journal of Artificial
Intelligence Research 17, 451–499.

Busoniu, L., Babuska, R., De Schutter, B., 2008. A comprehensive survey of multiagent reinforcement learning. IEEE
Transactions on Systems, Man, and Cybernetics, Part C 38 (2).

Cadilhac, A., Asher, N., Benamara, F., Lascarides, A., 2013. Grounding strategic conversation: Using negotiation dialogues
to predict trades in a win-lose game. In: Proceedings of the Conference on Empirical Methods in Natural Language
Processing. pp. 357–368.

Camerer, C., Ho, T., Chong, J., 2004. A cognitive hierarchy model of games. The Quarterly Journal of Economics 119 (3),
861–898.

Camerer, C., Ho, T., Chong, J., 2015. A psychological approach to strategic thinking in games. Current Opinion in
Behavioral Sciences 3, 157–162.

Campbell, M., Marsland, T., 1983. A comparison of minimax tree search algorithms. Artificial Intelligence 20 (4), 347–367.
Carberry, S., 2001. Techniques for plan recognition. User Modeling and User-Adapted Interaction 11 (1-2), 31–48.
Carmel, D., Markovitch, S., 1993. Learning models of opponent’s strategy in game playing. In: Proceedings of the AAAI

Fall Symposium Series. Games: Planning and Learning. pp. 140–147.
Carmel, D., Markovitch, S., 1996a. Incorporating opponent models into adversary search. In: Proceedings of the 13th

National Conference on Artificial Intelligence. pp. 120–125.
Carmel, D., Markovitch, S., 1996b. Learning and using opponent models in adversary search. Tech. rep., Computer Science

Department, Technion. Technical Report CIS9606.
Carmel, D., Markovitch, S., 1996c. Learning models of intelligent agents. In: Proceedings of the 13th AAAI National

Conference on Artificial Intelligence. pp. 62–67.
Carmel, D., Markovitch, S., 1998a. How to explore your opponent’s strategy (almost) optimally. In: Proceedings of the

International Conference on Multi Agent Systems. IEEE, pp. 64–71.
Carmel, D., Markovitch, S., 1998b. Model-based learning of interaction strategies in multi-agent systems. Journal of

Experimental & Theoretical Artificial Intelligence 10 (3), 309–332.
Carmel, D., Markovitch, S., 1999. Exploration strategies for model-based learning in multi-agent systems. Autonomous

Agents and Multi-Agent Systems 2 (2), 141–172.
Chajewska, U., Koller, D., Ormoneit, D., 2001. Learning an agent’s utility function by observing behavior. In: Proceedings

of the 18th International Conference on Machine Learning. pp. 35–42.
Chajewska, U., Koller, D., Parr, R., 2000. Making rational decisions using adaptive utility elicitation. In: Proceedings of

the 17th National Conference on Artificial Intelligence. pp. 363–369.
Chakraborty, D., Stone, P., 2013. Cooperating with a Markovian ad hoc teammate. In: Proceedings of the 12th International

Conference on Autonomous Agents and Multiagent Systems. pp. 1085–1092.
Chakraborty, D., Stone, P., 2014. Multiagent learning in the presence of memory-bounded agents. Autonomous Agents

and Multi-Agent Systems 28 (2), 182–213.
Chalkiadakis, G., Boutilier, C., 2003. Coordination in multiagent reinforcement learning: a Bayesian approach. In:

Proceedings of the 2nd International Conference on Autonomous Agents and Multiagent Systems. pp. 709–716.
Chaloner, K., Verdinelli, I., 1995. Bayesian experimental design: A review. Statistical Science, 273–304.
Chandrasekaran, M., Eck, A., Doshi, P., Soh, L., 2016. Individual planning in open and typed agent systems. In: Proceedings

of the 32nd Conference on Uncertainty in Artificial Intelligence. pp. 82–91.
Charniak, E., Goldman, R., 1993. A Bayesian model of plan recognition. Artificial Intelligence 64 (1), 53–79.
Claus, C., Boutilier, C., 1998. The dynamics of reinforcement learning in cooperative multiagent systems. In: Proceedings

of the 15th National Conference on Artificial Intelligence. pp. 746–752.
Coehoorn, R., Jennings, N., 2004. Learning on opponent’s preferences to make effective multi-issue negotiation trade-offs.

In: Proceedings of the 6th International Conference on Electronic Commerce. ACM, pp. 59–68.
Cohen, P., Levesque, H., 1991. Teamwork. Nous 25 (4), 487–512.
Cohen, P., Perrault, C., Allen, J., 1981. Beyond question answering. In: Lehnert, W., Ringle, M. (Eds.), Strategies for

Natural Language Processing. Taylor & Fancis Group, pp. 245–274.
Conitzer, V., Sandholm, T., 2007. AWESOME: a general multiagent learning algorithm that converges in self-play and

learns a best response against stationary opponents. Machine Learning 67 (1-2), 23–43.
Cortes, C., Vapnik, V., 1995. Support-vector networks. Machine Learning 20 (3), 273–297.
Crandall, J., 2014. Towards minimizing disappointment in repeated games. Journal of Artificial Intelligence Research 49,

39

111–142.
Dasgupta, P., 2000. Trust as a commodity. Trust: Making and Breaking Cooperative Relations 4, 49–72.
Davidson, A., Billings, D., Schaeffer, J., Szafron, D., 2000. Improved opponent modeling in poker. In: Proceedings of the

International Conference on Artificial Intelligence. pp. 1467–1473.
Davison, B., Hirsh, H., 1998. Predicting sequences of user actions. In: AAAI/ICML’98 Workshop on Predicting the Future:

