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Motivation

e Review cerebellum’s functionality from a reinforcement learning perspective

e Propose novel experiments using cerebellum simulations and ideas in RL to understand more
about cognitive and motor learning in humans.



TEXAS ReNeu Robotics Lab | Learning Agents Research Group Bharath Masetty

Background: Cerebellum

Cerebellum is a major structures of the brain located near brainstem
10 % of brain’s volume but has more neurons than the rest of the brain
Neural substrate responsible for movement coordination and motor control

Consists of functional subdivisions called microzones which modulate activity in
specific muscle groups
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Background: Reinforcement Learning
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Markov Decision Process (S,A, p, r, ¥):

e S: State space

e A : Action space

°
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e vy : Discount factor

Environment ]4—

Model-Based Methods: Uses models of the environment to optimize the policy.
Model-Free Methods: Do not use models of the environment to optimize the policy.

action
A,

Transition Function P(s’ | s, @) : Probability of being in state s’ when taken action « in state s.
Reward Function r(s, @): Determines reward » when taken action « in state s.
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Hypothesis

Cerebellum Functionality Process in RL

e Ability to modulate motor commands and control movement = Modulation of a Control Policy

e  Ability to predict future sensory states

Learning a forward dynamics model

e  Ability to encode external rewards

Learning a reward function

Model-based reinforcement learning can be one of the functionalities of cerebellum

e Literature supporting the hypothesis
e Propose a way to test the hypothesis using a cerebellum simulation
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Cerebellum: Topology
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Mossy Fibers are the primary inputs to the cerebellum (CB)

Nucleus Cells provide the primary output

Climbing Fibers delivers error signals to modulate the synaptic plasticity of intermediate layers
Divided into functional subdivisions called microzones controlling specific muscle groups
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Cerebellum: Forward Models

Internal Models in Cerebellum!”!

e The cerebellum controls motor
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Hypothesis

Cerebellum Functionality Process in RL

e  Ability to modulate motor commands and control movement = Modulation of a Control Policy

e  Ability to predict future sensory states

Learning a forward dynamics model

e  Ability to encode external rewards

Learning a reward function

Model-based reinforcement learning can be one of the functionalities of cerebellum
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Cerebellum: Reward Learning
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e Recent experiments!® revealed that the cerebellum has direct . (i
excitatory projections to the Ventral Tegmental Area (VTA) ; _

e VTA also known as brain’s rewarding center g

e Experiments on rodents showed that CB-VTA projects can g’
encode external reward functions -

[8] Naria Carta, Christopher H Chen, Amanda L Schott, Schnaude Dorizan, and Kamran Khodakhah. 2019. Cerebellar modulation of the reward circuitry and social behavior.Science
363, 6424 (2019).
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Hypothesis

e  Ability to modulate motor commands and control movement = Modulation of a Control Policy

e  Ability to predict future sensory states

Forward dynamics of environments

e Ability to learn external reward functions

Reward function of environments

Model-based reinforcement learning can be one of the functionalities of cerebellum
How to test this hypothesis?

e  We propose to use a simulated cerebellum for this purpose.
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Simulated Cerebellum: Related Work
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e Adaptive cerebellar spiking model™ to control robotic arm

e Cerebellum-inspired neural network!'% for state estimation and control

e Biologically constrained cerebellum!'!) simulation was used to perform:
o  Cartpole balancing

PID Control

Robot Balancing using RL

Classification

Pattern Recognition

O O O O
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State Signal

Each output comes from a distinct microzone

Every microzone is associated with its own error signal

All microzones share a common input signal

Outputs are inferred from the firing rates of nucleus neurons

A pair of microzones for each class of output
o One of them will increase the output for that class and the other will decrease

The state signal is encoded into the mossy fibers

[11] Matthew Hausknecht, Wen-Ke Li, Michael Mauk, and Peter Stone. 2016. Machine learning capabilities of a simulated cerebellum.IEEE transactions on neural networks and

learning systems 28, 3 (2016), 510-522.
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Testing the Hypothesis

Model-based reinforcement learning could be one of the functionalities of cerebellum

e The goal is to test if the simulated cerebellum can act as a reinforcement learning model.

We propose a two step method:
Step 1: Learn the forward dynamics model and reward function of the environment

Step 2: Perform an n-step look ahead using the learnt model to test for policy optimization.

13
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Step 1: Model Learning
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Step 2: Policy Learning

Policy Error
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Potential Outcomes

e In step 2, if the simulation is able to show improvement in its policy
o  Cerebellum simulation can perform model-based RL
o  Supports our hypothesis

e If the simulation does not show any improvement in policy
o  Hypothesis is not true, or
o  Cannot be tested within the scope of simulated cerebellum or
o  Could be due to limitations of the simulation model

16
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Summary

e  We combine popular consensus with recent evidence to hypothesize that the cerebellum can perform
model based reinforcement learning

e  We propose a two-stage method to test this hypothesis using a simulated cerebellum
o  Learn the forward dynamics and reward function of the environment
o  Perform an n-step look ahead on policy microzones using model microzones to evaluate
policy optimization

e Potential challenges:
o  Biological accuracy and level of abstraction in the cerebellum simulation
o  Hyperparameter tuning

e Potential outcomes:
o Algorithmic understanding of reinforcement learning in cerebellum

o Inspiration for new sample-efficient RL methods.
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