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Abstract. This paper documents the development of three autonomous stock-
trading agents within the framework of the Penn Exchange Simulator (PXS),
a novel stock-trading simulator that takes advantage of electronic crossing net-
works to realistically mix agent bids with bids from the real stock market [1]. The
three approaches presented take inspiration from reinforcement learning, myopic
trading using regression-based price prediction, and market making. These ap-
proaches are fully implemented and tested with results reported here, including
individual evaluations using a fixed opponent strategy and a comparative analysis
of the strategies in a joint simulation. The market-making strategy described in
this paper was the winner in the fall 2003 PLAT live competition and the runner-
up in the spring 2004 live competition, exhibiting consistent profitability. The
strategy’s performance in the live competitions is presented and analyzed.

1 Introduction
Automated stock trading is a burgeoning research area with important practical applica-
tions. The advent of the Internet has radically transformed the nature of stock trading in
most stock exchanges. Traders can now readily purchase and sell stock from a remote
site using Internet-based order submission protocols. Additionally, traders can moni-
tor the contents of buy and sell order books in real time using a Web-based interface.
The electronic nature of the transactions and the availability of up-to-date order-book
data make autonomous stock-trading applications a promising alternative to immediate
human involvement.

The work reported here was conducted in the Penn Exchange Simulator (PXS), a
novel stock-trading simulator that takes advantage of electronic crossing networks to
realistically mix agent bids with bids from the real stock market [1]. In preparation
for an open live competition, we developed three parameterizable trading agents and
defined several instantiations of each strategy. We optimized each agent independently,
and then conducted detailed controlled experiments to select the strongest of the three
for entry in the live competition.

It is important to realize from the outset that this research is primarily anagent
studypertaining to the interactions of particular agents in a fixed economy. Although
PXS makes a strong and reasonable claim to implementing a realistic simulation of the
stock market, the results and conclusions in this paper pertain to test economies includ-
ing specific other stock-trading agents. In particular, we do not aim to create strategies



that are ready for profitable deployment in the real stock market (otherwise we would
likely not be writing this paper!). Rather, this paper makes three main contributions.
First, it contributes an empirical methodology for studying and comparing stock-trading
agents—individually as well as jointly in a shared economy—in a controlled empiri-
cal setting. Second, it implements this methodology to compare three specific trading
agents based on reinforcement learning, myopic trading using regression-based price
prediction, and market making. Third, this paper contributes detailed specifications of
promising strategy designs, one of which vastly outperformed competitor strategies in
an open stock-trading competition and exhibited consistent profitability under a variety
of market conditions.

The remainder of the paper is organized as follows. Section 2 provides the relevant
technical background on the PXS simulator, our substrate domain. Section 3 charac-
terizes prior research and points out the distinguishing features of this work. Section 4
discusses our approach to the automated stock-trading problem, explains our assump-
tions, and details our experimental methodology. Sections 5–7 describe our three stock-
trading strategies. Sections 8–10 present and analyze the experimental results, focusing,
respectively, on individual evaluations, the joint simulation, and the live competitions.
Finally, Section 11 concludes with a discussion of unresolved questions and promising
directions for future work.

2 Background

The Penn-Lehman Automated Trading (PLAT) project [1] is a research initiative de-
signed to provide a realistic testbed for stock-trading strategies. PLAT provides a sim-
ulated stock-trading environment known as the Penn Exchange Simulator (PXS) that
merges virtual orders submitted by computer programs with real-time orders from the
Island electronic crossing network (ECN) [2]. No actual monetary transactions are con-
ducted, and the efficacy of a trading strategy can be reliably assessed in the safety of a
simulated market. Many previous stock simulators been developed that execute simu-
lated orders at the current price in the real stock market. However, such simulators miss
the effect of a simulated order on this price, an effect that becomes increasingly signifi-
cant as the size of the orders increases. The main novelty of PXS is that it uses not only
the current stock price, but also the whole list of pending limit orders to realistically
determine the effect of simulated activity on the market [1].

PXS operates incycles. During every cycle, a trading agent can place new orders
and/or withdraw some of its previously placed orders. When placing abuy order, the
agent specifies the number of shares it wishes to purchase and the highest price per
share it is willing to pay. PXS sorts the buy orders by price into abuy order book, with
the most competitive (highest-priced) orders at the top of the book. Likewise, asell
order states the amount of stock being sold and the lowest price per share the seller
is willing to accept. PXS sorts the sell orders into asell order book, with the most
competitive (lowest-priced) orders on top. When an order arrives, PXS matches it with
orders in the opposite order book (starting at the top of the book) that meet the order’s
price requirements. Partial matches are supported. Any unmatched portion of the order
is placed in the corresponding book, awaiting competitive enough counterpart orders to
match fully.