AI Approaches to Time-Series Analysis.
de Farias, D., Megiddo, N., 2004. Exploration-exploitation tradeoffs for experts algorithms in reactive environments. In:

Advances in Neural Information Processing Systems 17. pp. 409–416.
de Weerd, H., Verbrugge, R., Verheij, B., 2013. How much does it help to know what she knows you know? an agent-based

simulation study. Artificial Intelligence 199, 67–92.
de Weerd, H., Verbrugge, R., Verheij, B., 2017. Negotiating with other minds: the role of recursive theory of mind in

negotiation with incomplete information. Autonomous Agents and Multi-Agent Systems 31 (2), 250–287.
Dean, T., Kanazawa, K., 1989. A model for reasoning about persistence and causation. Computational Intelligence 5,

142–150.
Dekel, E., Fudenberg, D., Levine, D., 2004. Learning to play Bayesian games. Games and Economic Behavior 46 (2),

282–303.
Denzinger, J., Hamdan, J., 2004. Improving modeling of other agents using tentative stereotypes and compactification of

observations. In: Proceedings of the IEEE/WIC/ACM International Conference on Intelligent Agent Technology. pp.
106–112.

Doshi, P., Chandrasekaran, M., Zeng, Y., 2010. Epsilon-subjective equivalence of models for interactive dynamic influence
diagrams. In: IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology. Vol. 2.
IEEE, pp. 165–172.

Doshi, P., Gmytrasiewicz, P., 2009. Monte carlo sampling methods for approximating interactive POMDPs. Journal of
Artificial Intelligence Research, 297–337.

Doshi, P., Perez, D., 2008. Generalized point based value iteration for interactive POMDPs. In: Proceedings of the 23rd
AAAI Conference on Artificial Intelligence. pp. 63–68.

Doshi, P., Zeng, Y., Chen, Q., 2009. Graphical models for interactive POMDPs: representations and solutions. Autonomous
Agents and Multi-Agent Systems 18 (3), 376–416.

Doucet, A., De Freitas, N., Murphy, K., Russell, S., 2000. Rao-Blackwellised particle filtering for dynamic Bayesian
networks. In: Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence. pp. 176–183.

Erdogan, C., Veloso, M., 2011. Action selection via learning behavior patterns in multi-robot domains. In: Proceedings of
the 22nd International Joint Conference on Artificial Intelligence. pp. 192–197.

Fagan, M., Cunningham, P., 2003. Case-based plan recognition in computer games. In: International Conference on
Case-Based Reasoning. Springer, pp. 161–170.

Fagundes, M., Meneguzzi, F., Bordini, R., Vieira, R., 2014. Dealing with ambiguity in plan recognition under time
constraints. In: Proceedings of the 13th International Conference on Autonomous Agents and Multiagent Systems. pp.
389–396.

Fern, A., Tadepalli, P., 2010. A computational decision theory for interactive assistants. In: Advances in Neural Information
Processing Systems. pp. 577–585.

Fikes, R., Nilsson, N., 1971. STRIPS: A new approach to the application of theorem proving to problem solving. Artificial
intelligence 2 (3-4), 189–208.

Foster, D., Young, H., 2001. On the impossibility of predicting the behavior of rational agents. Proceedings of the National
Academy of Sciences 98 (22), 12848–12853.

Foster, D., Young, H., 2003. Learning, hypothesis testing, and Nash equilibrium. Games and Economic Behavior 45 (1),
73–96.

Fredkin, E., 1960. Trie memory. Communications of the ACM 3 (9), 490–499.
Fudenberg, D., Levine, D., 1998. The Theory of Learning in Games. Vol. 2. MIT Press.
Fürnkranz, J., 2001. Machine learning in games: A survey. In: Fürnkranz, J., Kubat, M. (Eds.), Machines That Learn to

Play Games. Nova Science Publishers, Ch. 2, pp. 11–59.
Gal, Y., Pfeffer, A., 2003a. A language for modeling agents’ decision making processes in games. In: Proceedings of the

2nd International Conference on Autonomous Agents and Multiagent Systems. ACM, pp. 265–272.
Gal, Y., Pfeffer, A., 2003b. A language for opponent modeling in repeated games. In: AAMAS’03 Workshop on Game

Theory and Decision Theory.
Gal, Y., Pfeffer, A., 2008. Networks of influence diagrams: A formalism for representing agents’ beliefs and decision-

making processes. Journal of Artificial Intelligence Research 33 (1), 109–147.
Gal, Y., Pfeffer, A., Marzo, F., Grosz, B., 2004. Learning social preferences in games. In: Proceedings of the 19th AAAI

National Conference on Artificial Intelligence. pp. 226–231.
Ganzfried, S., Sandholm, T., 2011. Game theory-based opponent modeling in large imperfect-information games. In:

Proceedings of the 10th International Conference on Autonomous Agents and Multiagent Systems. pp. 533–540.

40

Geib, C., 2004. Assessing the complexity of plan recognition. In: Proceedings of the 19th AAAI National Conference on
Artificial Intelligence. pp. 507–512.

Geib, C., Goldman, R., 2001. Plan recognition in intrusion detection systems. In: Proceedings of the 2nd DARPA
Information Survivability Conference and Exposition. pp. 329–342.

Geib, C., Goldman, R., 2009. A probabilistic plan recognition algorithm based on plan tree grammars. Artificial Intelligence
173 (11), 1101–1132.

