Influencing a Flock via Ad Hoc Teamwork

Katie Genter and Peter Stone

The University of Texas at Austin {katie,pstone}@cs.utexas.edu

September 12, 2014

Background

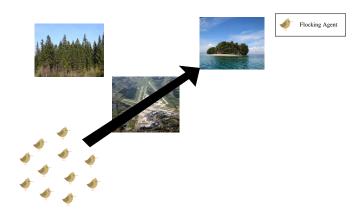
- Artificial intelligence
 - Multi-agent systems
 - ▶ Teamwork
 - Ad hoc teamwork
 - Swarm behavior
 - ▶ Flocking

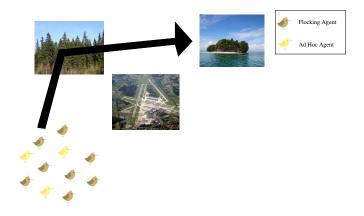
Ad Hoc Teamwork

- Only in control of a single agent or subset of agents
- Shared goals
- ▶ No pre-coordination
- ▶ No explicit communication

Flocking

- Emergent behavior found in nature
 - ► Birds, fish, insects


- Animals follow a simple local behavior rule
- Group behavior is cohesive



Example — Leading Teammates in Ad Hoc Settings

Example — Leading Teammates in Ad Hoc Settings

Example — Leading Teammates in Ad Hoc Settings

- Lead the team to adopt desired behaviors
- Influence team to maximize team utility

Related Work — Ad Hoc Teamwork

- Stone et al. 2010
 - Introduced the ad hoc teamwork problem
- Agmon and Stone 2012, Stone et al. 2010
 - Leading teammates in ad hoc settings from a game theoretic approach
- Jones et al. 2006
 - Empirically studied dynamically formed heterogeneous multi-agent teams
 - All agents know they are working as a team

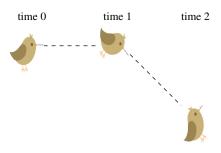
Related Work — Flocking (1)

- Reynolds 1987, Vicsek et al. 1995
 - Concerned with simulating flock behavior
 - Not concerned with adding controllable agents to the flock
- ► Turgut et al. 2008
 - Considered the behavioral effects of providing different information to the flock
- Jadbabaie et al. 2003, Su et al. 2009, Celikkanat and Sahin 2010
 - Used controllable agents to influence the flock
 - Only concerned with making the flock converge to some heading eventually

Related Work — Flocking (2)

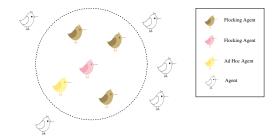
- Couzin et al. 2005
 - Considered how grouping animals make informed unanimous decisions
- Cucker and Huepe 2008, Ferrante et al. 2010, Yu et al. 2010
 - Used informed agents to influence flock
 - Behave in a fixed way that is predetermined on based on type
- ► Han et al. 2006
 - Studied how one agent can influence the direction in which a flock of agents is moving
 - ► Utilized one ad hoc agent with unlimited, non-constant velocity

Outline


- 1 Introduction
- 2 Problem Definition
- 3 1-Step Lookahead Behavior
- 4 Experiments
- 5 Summary

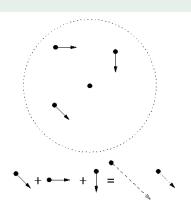
Problem Definition

Each agent has:


- Constant, non-zero velocity
- 2D Position
- Global heading

Problem Definition - Neighborhood

Each flocking agent reacts only to agents within a certain neighborhood around itself.


 Characterized by a radius in this work

Problem Definition - Heading Update

A flocking agent's heading at the next time step is set to be the average global heading of all agents currently within the agent's neighborhood.

- We only consider the Alignment aspect of Reynolds' model
- Agent can turn any amount instantaneously (not fully realistic)

Research Questions

Research Problem:

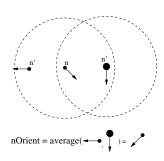
How should ad hoc agents behave so as to:

- orient the rest of the flock towards a target heading as quickly as possible
- herd the rest of the flock through turns quickly but without compromising the composition of the flock

Outline

- 1 Introduction
- 2 Problem Definition
- 3 1-Step Lookahead Behavior
- 4 Experiments
- 5 Summary

1-Step Lookahead Behavior


- Each ad hoc agent determines the best heading to adopt at each time step
 - 'Best' is the behavior that will exert the most influence on the next time step

 Considers all influences on each neighbor of the ad hoc agent

1-Step Lookahead Behavior

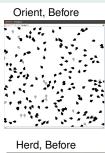
- For each potential ad hoc agent heading, consider how each of the neighbors of the ad hoc agent will be influenced
 - Consider each neighbor of each neighbor of the ad hoc agent
- Pick the heading that results in the least difference between the goal heading and the neighbors' new headings

- Influencing agent
- Flocking agent

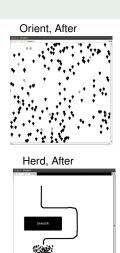
Outline

- 1 Introduction
- 2 Problem Definition
- 3 1-Step Lookahead Behavior
- 4 Experiments
 - Research Questions
 - Experimental Setup
- 5 Summary

Research Questions

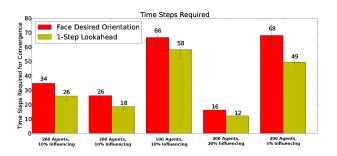

How should ad hoc agents behave so as to:

orient the rest of the flock towards a target heading as quickly as possible


herd the rest of the flock through turns quickly but without compromising the composition of the flock

Experimental Setup

Baseline Behavior


Face Desired Orientation Behavior

 Ad hoc agents always orient towards the desired orientation vector

► Inspired by Jadbabaie, Lin, and Morse (2003)

Orient Experimental Results

The results shown in this figure are averaged over 50 trials and the error bars represent the 95% confidence interval.

Orient Video - Flock Size 200, Ad Hoc Percent 10%

Orient Video - Flock Size 200, Ad Hoc Percent 5%

Orient Video - Flock Size 200, Ad Hoc Percent 20%

Orient Video - Flock Size 100, Ad Hoc Percent 10%

Orient Video - Flock Size 300, Ad Hoc Percent 10%

Herd Experimental Results

	Steps- Converge	Steps- Optimal	Diff
10 Steps to Turn - Baseline	1243.0 (4.6)	1205	38.0
50 Steps to Turn - Baseline	1245.8 (2.2)	1225	20.8
100 Steps to Turn - Baseline	1261.0 (1.6)	1250	11.0
200 Steps to Turn - Baseline	1301.9 (1.0)	1300	1.9
10 Steps to Turn - 1-Step Lookahead	1237.0 (5.4)	1205	32.0
50 Steps to Turn - 1-Step Lookahead	1238.6 (3.0)	1225	13.6
100 Steps to Turn - 1-Step Lookahead	1254.5 (1.3)	1250	4.5
200 Steps to Turn - 1-Step Lookahead	1300.6 (0.6)	1300	0.6

These results are averaged over 100 trials. The numbers in parentheses show the 95% confidence interval.

Herd Video - 10 Steps to Turn

Herd Video - 50 Steps to Turn

Herd Video - 200 Steps to Turn

Ongoing Research

- Other types of algorithms for ad hoc agents
 - Deeper lookahead searches
 - Coordination between ad hoc agents
- Extend to other interaction models
 - Consider flock separation and cohesion when calculating the next heading

Summary

Research Problem:

How should ad hoc agents behave so as to:

- orient the rest of the flock towards a target heading as quickly as possible
- herd the rest of the flock through turns quickly but without compromising the composition of the flock