Apart from complete order-book data, the simulator makes a variety of agent-
specific and market-wide information available to aid in order placement. In addition
to real-time operation (live mode), the simulator supportshistorical simulations that
use archived stock-market data from the requested day. Historical mode operates on a
compressed time scale, allowing the simulation of an entire trading day in minutes. As
a result, the agent is able to place considerably fewer orders overall than in live mode.
Aside from the lower order-placement frequency, historical mode is operationally iden-
tical to live mode.

In December 2003 and April 2004, live PLAT stock-trading competitions were
held including agents from several universities. The sole performance criterion was
the Sharpe ratio, defined as the average of the trader’s daily score over several days di-
vided by the standard deviation. Thus, favorable placement in the competition required
not only sizable daily earnings but also consistent day-to-day performance. The trader’s
score on a given trading day was its total profit and loss (“value”) at the end of the day
plustotal “rebate value” (computed as $0.002 per share that added liquidity to the simu-
lator)minustotal “fee value” (computed as $0.003 per share that removed liquidity from
the simulator). These rebates and fees are the same as those used by the Island ECN.
Arbitrarily large positive or negative intra-day share holdings were allowed. However,
the entrants were to completely unwind their share positions before the end of the day
(i.e., sell any owned shares and buy back any owed shares) or face severe monetary
penalties.

As a benchmark strategy for the experiments reported in this paper, we used the
Static Order-Book Imbalance (SOBI) strategy [1], provided to participants in the PLAT
competition as an example trading agent. We used default settings for all SOBI pa-
rameters. SOBI sells stock when the volume-weighted average price (VWAP) of the
buy-book orders is further from the last price than the sell-book VWAP, interpreting
this as weaker support for the current price on the buyers’ part and a likely depreciation
of the stock in the near future. In the symmetric scenario, SOBI places buy orders.

3 Related Work

Prior research features a variety of approaches to stock trading, including those pre-
sented here. Automated market making has been studied in [3–5]. Reinforcement learn-
ing has been previously used to adjust the parameters of a market-making strategy in
response to market behavior [3]. Other approaches to automated stock trading include
the reverse strategy and VWAP trading [5, 6]. A brief overview of these common ap-
proaches can be found in [7].

To our knowledge, there have been no empirical studies of the interactions of het-
erogeneous strategies in a joint economy, yet such simulations would likely be more
revealing of a strategy’s earning potential than a study of the strategy in isolation. As a
result, this work combines detailed individual evaluations of the strategies with a prin-
cipled study of their performance in a joint economy. Another distinguishing feature of
this research is the use of a highly realistic stock simulator. Furthermore, this research
bases performance evaluations on the Sharpe ratio, a reliable measure of “the statistical
significance of earnings and the trade-off between risk and return” [1]. The Sharpe ratio
is “the most widely-used measure of risk-adjusted return,” a quantity most modern fund



managers seek to maximize (rather than raw profits) [8]. Unfortunately, the Sharpe
ratio has seen little use in the automated stock-trading literature.

The strategies themselves certainly do set this work apart from previous research.
Specifically, we know of no other research applying reinforcement learning to the com-
plete stock-trading task. Moreover, the exact design and parameterization of the trend-
following and market-making strategies used in this paper have likely not been tried
elsewhere. However, what truly makes this work original are the principled compar-
isons of the strategies in a novel, more realistic setting, with a relatively uncommon and
valuable performance metric.

4 Approach and Assumptions
The generic stock-trading agent architecture used throughout this paper is illustrated in
Figure 1. The PLAT competition does not allow share/cash carryover from one trading
day to the next. This algorithm is therefore designed to run from 9:30 a.m. to 4 p.m., the
normal trading hours, maximizing profits on a single day (lines 1–4) and completely un-
winding the share position before market close (lines 5–9). The actual trading strategy
is abstracted into theCOMPUTE-ACTION routine. Given the system’s state, this routine
prescribes the withdrawal of some of the previously submitted orders and/or the place-
ment of new orders, each given by a type (BUY or SELL), volume, and price. Sections
5, 6, and 7 explore distinct implementations of this routine.