Geib, C., Steedman, M., 2007. On natural language processing and plan recognition. In: Proceedings of the 20th Interna-
tional Joint Conference on Artificial Intelligence. pp. 1612–1617.

Ghaderi, H., Levesque, H., Lespérance, Y., 2007. A logical theory of coordination and joint ability. In: Proceedings of the
22nd AAAI Conference on Artificial Intelligence. pp. 421–426.

Gmytrasiewicz, P., Doshi, P., 2005. A framework for sequential planning in multiagent settings. Journal of Artificial
Intelligence Research 24 (1), 49–79.

Gmytrasiewicz, P., Durfee, E., 1995. A rigorous, operational formalization of recursive modeling. In: Proceedings of the
1st International Conference on Multiagent Systems. pp. 125–132.

Gmytrasiewicz, P., Durfee, E., 2000. Rational coordination in multi-agent environments. Autonomous Agents and Multi-
Agent Systems 3 (4), 319–350.

Gmytrasiewicz, P., Durfee, E., Wehe, D., 1991. A decision-theoretic approach to coordinating multi-agent interactions. In:
Proceedings of the 12th International Joint Conference on Artificial Intelligence. pp. 63–68.

Gmytrasiewicz, P., Noh, S., Kellogg, T., 1998. Bayesian update of recursive agent models. User Modeling and User-Adapted
Interaction 8 (1), 49–69.

Gold, E., 1978. Complexity of automaton identification from given data. Information and Control 37 (3), 302–320.
Gold, K., 2010. Training goal recognition online from low-level inputs in an action-adventure game. In: Proceedings of

the 6th AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment. pp. 21–26.
Goodie, A., Doshi, P., Young, D., 2012. Levels of theory-of-mind reasoning in competitive games. Journal of Behavioral

Decision Making 25 (1), 95–108.
Grosz, B., Kraus, S., 1996. Collaborative plans for complex group action. Artificial Intelligence 86 (2), 269–357.
Grosz, B., Sidner, C., 1986. Attention, intentions, and the structure of discourse. Computational Linguistics 12 (3), 175–204.
Guerra-Hernández, A., El Fallah-Seghrouchni, A., Soldano, H., 2004. Learning in BDI multi-agent systems. In: Computa-

tional Logic in Multi-Agent Systems. Springer, pp. 218–233.
Hammond, K., 1986. CHEF: A model of case-based planning. In: Proceedings of the 5th AAAI National Conference on

Artificial Intelligence. pp. 267–271.
Harsanyi, J., 1962. Bargaining in ignorance of the opponent’s utility function. Journal of Conflict Resolution 6 (1), 29–38.
Harsanyi, J., 1967. Games with incomplete information played by “Bayesian” players. Part I. The basic model. Management

Science 14 (3), 159–182.
Harsanyi, J., 1968a. Games with incomplete information played by “Bayesian” players. Part II. Bayesian equilibrium

points. Management Science 14 (5), 320–334.
Harsanyi, J., 1968b. Games with incomplete information played by “Bayesian” players. Part III. The basic probability

distribution of the game. Management Science 14 (7), 486–502.
Hart, S., Mas-Colell, A., 2001. A reinforcement procedure leading to correlated equilibrium. Economic Essays: A

Festschrift for Werner Hildenbrand, 181–200.
Hausknecht, M., Mupparaju, P., Subramanian, S., Kalyanakrishnan, S., Stone, P., 2016. Half field offense: An environment

for multiagent learning and ad hoc teamwork. In: AAMAS’16 Workshop on Adaptive Learning Agents.
Hawasly, M., Ramamoorthy, S., 2013. Lifelong transfer learning with an option hierarchy. In: International Conference on

Intelligent Robots and Systems. IEEE, pp. 1341–1346.
He, H., Boyd-Graber, J., Kwok, K., Daumé III, H., 2016. Opponent modeling in deep reinforcement learning. In: Proceed-

ings of the 33rd International Conference on Machine Learning. pp. 1804–1813.
Hedden, T., Zhang, J., 2002. What do you think i think you think?: Strategic reasoning in matrix games. Cognition 85 (1),

1–36.
Hernandez-Leal, P., Kaisers, M., Baarslag, T., de Cote, E. M., 2017. A survey of learning in multiagent environments:

Dealing with non-stationarity. CoRR https://arxiv.org/abs/1707.09183.
Hernandez-Leal, P., Zhan, Y., Taylor, M., Sucar, L., de Cote, E., 2017. Efficiently detecting switches against non-stationary

opponents. Autonomous Agents and Multi-Agent Systems 31 (4), 767–789.
Hindriks, K., Tykhonov, D., 2008. Opponent modelling in automated multi-issue negotiation using Bayesian learning. In:

Proceedings of the 7th International Conference on Autonomous Agents and Multiagent Systems. pp. 331–338.
Hoang, T., Low, K., 2013. Interactive POMDP lite: Towards practical planning to predict and exploit intentions for inter-

acting with self-interested agents. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence.
pp. 2298–2305.

Hoehn, B., Southey, F., Holte, R., Bulitko, V., 2005. Effective short-term opponent exploitation in simplified poker. In:
Proceedings of the 29th AAAI Conference on Artificial Intelligence. pp. 783–788.

41

Hong, J., 2000. Graph construction and analysis as a paradigm for plan recognition. In: Proceedings of the 17th National
Conference on Artificial Intelligence. pp. 774–779.

Hong, J., 2001. Goal recognition through goal graph analysis. Journal of Artificial Intelligence Research 15, 1–30.
Horst, R., Pardalos, P., Thoai, N., 2000. Introduction to Global Optimization. Kluwer Academic Publishers.
Howard, R., 1966. Information value theory. IEEE Transactions on Systems Science and Cybernetics 2 (1), 22–26.
Howard, R., Matheson, J., 1984. Influence diagrams. In: Howard, R., Matheson, J. (Eds.), Readings on the Principles and

Applications of Decision Analysis. Vol. 2. Strategic Decisions Group, pp. 719–762.
Howard, R., Matheson, J., 2005. Influence diagrams. Decision Analysis 2 (3), 127–143.
Hsieh, J., Sun, C., 2008. Building a player strategy model by analyzing replays of real-time strategy games. In: IEEE

International Joint Conference on Neural Networks. pp. 3106–3111.
Huynh, T., Jennings, N., Shadbolt, N., 2006. An integrated trust and reputation model for open multi-agent systems.

Autonomous Agents and Multi-Agent Systems 13 (2), 119–154.
Iglesias, J., Angelov, P., Ledezma, A., Sanchis, A., 2010. Evolving classification of agents’ behaviors: a general approach.

Evolving Systems 1 (3), 161–171.
Iglesias, J., Ledezma, A., Sanchis, A., Kaminka, G., 2008. Classifying efficiently the behavior of a soccer team. Intelligent

Autonomous Systems 10, 316–323.
Iida, H., Kotani, Y., Uiterwijk, J., 1996. Tutoring strategies in game-tree search. Games of No Chance 29, 433–435.
Iida, H., Uiterwijk, J., van den Herik, H., Herschberg, I., 1993. Potential applications of opponent-model search. part 1:

The domain of applicability. ICCA Journal 16, 201–208.
Iida, H., Uiterwijk, J., van den Herik, H., Herschberg, I., 1994. Potential applications of opponent-model search. part 2:

Risks and strategies. ICCA Journal 17, 10–14.
Illobre, A., Gonzalez, J., Otero, R., Santos, J., 2010. Learning action descriptions of opponent behaviour in the Robocup

2D simulation environment. In: Proceedings of the 20th International Conference on Inductive Logic Programming.
Springer, pp. 105–113.

Jarvis, P., Lunt, T., Myers, K., 2005. Identifying terrorist activity with AI plan recognition technology. AI Magazine 26 (3),
73.

Jensen, F., Nielsen, T., 2011. Probabilistic decision graphs for optimization under uncertainty. 4OR: A Quarterly Journal
of Operations Research 9 (1), 1–28.

Jensen, S., Boley, D., Gini, M., Schrater, P., 2005. Rapid on-line temporal sequence prediction by an adaptive agent. In:
Proceedings of the 4th International Conference on Autonomous Agents and Multiagent Systems. pp. 67–73.

Johanson, M., Bowling, M., 2009. Data biased robust counter strategies. In: Proceedings of the 12th International
Conference on Artificial Intelligence and Statistics. pp. 264–271.

Johanson, M., Zinkevich, M., Bowling, M., 2008. Computing robust counter-strategies. In: Advances in Neural Information
Processing Systems 20. pp. 721–728.

Kaelbling, L., Littman, M., Cassandra, A., 1998. Planning and acting in partially observable stochastic domains. Artificial
intelligence 101 (1), 99–134.

Kalai, E., Lehrer, E., 1993. Rational learning leads to Nash equilibrium. Econometrica 61 (5), 1019–1045.
Kaminka, G., Fidanboylu, M., Chang, A., Veloso, M., 2002a. Learning the sequential coordinated behavior of teams from

observations. In: RoboCup 2002: Robot Soccer World Cup VI. Springer, pp. 111–125.
Kaminka, G., Pynadath, D., Tambe, M., 2002b. Monitoring teams by overhearing: A multi-agent plan-recognition approach.

Journal of Artificial Intelligence Research 17 (1), 83–135.
Karpinskyj, S., Zambetta, F., Cavedon, L., 2014. Video game personalisation techniques: A comprehensive survey.

Entertainment Computing 5 (4), 211–218.
Kautz, H., Allen, J., 1986. Generalized plan recognition. In: Proceedings of the 5th National Conference on Artificial

Intelligence. pp. 32–37.
Kearns, M., Littman, M., Singh, S., 2001. Graphical models for game theory. In: Proceedings of the 17th Conference on

Uncertainty in Artificial Intelligence. pp. 253–260.
Keren, S., Gal, A., Karpas, E., 2014. Goal recognition design. In: Proceedings of the 24th International Conference on

Automated Planning and Scheduling. pp. 154–162.
Keren, S., Gal, A., Karpas, E., 2015. Goal recognition design for non-optimal agents. In: Proceedings of the 29th AAAI

Conference on Artificial Intelligence. pp. 3298–3304.
Keren, S., Gal, A., Karpas, E., 2016. Goal recognition design with non-observable actions. In: Proceedings of the 30th

AAAI Conference on Artificial Intelligence. pp. 3152–3158.
Kerkez, B., Cox, M., 2003. Incremental case-based plan recognition with local predictions. International Journal on

Artificial Intelligence Tools 12 (4), 413–463.
Kitano, H., Tambe, M., Stone, P., Veloso, M., Coradeschi, S., Osawa, E., Matsubara, H., Noda, I., Asada, M., 1997. The

RoboCup synthetic agent challenge 97. Proceedings of the Fifteenth International Joint Conference on Artificial
Intelligence, 24–29.