GENERIC-TRADING-AGENT

1 while current-time < 3 p.m.
2 do state ← updated trader, market stats; action ← COMPUTE-ACTION(state)
3 if action 6= VOID

4 then place/withdraw orders peraction
5 withdraw all unmatched orders
6 while market open ¤ unwind share position
7 do state ← updated trader, market stats
8 if share-position 6= 0
9 then match up to|share-position| shares of top order in opposite book

Fig. 1. Generic agent architecture

Position unwinding (lines 5–9 in Figure 1) works as follows. The agent starts by
withdrawing all its unmatched orders. Then, if the agentowesshares (has sold more
than it has purchased), it places a buy order, one per order placement cycle, fors shares
at pricep, wheres andp are the volume and price of the top order in the sell book. The
liquidation of anyownedshares proceeds likewise. This unwinding method allows for
rapid unwinding at a tolerable cost. By spacing the unwinding over multiple cycles, this
scheme avoids eating too far into the books. By contrast, a scheme that simply places
a single liquidating order is unable to take advantage of future liquidity and possibly
better prices.

The fundamental assumption underlying the generic agent design of Figure 1 is
that profit maximization and position unwinding are two distinct objectives that the
automated trading application can treat separately. Although this task decomposition
may be suboptimal, it greatly simplifies automated trader design. Moreover, the profit-
maximization strategies proposed in this paper, perhaps with the exception of the ap-



proach based on reinforcement learning, hold very reasonable share positions through-
out the day, making unwinding feasible at a nominal cost. The time of the phase shift
between profit maximization and position unwinding (3 p.m.) was heuristically chosen
so as to leave more than enough time for fully unwinding the agent’s position.

We have adopted the following experimental methodology in this paper. First,
we developed three parameterizable strategies (implementations of theCOMPUTE-
ACTION routine) and defined several instantiations of each strategy. Next, we evaluated
each instantiation separately, in a controlled setting, using SOBI as a fixed opponent
strategy. In what follows, we describe only the most successful instantiation of each
strategy. Finally, we identified the most successful strategy among these by means of a
joint simulation. The live competitions, albeit not controlled experiments, have offered
additional empirical feedback.

5 The Reinforcement Learning Agent
Reinforcement learning [9] is a machine-learning methodology for achieving good
long-term performance in poorly understood and possibly non-stationary environments.
Given the seemingly random nature of market fluctuations, it is tempting to resort to a
model-free technique designed to optimize performance given minimal domain exper-
tise and a reasonable measure of progress. A machine-learning approach to this problem
is further motivated by the need toadaptto the economy (particular mix of opponents,
market performance, etc.). A fixed, hand-coded strategy can hardly account for all con-
tingencies.

In its simplest form, a reinforcement learning problem is given by a 4-tuple
{S,A, T, R}, whereS is a finite set of the environment’s states;A is a finite set of
actions available to the agent as a means of extracting an economic benefit from the
environment, referred to asreward, and possibly of altering the environment state;
T : S ×A → S is a state transition function; andR : S ×A → R is a reward func-
tion. The state transition and reward functionsT and R are possibly stochastic and
unknown to the agent. The objective is to develop apolicy, i.e., a mapping from envi-
ronment states to actions, that maximizes the long-term return. A common definition of
return, and one used in this work, is the discounted sum of rewards:

∑∞
t=0 γtrt, where

0 < γ < 1 is a discount factor andrt is the reward received at timet.
The original RL framework was designed for discrete state-action spaces. In order

to accommodate the continuous nature of the problem, we usedtile coding, a linear
function-approximation method, to allow for generalization to unseen instances of the
continuous state-action space.

5.1 Strategy Design

Since the transition functionT is an unknown feature of the environment meant to be
learned by the agent, the design of a trading strategy reduces to the specification of
the state-action space and the reward function. After exploring several formulations of
the stock-trading problem as a reinforcement-learning task, we adopted the following
design:

State space.The state space is given by a single variable, the price parameter∆pt =
pt − pt, computed as the difference between the current last price and an exponential
average of previous last prices:pt = βpt−1 + (1 − β)pt. The effect ofβ is to focus



the agent on short-term or long-term trends (see Section 5.2 for an experimental study
of this effect). The definition of the price parameter as a difference serves a twofold
purpose. On the one hand, it gives an indication of the latest market trend:∆p ≈ 0
corresponds to a stationary market,∆p < 0 corresponds to a decline in price, and
∆p > 0 indicates that the stock price is on the rise. On the other hand, this definition
makes the learned policy more general by eliminating the dependency on the absolute
values of the prices.

We limited the state space to the price parameter for the following reasons. First of
all, share and cash holdings are of no use as state variables: the “right” trading decision
is never contingent on these parameters because the agents are allowed to have an arbi-
trarily large positive or negative share/cash position, and position unwinding is no part
of the profit-maximization strategy. For the same reason, a “remaining time” parameter
would not be helpful either. Although additional state variables might have been useful,
we decided to avoid the corresponding increase in complexity.

Action space. The action space is likewise given by a single variable, the volume of
shares to purchase or sell. We limited the range of this variable to[−900, 900], with
negative values corresponding to sell orders and positive values, to buy orders. This
trade size is a very generous leash, allowing rapid accumulation of share positions as
large as 150,000 shares and beyond. To save a dimension of complexity, we decided
against extending the action space to include order price. Instead, we always set the
price of an order to the last price, leaving it up to the agent to adjust the demanded
volume accordingly.

Reward function. Ideally, the reward should be computed only once, at the end of
the trading day, with zero intermediate rewards assigned at each time step along the
way; otherwise, there is a danger that the trader will learn to optimize the sum of local
rewards without optimizing the final position ([9], Chapter 3). There are two important
complications with this approach. First, it rules out on-line adjustment to the economy.
Second, given the complexity of the state-action space (2 continuous variables) and the
duration of a simulation (≈50,000 order placement cycles in live mode), the training
time requirements of this method seem excessive. Instead, we use a localized reward
function, given by the difference in present value (cash holdings plus shares valued at
the last price) from the last time step.

5.2 Parameter Choices

We used the Sarsa algorithm [10, 11] with the following parameters:α = 0.04, γ = 0.8,
ε = 0.1, and λ = 0.7. We have not experimented with varying these values and
used them as reasonable general settings. A final parameter that played a substan-
tial role wasβ, the update rate for computing the exponential average of past prices:
pt = βpt−1 + (1 − β)pt. Figure 2 demonstrates the behavior of the average price on
two trading days with different price dynamics andβ settings. As the graphs indicate,
the closerβ is to 1, the more “inert” the exponential average, i.e., the less responsive
to changes in the price trend. On the one extreme,β = 0.95 essentially duplicates the
last price graph, yielding little information about past price dynamics. On the other ex-
treme,β = 0.999 yields an average that is not at all representative of the changes in
price dynamics. The graphs indicate that a choice ofβ = 0.99 offers a nice balance,



responding sufficiently quickly to genuine trend reversals and ignoring random fluctu-
ations. We use this informed heuristic choice forβ in our experiments, leaving a more
detailed optimization with respect to actual performance for future work.
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Fig. 2. Effect ofβ on price average

The strategy was trained on 250 historical simulations, each encompassing over
15,000 order placement cycles, for a total of nearly 4 million Bellman backups. This
amount of training effort was deemed to provide the agent with sufficient experience.
Each simulation involved SOBI as the agent’s only opponent. The trading days were a
random mix of trading days in October 2003, similar in composition to the handpicked
collection of days on which performance was measured. The agent functioned in learn-
ing mode (i.e., using the original settings of the learning and exploration rates) during
evaluative simulations to allow on-line adjustment to the economy.

6 The Trend-following Agent
Our second agent uses a trend-following (TF) approach based on price prediction. Un-
like reinforcement learning, this approach constructs an explicit model of market dy-
namics, based on linear regression, to guide order placement. Roughly, the strategy is as
follows. If the price is rising (i.e., the slope of the regression line is positive), the agent
places buy orders, confident that it will be able to sell the purchased shares back at a
higher price. If, on the other hand, the price is falling, the agent will place sell orders. In
either case, the agent attempts to unwind its share position just before the price starts to
drop (if it is currently on the rise) or just before the price starts to rise (if it is currently
on the decline).

The details of the TF approach are best illustrated through an example. Figures 3a
and 3b show, respectively, the Island last price on November 18, 2003, and the first and
second derivatives1 P ′ andP ′′ of the price function (scaled differently to permit display
on the same set of axes). The value of theP ′ curve at timet is the slope of the linear
regression line computed using the price data for the past hour, i.e., for the time interval
[t − 3600, t], wheret is expressed in seconds. The length of the time interval presents
a trade-off between currency (shorter time intervals generateP ′ curves that are more
responsive to price fluctuations) and stability (longer time intervals generateP ′ curves
that are more “inert” and thus less susceptible to random fluctuations). We used an
interval width of 1 hour, the duration of a typical medium-term trend, to balance these
desirable characteristics. The purpose of theP ′ curve is to distill growth and decrease
information from the price graph, detecting genuine long-term price trends and ignoring
short-term random price fluctuations.