Kocsis, L., Szepesvári, C., 2006. Bandit based Monte-Carlo planning. In: Proceedings of the 17th European Conference

42

on Machine Learning. Springer, pp. 282–293.
Koller, D., Friedman, N., 2009. Probabilistic Graphical Models: Principles and Techniques. The MIT Press.
Koller, D., Milch, B., 2003. Multi-agent influence diagrams for representing and solving games. Games and Economic

Behavior 45 (1), 181–221.
Kolodner, J., 2014. Case-Based Reasoning. Morgan Kaufmann.
Kominis, F., Geffner, H., 2015. Beliefs in multiagent planning: From one agent to many. In: Proceedings of the 25th

International Conference on Automated Planning and Scheduling. pp. 147–155.
Kuhlmann, G., Knox, W., Stone, P., 2006. Know thine enemy: A champion RoboCup coach agent. In: Proceedings of the

21st National Conference on Artificial Intelligence. pp. 1463–1468.
La Mura, P., 2000. Game networks. In: Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence. pp.

335–342.
Lasota, P., Fong, T., Shah, J., 2014. A survey of methods for safe human-robot interaction. Foundations and Trends in

Robotics 5 (4), 261–349.
Lattner, A., Miene, A., Visser, U., Herzog, O., 2005. Sequential pattern mining for situation and behavior prediction in

simulated robotic soccer. In: RoboCup 2005, LNAI 4020. Springer, pp. 118–129.
Laviers, K., Sukthankar, G., Molineaux, M., Aha, D., 2009. Improving offensive performance through opponent modeling.

In: Proceedings of the 5th Artificial Intelligence for Interactive Digital Entertainment Conference. pp. 58–63.
Ledezma, A., Aler, R., Sanchis, A., Borrajo, D., 2009. OMBO: an opponent modeling approach. AI Communications

22 (1), 21–35.
Lesh, N., Etzioni, O., 1995. A sound and fast goal recognizer. In: Proceedings of the 14th International Joint Conference

on Artificial Intelligence. pp. 1704–1710.
Litman, D., Allen, J., 1984. A plan recognition model for clarification subdialogues. In: Proceedings of the 10th Interna-

tional Conference on Computational Linguistics. pp. 302–311.
Lockett, A., Chen, C., Miikkulainen, R., 2007. Evolving explicit opponent models in game playing. In: Proceedings of the

9th Conference on Genetic and Evolutionary Computation. pp. 2106–2113.
Löwe, B., Pacuit, E., Witzel, A., 2010. Planning based on dynamic epistemic logic. Tech. rep., Technical Report PP-2010-14,

Institute for logic, Language and Computation, Universiteit van Amsterdam.
Markovitch, S., Reger, R., 2005. Learning and exploiting relative weaknesses of opponent agents. Autonomous Agents

and Multi-Agent Systems 10 (2), 103–130.
McCalla, G., Vassileva, J., Greer, J., Bull, S., 2000. Active learner modelling. In: Proceedings of the 5th International

Conference on Intelligent Tutoring Systems. pp. 53–62.
McCarthy, J., 1980. Circumscription — a form of non-monotonic reasoning. Artificial intelligence 13 (1), 27–39.
McCarthy, J., Hayes, P., 1969. Some philosophical problems from the standpoint of artificial intelligence. Machine

Intelligence 4, 463–502.
McCracken, P., Bowling, M., 2004. Safe strategies for agent modelling in games. In: AAAI Fall Symposium on Artificial

Multi-agent Learning. pp. 103–110.
McTear, M., 1993. User modelling for adaptive computer systems: a survey of recent developments. Artificial Intelligence

Review 7 (3), 157–184.
Mealing, R., Shapiro, J., 2017. Opponent modelling by expectation-maximisation and sequence prediction in simplified

poker. IEEE Transactions on Computational Intelligence and AI in Games 9.
Milch, B., Koller, D., 2000. Probabilistic models for agents’ beliefs and decisions. In: Proceedings of the 16th Conference

on Uncertainty in Artificial Intelligence. pp. 389–396.
Millington, I., Funge, J., 2009. Artificial Intelligence for Games, second edition Edition. CRC Press.
Miorandi, D., Maltese, V., Rovatsos, M., Nijholt, A., Stewart, J., 2014. Social collective intelligence: combining the powers

of humans and machines to build a smarter society. Springer.
Mor, Y., Goldman, C., Rosenschein, J., 1995. Learn your opponent’s strategy (in polynomial time)! In: IJCAI’95 Workshop

on Adaption and Learning in Multi-Agent Systems.
Muggleton, S., 1991. Inductive logic programming. New Generation Computing 8 (4), 295–318.
Mui, L., Mohtashemi, M., Halberstadt, A., 2002. A computational model of trust and reputation. In: Proceedings of the

35th Annual Hawaii International Conference on System Sciences. IEEE, pp. 2431–2439.
Muise, C., Belle, V., Felli, P., McIlraith, S., Miller, T., Pearce, A., Sonenberg, L., 2015. Planning over multi-agent epistemic

states: A classical planning approach. In: Proceedings of the 29th AAAI Conference on Artificial Intelligence. pp.
3327–3334.

Myerson, R., 1991. Game Theory: Analysis of Conflict. Harvard University Press.
Nachbar, J., 2005. Beliefs in repeated games. Econometrica 73 (2), 459–480.
Nash, J., 1950. Equilibrium points in n-person games. Proceedings of the National Academy of Sciences 36 (1), 48–49.
Ng, A., Russell, S., 2000. Algorithms for inverse reinforcement learning. In: Proceedings of the 17th International

Conference on Machine Learning. pp. 663–670.
Ng, B., Boakye, K., Meyers, C., Wang, A., 2012. Bayes-adaptive interactive POMDPs. In: Proceedings of the 26th AAAI

43

Conference on Artificial Intelligence. pp. 1408–1414.
Nguyen, T.-H. D., Hsu, D., Lee, W. S., Leong, T.-Y., Kaelbling, L. P., Lozano-Perez, T., Grant, A. H., 2011. CAPIR:

Collaborative action planning with intention recognition. In: Proceedings of the 7th AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment. pp. 61–66.