1 As explained below,P ′ andP ′′ extract growth information fromseriesof price data, to account for its
noisy nature. Therefore,P ′ andP ′′ are not derivatives in the strict sense of the term since they do not
capture instantaneous change, and we abuse this mathematical concept slightly here.



The value of theP ′′ curve at timet is the slope of the linear regression line computed
using theP ′ curve data for the past 400 seconds, i.e., over the time interval[t− 400, t].
The width of the time interval over which the regression line is computed offers the
same trade-off between responsiveness and stability; our experiments suggest that the
value of 400 seconds offers a good balance. TheP ′′ curve is above thex-axis whenever
theP ′ curve is exhibits growth, and below thex-axis whenever theP ′ curve is on the
decline. Therefore, theP ′′(t) value changes sign whenever theP ′ curve reaches a local
extremum, signaling a likely trend reversal in the near future. The purpose of theP ′′(t)
is to alert the agent when the price trend is reversed.
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Figure 4 presents the trend-following strategy in pseudo-code. We used a trade size
of 75 shares, a rather generous limit leading to share positions as large as 150,000
shares. Further increasing the trade size may complicate unwinding. Another essential
component of the strategy is the order pricing scheme (lines 1–2). In the pseudo-code,
we definedpredicted -last-price = a · tcurr + b, wheretcurr is current time anda =
P ′(tcurr) andb are the parameters of the linear regression line fitted to the price data
for the past hour. Our original implementation always stepped a fractional amount in
front of the current top order, ensuring rapid matching of placed orders. The current
strategy design uses a more cautious pricing scheme that experiments show results in
systematically better performance.

COMPUTE-ACTION(state)

1 sell-price ← max{last-price, predicted-last-price}
2 buy-price ← min{last-price, predicted-last-price}
3 if P ′ > 0 and P ′′ > 0
4 then return “ BUY 75 shares atbuy-price”
5 elseifP ′ < 0 and P ′′ < 0
6 then return “ SELL 75 shares atsell-price”
7 elseifshare-position 6= 0 ¤ reversal, so unwind
8 then withdraw unmatched orders
9 return “match up to|share-position| shares of top order in opposite book”

10 else return “ VOID”

Fig. 4. The trend-following strategy

7 The Market-making Agent

As discussed above, the objective of the trend-following strategy is to look for long-
term trends in price fluctuations, buying stock when the price is low and later selling
stock when the price has gone up (and vice versa with the price going in the opposite



direction). As a result, the performance of the strategy is highly dependent on the price
dynamics of a particular trading day. If more consistency is desired, an approach based
on market making (MM) may be more useful. Unlike the trend-following strategy, the
MM strategy capitalizes on small fluctuations rather than long-term trends and is likely
to produce a smaller variance in profit.

Our final approach to the stock-trading problem combines the regression-based
price prediction model presented in Section 6 with elements of market making. The
strategy (Figure 5) still buys stock when the price is increasing at an increasing rate and
sells stock when the price is decreasing at an increasing rate. However, rather than wait
for a trend reversal to unwind the accumulated share position, the agent places buy and
sell orders in pairs. When the price is increasing at an increasing rate, the agent places a
buy order. As soon as thisprimaryorder is matched, the agent places a sell order at price
p + PM (the conditionalorder, so called because its placement is conditional on the
matching of the primary order), confident that the latter will be matched shortly when
the price has gone up enough. ThePM (profit margin) parameter is the per-share profit
the agent expects to make on this transaction. Our implementation usesPM = $0.01
as a sufficiently profitable yet safe choice. The situation is symmetric when the price is
decreasing at an increasing rate. Finally, the agent takes no action during periods des-
ignated as “price reversal” by the prediction module (with price increasing/decreasing
at a decreasing rate): since the orders are placed in pairs at what is deemed a “safe”
time, no additional effort is called for to unwind the share position. The pricing scheme
(stepping just behind the top order) is designed to avoid fees for removing liquidity, as
discussed in Section 2.

COMPUTE-ACTION(state)

1 S ← price of top sell order + $0.001¤ sell price
2 B ← price of top buy order - $0.001¤ buy price
3 place qualifying conditional orders
4 if P ′ > 0 and P ′′ > 0
5 then create conditional order

“ SELL 75 @B +PM ”
6 return “ BUY 75 shares atB”
7 elseifP ′ < 0 and P ′′ < 0
8 then create conditional order

“ BUY 75 @S −PM ”
9 return “ SELL 75 shares atS ”

10 else return “ VOID”

Fig. 5. The market-making strategy
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in Oct. 2003.) Label legend: M=“monotonic,”
F=“substantial fluctuation,” Z=“zigzag behav-
ior,” O=“mixed (other).”

8 Individual Assessment
Our controlled experiments in this section and Section 9 use a set of 10 trading days
carefully selected to represent typical price dynamics (Figure 6), namely, monotonic
decrease/increase, substantial fluctuation, and zigzag and mixed behaviors. The graphs
in Figure 6 are scaled differently and convey only the shape of the price curves. Each
graph is labeled by a symbol denoting the price behavior, with a legend given in the



caption. Table 1 displays the raw profit/loss of the RL, TF, and MM strategies in in-
dividual simulations against SOBI, with days labeled by price behavior (the labels are
taken from Figure 6). The bottom row gives each strategy’s average profit/loss over the
10 days, a measure of overall efficacy. In this section, the strategies were allowed to
run through 4 p.m., i.e., the unwinding code (lines 5–9 of Figure 1) was omitted and
the final score was computed as present value (cash holdings plus shares valued at the
closing price).

Price RL vs. SOBI TF vs. SOBI MM vs. SOBI

M 11134 -21935-4015 -29686 529 -30286
M 45680 -56308-3591 -44216 972 -52255
F -5142 55710-4292 108476 -471 117192
F -50529 17464-1533 19958 1131 24908
Z -69683 230715-4390 155539 -518 154082
Z 358774 963873163 32383-3370 15605
Z -284563 -11059 -479 -1964 744 -2417
O 49621 -13805-5494 -12063 654 -22632
O 3407 25026-4139 118016 638 85099
O 2302 29015-4692 23098 1224 27467

Ave 6100 35121-2946 36954 153 31676

Table 1. Individual assessment of RL, HC,
and MM vs. SOBI

Date RL TF MM SOBI

11/03/03 -7314 -2659 692 550
11/04/03 -40712 -1623 1087-23999
11/06/03 -10980 -2119 -13 51432
11/12/03 -160178 -1159 -1321 99489
11/13/03 -20981 -430 684 43088
11/18/03 -209277 6045 -1300 75569
11/19/03 -22747 -3469 108 15550
11/21/03 28345 -3677 735 -6216
11/24/03 -992 90 1081 -2289
11/26/03 19299 -4776 259 22295

Average -42553 -1377 201 27546
Std. dev. 78395 3012 879 39273

Sharpe Ratio -0.5428-0.45730.22900.7014

Table 2. RL, TF, MM, and SOBI in a joint
simulation

8.1 Reinforcement Learning

RL by far outperforms SOBI on the two days with monotonic price behavior. On days
with substantial fluctuation in price, SOBI is profitable and RL loses money. Finally,
the two strategies exhibit roughly comparable performance on the days with zigzag and
mixed price behavior, each finishing 4 days in the black and losing money on the 2 other
days.

RL’s performance under different market conditions is a direct consequence of the
problem formulation as a reinforcement-learning task. The strategy is profitable on both
days with steady price growth/decline, a success owed to the price difference parameter
that recognizes market trends, and an indication that learning and adaptation do take
place. Such a parameter is not particularly valuable on days with substantial fluctuation
because trends are short-term and trend reversals are frequent. The concluding 6 days
(zigzag and mixed behavior) are much more auspicious for the strategy because the
market trends last significantly longer, accounting for RL’s profitability on most of the
days.

It is no doubt encouraging to see RL, a strategy evolved by a generic machine-
learning technique with minimal domain expertise, perform overall comparably with
SOBI, a hand-coded approach requiring a firm grasp of stock trading. On the other hand,
the experiments reveal much room for improvement under certain price dynamics, in
part due to the difficulties of adapting RL methodology to the stock-trading domain. A
major problem is the exogenous nature of the transition function: when the agent places
an order, it cannot control when the order will be matched, if at all. The reward function
is oblivious to this fact, attributing any change in present value, which may well be due



to random price fluctuation, to the last action taken. This misattribution of reward is
likely to present a great impediment to learning.

A different and much more successful RL-based approach to trading in a continu-
ous double auction setting such as the stock market is reported in [12]. That method
computes a belief function (a mapping from bid and ask prices to the likelihood of a
trade) based on recent market behavior and then uses dynamic programming (with the
belief function serving as the market model) to compute an optimal order. An approach
of this type would be readily implementable in the PXS framework, which makes com-
plete order-book data available. This alternative formulation shifts the entire learning
challenge from the RL agent to a non-RL analytical subsystem that constructs a trade
probability model, leaving to the agent only a straightforward recursive computation.
In contrast, we relied on the RL agent to learn the task from scratch.