Nielsen, T., Jensen, F., 2004. Learning a decision maker’s utility function from (possibly) inconsistent behavior. Artificial
Intelligence 160 (1-2), 53–78.

Nyarko, Y., 1998. Bayesian learning and convergence to Nash equilibria without common priors. Economic Theory 11 (3),
643–655.

Oh, J., Meneguzzi, F., Sycara, K., Norman, T., 2011. An agent architecture for prognostic reasoning assistance. In:
Proceedings of the 22nd International Joint Conference on Artificial Intelligence. pp. 2513–2518.

Olorunleke, O., McCalla, G., 2005. A condensed roadmap of agents-modelling-agents research. In: IJCAI’05 Workshop
on Modeling Other Agents From Observation.

Panait, L., Luke, S., 2005. Cooperative multi-agent learning: The state of the art. Autonomous Agents and Multi-Agent
Systems 11 (3), 387–434.

Panella, A., Gmytrasiewicz, P., 2017. Interactive POMDPs with finite-state models of other agents. Autonomous Agents
and Multi-Agent Systems.

Pearl, J., 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann.
Pinyol, I., Sabater-Mir, J., 2013. Computational trust and reputation models for open multi-agent systems: a review.

Artificial Intelligence Review 40 (1), 1–25.
Pitt, L., 1989. Inductive inference, DFAs, and computational complexity. In: International Workshop on Analogical and

Inductive Inference. Springer, pp. 18–44.
Pollack, M., 1986. A model of plan inference that distinguishes between the beliefs of actors and observers. In: Proceedings

of the 24th Annual Meeting of the Association for Computational Linguistics. pp. 207–214.
Pourmehr, S., Dadkhah, C., 2012. An overview on opponent modeling in RoboCup soccer simulation 2D. In: RoboCup

2011, LNCS 7416. Springer, pp. 402–414.
Powers, R., Shoham, Y., 2005. Learning against opponents with bounded memory. In: Proceedings of the 19th International

Joint Conference on Artificial Intelligence. pp. 817–822.
Pynadath, D., Wellman, M., 2000. Probabilistic state-dependent grammars for plan recognition. In: Proceedings of the

16th Conference on Uncertainty in Artificial Intelligence. pp. 507–514.
Ramchurn, S., Huynh, D., Jennings, N., 2004. Trust in multi-agent systems. The Knowledge Engineering Review 19 (1),

1–25.
Ramı́rez, M., Geffner, H., 2009. Plan recognition as planning. In: Proceedings of the 21st International Joint Conference

on Artifical Intelligence. pp. 1778–1783.
Ramı́rez, M., Geffner, H., 2010. Probabilistic plan recognition using off-the-shelf classical planners. In: Proceedings of the

24th AAAI Conference on Artificial Intelligence. pp. 1121–1126.
Ramırez, M., Geffner, H., 2011. Goal recognition over POMDPs: Inferring the intention of a POMDP agent. In: Proceedings

of the 22nd International Joint Conference on Artificial Intelligence. pp. 2009–2014.
Rathnasabapathy, B., Doshi, P., Gmytrasiewicz, P., 2006. Exact solutions of interactive POMDPs using behavioral equiv-

alence. In: Proceedings of the 5th International Conference on Autonomous Agents and Multiagent Systems. pp.
1025–1032.

Reibman, A., Ballard, B., 1983. Non-minimax search strategies for use against fallible opponents. In: Proceedings of the
3rd AAAI National Conference on Artificial Intelligence. pp. 338–342.

Riley, P., Veloso, M., 2000. On behavior classification in adversarial environments. In: Distributed Autonomous Robotic
Systems 4. Springer, pp. 371–380.

Riley, P., Veloso, M., 2002. Recognizing probabilistic opponent movement models. In: RoboCup 2001, LNAI 2377.
Springer, pp. 453–458.

Rovatsos, M., Weiß, G., Wolf, M., 2003. Multiagent learning for open systems: A study in opponent classification. In:
Adaptive Agents and Multi-Agent Systems, LNAI 2636. Springer, pp. 66–87.

Royer, E., Toh, C., 1999. A review of current routing protocols for ad hoc mobile wireless networks. IEEE Personal
Communications 6 (2), 46–55.

Rubin, J., Watson, I., 2011. Computer poker: A review. Artificial Intelligence 175 (5), 958–987.
Sabater, J., Sierra, C., 2001. Regret: A reputation model for gregarious societies. In: Fourth Workshop on Deception Fraud

and Trust in Agent Societies. Vol. 70. pp. 61–69.
Sadigh, D., Sastry, S., Seshia, S., Dragan, A., 2016. Information gathering actions over human internal state. In: Proceedings

of the IEEE International Conference on Intelligent Robots and Systems. pp. 66–73.
Saria, S., Mahadevan, S., 2004. Probabilistic plan recognition in multiagent systems. In: Proceedings of the 14th Interna-

tional Conference on Automated Planning and Scheduling. pp. 287–296.
Schadd, F., Bakkes, S., Spronck, P., 2007. Opponent modeling in real-time strategy games. In: Proceedings of the 8th

Annual European GAMEON Conference. pp. 61–70.