Yet another research avenue to consider is direct (policy-search) RL methods. It has
been argued [8] that these methods help avoid the search space explosion due to contin-
uous variables and learn more efficiently from the incremental performance indications
in financial markets (as opposed to the delayed-reward domains in which value-based
methods have excelled).

8.2 Trend following

As expected, TF beats SOBI on the days with monotonic price behavior by avoiding
large positive share positions when the price is declining or large negative share posi-
tions when the price is increasing. SOBI is far more profitable on days with substantial
fluctuation because it does not rely on longer-term price trends. On the days with zigzag
and mixed price behavior, TF wins a third of the time. TF’s strongest performance on a
day with zigzag price behavior jibes well with the intuition that TF should perform best
under price trends of medium duration: shorter trends diminish the value of prediction,
while longer ones often contain aberrations that trigger premature unwinding.

With a single profitable day, TF’s performance is disappointing. TF is the only strat-
egy in Table 1 with a negative average profit/loss. In fact, additional analysis reveals that
TF often steadily loses value throughout the day. We have experimentally verified that
this is not due to a problem with timely unwinding. Specifically, when we incorporated
periodic unwinding in the above design (ensuring that the agent keeps its share holdings
to a moderate amount instead of relying on an advance warning of a trend reversal from
the prediction module), we observed no change in performance. Our understanding is
that, on the contrary, the prediction module generates too many false alarms, triggering
premature unwinding.

8.3 Market making

MM’s results are very encouraging. The agent is profitable on 70% of the days. MM per-
forms very well on days with monotonic and mixed price behaviors. Days with zigzag
price behavior seem to present a problem, however. One explanation is that the condi-
tional orders, whose primary counterparts match just before the extremum, are placed
and never matched due to the unfavorable change in price; the resulting share imbalance
is never eliminated and severely affects the agent’s value. In terms of raw profitability,
MM wins 4 of the 10 simulations. However, MM’s profits seem far more consistent, a
claim we quantify in Section 9.



The market-making approach shows great promise. Neither the reinforcement learn-
ing nor trend-following approach come close to rivaling MM’s profit consistency. An
important extension for MM to be viable in practice would be an adaptive mechanism
for setting the trade size and profit margin, both highly dependent on the economy. A
further nuance is that there is an inherent trade-off between these parameters. If the
agent trades large volumes, it will have to accept narrow profit margins or else see its
conditional orders unmatched; if the agent trades little, it can afford to extract a more
ambitious profit per share.

9 Comparative Analysis

Table 2 contains joint-simulation performance data for every strategy presented above
and every trading day. This time, the strategies ran through 3 p.m., at which point con-
trol was turned over to the unwinding module (lines 5–9 of Figure 1). Each strategy
finished every trading day with zero share holdings. We used the PLAT scoring policy
and performance criterion (Section 2). RL and TF were largely unprofitable, finishing
with a negative score on 8 of the days.2 RL’s performance was particularly poor, as
the large negative scores indicate, presumably because its training experience did not
incorporate key features of the joint economy. MM and SOBI, on the other hand, were
consistently winning, finishing with a positive balance on 7 of the days. Of the four
strategies, SOBI’s scores are the most impressive.

The bottom row of Table 2 shows the Sharpe ratios for each strategy in the joint
simulation. SOBI wins with the highest Sharpe ratio, followed by MM, TF, and RL. It is
noteworthy that MM, generating profits that are a tiny fraction of SOBI’s, finished with
a Sharpe ratio quite close to SOBI’s. This fact is due to the emphasis on consistency
built into the Sharpe ratio. An important lesson to learn from this comparison is that
if the Sharpe ratio is the primary criterion, large profits are not strictly necessary for
placing in the top ranks; a consistent strategy that generates small profits will be a
strong contender. Therefore, we decided to use MM in the live competition.

It is certainly disappointing that RL, the most innovative of the three approaches,
did very poorly both in an absolute sense and in comparison with the other strategies.
However, the focus of this study was not a quest for a novel stock-trading algorithm but
a comparative evaluation of strategies with the purpose of selecting one as a competition
entry. At the same time, the results above help explain stock traders’ preference for
market making and similar well-tried methodologies over original machine-learning
techniques.

10 Live Competition Results

The market-making strategy proved best of the three strategies in off-line experiments.
But of course one of the three had to prevail. The true test of this research was how the
chosen strategy would do in an open competition with agents created by many other
people also trying to win.

2 Given RL and TF’s large losses, it has been speculated that “reversing” their trading recommendations
would have yielded a profitable strategy. In general, this claim is unwarranted due to the limited liquidity
provided by a handful of other agents; it is impossible to predict how the other traders would have reacted
to the new orders.