44

Schillo, M., Funk, P., Rovatsos, M., 2000. Using trust for detecting deceitful agents in artificial societies. Applied Artificial
Intelligence 14 (8), 825–848.

Schmid, A., Weede, O., Wörn, H., 2007. Proactive robot task selection given a human intention estimate. In: Proceedings
of the 16th IEEE International Symposium on Robot and Human Interactive Communication. pp. 726–731.

Schmidt, C., Sridharan, N., Goodson, J., 1978. The plan recognition problem: An intersection of psychology and artificial
intelligence. Artificial Intelligence 11 (1-2), 45–83.

Sen, S., Arora, N., 1997. Learning to take risks. In: AAAI’97 Workshop on Multiagent Learning. pp. 59–64.
Sen, S., Weiss, G., 1999. Learning in multiagent systems. In: Multiagent Systems: A Modern Approach to Distributed

Artificial Intelligence. MIT Press, Ch. 6, pp. 259–298.
Settles, B., 2012. Active Learning. Morgan & Claypool Publishers.
Shachter, R., 1986. Evaluating influence diagrams. Operations Research 34 (6), 871–882.
Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,

Panneershelvam, V., Lanctot, M., et al., 2016. Mastering the game of Go with deep neural networks and tree search.
Nature 529 (7587), 484–489.

Singh, S., Barto, A., Chentanez, N., 2005. Intrinsically motivated reinforcement learning. In: Advances in Neural Informa-
tion Processing Systems. pp. 1281–1288.

Sohrabi, S., Riabov, A., Udrea, O., 2016. Plan recognition as planning revisited. In: Proceedings of the 25th International
Joint Conference on Artificial Intelligence. pp. 3258–3264.

Sondik, E., 1971. The optimal control of partially observable Markov processes. Ph.D. thesis, Stanford University.
Sonu, E., Doshi, P., 2015. Scalable solutions of interactive POMDPs using generalized and bounded policy iteration.

Autonomous Agents and Multi-Agent Systems 29 (3), 455–494.
Southey, F., Bowling, M., Larson, B., Piccione, C., Burch, N., Billings, D., Rayner, C., 2005. Bayes’ bluff: opponent

modelling in poker. In: Proceedings of the 21st Conference on Uncertainty in Artificial Intelligence. pp. 550–558.
Spronck, P., den Teuling, F., 2010. Player modeling in Civilization IV. In: Proceedings of the 6th AAAI Conference on

Artificial Intelligence and Interactive Digital Entertainment. pp. 180–185.
Steffens, T., 2004a. Adapting similarity measures to agent types in opponent modelling. In: AAMAS’04 Workshop on

Modeling Other Agents from Observations. pp. 125–128.
Steffens, T., 2004b. Feature-based declarative opponent-modelling. In: RoboCup 2003, LNAI 3020. Springer, pp. 125–136.
Steffens, T., 2005. Similarity-based opponent modelling using imperfect domain theories. In: Proceedings of the 1st IEEE

Symposium on Computational Intelligence and Games. pp. 285–291.
Stone, P., Kaminka, G., Kraus, S., Rosenschein, J., 2010. Ad hoc autonomous agent teams: collaboration without pre-

coordination. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence. pp. 1504–1509.
Stone, P., Riley, P., Veloso, M., 2000. Defining and using ideal teammate and opponent agent models. In: Proceedings of

the 12th Conference on Innovative Applications of Artificial Intelligence. pp. 441–442.
Stone, P., Veloso, M., 1999. Task decomposition, dynamic role assignment, and low-bandwidth communication for real-time

strategic teamwork. Artificial Intelligence 110 (2), 241–273.
Stone, P., Veloso, M., 2000. Multiagent systems: A survey from a machine learning perspective. Autonomous Robots

8 (3), 345–383.
Sukthankar, G., Goldman, R., Geib, C., Pynadath, D., Bui, H., 2014. Plan, Activity, and Intent Recognition: Theory and

Practice. Morgan Kaufmann.
Sukthankar, G., Sycara, K., 2007. Policy recognition for multi-player tactical scenarios. In: Proceedings of the 6th

International Conference on Autonomous Agents and Multiagent Systems. pp. 58–65.
Sukthankar, G., Sycara, K., 2008. Hypothesis pruning and ranking for large plan recognition problems. In: Proceedings of

the 23rd AAAI Conference on Artificial Intelligence. pp. 998–1003.
Suryadi, D., Gmytrasiewicz, P., 1999. Learning models of other agents using influence diagrams. Proceedings of the 7th

International Conference on User Modeling, 223–234.
Synnaeve, G., Bessiere, P., 2011. A Bayesian model for opening prediction in RTS games with application to Starcraft. In:

IEEE Conference on Computational Intelligence and Games. pp. 281–288.
Takahashi, Y., Edazawa, K., Asada, M., 2002. Multi-module learning system for behavior acquisition in multi-agent

environment. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. Vol. 1. IEEE, pp. 927–931.
Tambe, M., 1995. Recursive agent and agent-group tracking in a real-time dynamic environment. In: Proceedings of the

1st International Conference on Multi-Agent Systems. pp. 368–375.
Tambe, M., 1996. Tracking dynamic team activity. In: Proceedings of the 13th National Conference on Artificial Intelli-

gence. pp. 80–87.
Tambe, M., 1997. Towards flexible teamwork. Journal of Artificial Intelligence Research 7, 83–124.
Tambe, M., Rosenbloom, P., 1995. RESC: an approach for real-time, dynamic agent tracking. In: Proceedings of the 14th

International Joint Conference on Artificial Intelligence. pp. 103–110.
Tian, X., Zhuo, H., Kambhampati, S., 2016. Discovering underlying plans based on distributed representations of actions.