The exact MM strategy we used in the live competition differed from the original
design of Figure 5 in two respects. First, the trade size was scaled down (from 75 to 15)
to account for the higher order-placement frequency in live mode. Second, the primary
sell and buy orders were priced at the last price plus and minus profit margin, respec-
tively; the corresponding conditional orders were priced at the last price. This more
cautious pricing scheme gives a greater assurance that, if a primary order matches, its
corresponding conditional order will match as well, avoiding costly share imbalances.

Participants in the December 2003 and April 2004 PLAT live competitions were
divided into two separate economies. Tables 3 and 4 summarize the performance of
MM and the 5 other strategies in its group (labeled #1 through #6, in order of final
rankings). The top 10 rows show daily scores, and the bottom row shows the Sharpe
ratios. MM fully justified our hopes in December 2003, exhibiting steady profitability
on every single trading day and attaining the highest Sharpe ratio (no agent in the other
group attained a positive Sharpe ratio). As to MM’s competitors, agents #2, #3, and #4
were highly profitable, routinely realizing profits in the thousands. MM’s profits were
an order of magnitude smaller but far more consistent than its opponents’, resulting in
the highest Sharpe ratio. In April 2003, MM’s performance fell short of its December
victory. However, the agent achieved a satisfactory Sharpe ratio and placed second,
exhibiting profitability on 8 of the days and suffering minor losses on the other two.
Overall, MM has attained an 18-day record of profitable and consistent performance.
Details of the competition, including complete results, are available from the PLAT
website.3

Date MM #2 #3 #4 #5 #6

12/9 135 -7447-4106 4034-56731-7E+5
12/10 381 3006-3254 3625 -6E+5 -7E+5
12/11 436 1365 5971 1251 196 -6E+5
12/12 140 848 322 -986 -2E+5 -7E+5
12/13 62 2536 1334 1286 -1E+5 -5E+5
12/16 439 3716 3940 3129 18227-7E+5
12/17 359 3501 7924 433 10873-7E+5
12/18 411 1037 2163 1389 0 -5E+5
12/19 430 4617 -119 -9512 0 -5E+5
12/20 679 1692 -64 2148 599 -6E+5

Ave 347 1487 1411 680 -98167-6E+5
St. dev. 185 3378 3772 3887 2E+5 84772
Sharpe 1.88 0.44 0.37 0.17 -0.48 -7.32

Table 3.Dec. 2003 live competition results

Date #1 MM #3 #4 #5 #6

04/26 3433 271 1045 1307-4655 -9E+6
04/27 1374 538 4729 2891-1370 -8E+6
04/28 2508 -242 243 -1563 2178 -7E+6
04/29 2928 -248 -6694-1349 2820 -8E+6
04/30 3717 13 12508-1339 2766 -8E+6
05/03 3444 636 11065 3230 2961 -7E+6
05/04 1322 386 -2377 1850 2665 -8E+6
05/05 3300 452 5708 2037-5746 -8E+6
05/06 2199 461 9271 2465 2402 -8E+6
05/07 966 121 11755 1041-2545 -8E+6

Ave 2519 239 4725 1057 148 -8E+6
St. dev.1009 316 6551 1829 3413+6E+5
Sharpe 2.50 0.76 0.72 0.58 0.04 -12.59

Table 4.Apr. 2004 live competition results

11 Conclusions and Future Work
This paper documents the development of three autonomous stock-trading agents. Ap-
proaches based on reinforcement learning, trend following, and market making are pre-
sented, evaluated individually against a fixed opponent strategy, and analyzed compar-
atively. A number of avenues remain for future work. The reinforcement learning ap-
proach calls for an improved reward function. The trend-following agent needs a more

3 The competition results are currently athttp://www.cis.upenn.edu/˜mkearns/projects/
newsandnotes03.html . The main project page ishttp://www.cis.upenn.edu/˜mkearns/
projects/pat.html .



accurate price prediction module that would eliminate premature unwinding due to a
perceived trend reversal. The highly successful market-making strategy would further
benefit from automatic adjustment of the trade size and profit margin as a function of
the economy.

This study confirms that automated stock trading is a difficult problem, with rea-
sonable heuristics often leading to marginal performance and small-profit strategies
proving competitive, according to important metrics, with highly profitable strategies.
While the area of stock trading has received much attention in the past, the unique op-
portunities and challenges of up-to-date order book information and of electronic share
exchanges, as exemplified in part by the presented approaches, merit further study.
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