In: Proceedings of the 15th International Conference on Autonomous Agents and Multiagent Systems. pp. 1135–1143.

45

Tuyls, K., Weiss, G., 2012. Multiagent learning: Basics, challenges, and prospects. AI Magazine 33 (3), 41.
van den Herik, H., Donkers, H., Spronck, P., 2005. Opponent modelling and commercial games. In: Proceedings of the

IEEE 2005 Symposium on Computational Intelligence and Games. pp. 15–25.
Van Der Hoek, W., Wooldridge, M., 2002. Tractable multiagent planning for epistemic goals. In: Proceedings of the 1st

International Conference on Autonomous Agents and Multiagent Aystems. ACM, pp. 1167–1174.
Veloso, M., 1994. Planning and Learning by Analogical Reasoning. LNAI 886. Springer-Verlag.
Vered, M., Kaminka, G., 2017. Heuristic online goal recognition in continuous domains. In: Proceedings of the 26th

International Joint Conference on Artificial Intelligence. pp. 4447–4454.
Vickrey, D., Koller, D., 2002. Multi-agent algorithms for solving graphical games. In: Proceedings of the 18th National

Conference on Artificial Intelligence. AAAI, pp. 345–351.
Vidal, J., Durfee, E., 1995. Recursive agent modeling using limited rationality. In: Proceedings of the 1st International

Conference on Multi-Agent Systems. pp. 376–383.
Visser, U., Weland, H., 2002. Using online learning to analyze the opponent’s behavior. In: RoboCup 2002: Robot Soccer

World Cup VI. Springer, pp. 78–93.
Von Neumann, J., Morgenstern, O., 1944. Theory of Games and Economic Behavior. Princeton University Press.
Wang, Z., Boularias, A., Mülling, K., Peters, J., 2011. Balancing safety and exploitability in opponent modeling. In:

Proceedings of the 25th AAAI Conference on Artificial Intelligence. pp. 1515–1520.
Watkins, C., Dayan, P., 1992. Q-learning. Machine learning 8 (3), 279–292.
Wayllace, C., Hou, P., Yeoh, W., 2017. New metrics and algorithms for stochastic goal recognition design problems. In:

Proceedings of the 26th International Joint Conference on Artificial Intelligence. pp. 4455–4462.
Weber, B., Mateas, M., 2009. A data mining approach to strategy prediction. In: Proceedings of the IEEE Symposium on

Computational Intelligence and Games. pp. 140–147.
Wilks, Y., Ballim, A., 1986. Multiple agents and the heuristic ascription of belief. In: Proceedings of the 10th International

Joint Conference on Artificial Intelligence. pp. 118–124.
Wright, J., Leyton-Brown, K., 2010. Beyond equilibrium: Predicting human behavior in normal-form games. In: Proceed-

ings of the 24th AAAI Conference on Artificial Intelligence. pp. 901–907.
Yoshida, W., Dolan, R., Friston, K., 2008. Game theory of mind. PLoS Computational Biology 4 (12).
Yu, H., Shen, Z., Leung, C., Miao, C., Lesser, V., 2013. A survey of multi-agent trust management systems. IEEE Access

1, 35–50.
Zeng, Y., Doshi, P., 2012. Exploiting model equivalences for solving interactive dynamic influence diagrams. Journal of

Artificial Intelligence Research 43, 211–255.
Zhuo, H., Li, L., 2011. Multi-agent plan recognition with partial team traces and plan libraries. In: Proceedings of the

22nd International Joint Conference on Artificial Intelligence. pp. 484–489.
Zhuo, H., Yang, Q., Kambhampati, S., 2012. Action-model based multi-agent plan recognition. In: Advances in Neural

Information Processing Systems. pp. 368–376.
Zukerman, I., Albrecht, D., 2001. Predictive statistical models for user modeling. User Modeling and User-Adapted

Interaction 11 (1), 5–18.

46

	1 Introduction
	2 Related Surveys
	3 Assumptions in Modelling Methods
	4 Modelling Methods
	4.1 Policy Reconstruction
	4.1.1 Conditional Action Frequencies
	4.1.2 Case-Based Reasoning
	4.1.3 Compact Model Representations
	4.1.4 Utility Reconstruction

	4.2 Type-Based Reasoning
	4.3 Classification
	4.4 Plan Recognition
	4.4.1 Plan Recognition in Hierarchical Plan Libraries
	4.4.2 Plan Recognition by Planning in Domain Models
	4.4.3 Plan Recognition by Similarity to Past Plans

	4.5 Recursive Reasoning
	4.6 Graphical Models
	4.7 Group Modelling
	4.8 Other Relevant Methods
	4.8.1 Implicit Modelling
	4.8.2 Hypothesis Testing for Agent Models
	4.8.3 Using Models Safely

	5 Open Problems
	5.1 Synergistic Combination of Modelling Methods
	5.2 Policy Reconstruction under Partial Observability
	5.3 Safe and Efficient Model Exploration
	5.4 Efficient Discovery of Decision Factors
	5.5 Computationally Efficient Implementations
	5.6 Modelling Changing Behaviours
	5.7 Modelling with Action Duration
	5.8 Modelling in Open Multiagent Systems
	5.9 Autonomous Model Contemplation and Revision

	6 Conclusion
	Appendix A Clarification for Assumption Tables

