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Abstract. Ad-hoc teamwork is defined as the task of collaborating with
teammates without pre-coordination. When the ad hoc agent is a robot
that needs to collaborate with people, it cannot assume that its team-
mates will behave optimally or legibly. By providing a means to learn
human policies in ad-hoc teamwork, this work will help create robots
that can adapt to a new human agent and work together to achieve a
common goal. We focus on a simple, yet powerful model for representing
agents using the concept of bounded rationality. Our preliminary results
exemplify how such a model can be used in a domain from the ad-hoc
teamwork literature called “the tool fetching domain”.

1 Introduction

Learning autonomous agents are becoming increasingly capable of solving com-
plex tasks, but encounter many challenges when required to solve such tasks as a
team, especially if some of the team members are human. In such human-robot
teaming scenarios, the robot often learns how to act prior to the actual inter-
action, while assuming it has full knowledge of the teammates and the task at
hand. However, this process is not suitable to many real world scenarios, where
the robot interacts with some of its teammates for the first time and might have
not collaborated with them in the past. As a topical example, service robots
might be deployed to assist medical teams in an epidemic outbreak. Such het-
erogeneous robots might be deployed without any prior coordination about each
other’s capabilities to assist, but they will only be effective if they are able to
work together, with the medical team, and with patients, without the need to
be explicitly provided with coordination strategies in advance.

Ad-hoc teamwork (AHT) is the task of collaborating with teammates without
pre-coordination, which was defined as a formal challenge by Stone et al. [17].
However, when the AHT agent is a robot that needs to collaborate with people
or previously unmet agents, it cannot assume that its teammates will behave
optimally or legibly [4,18], and asking too many questions about its teammate’s
policies risks excessively interrupting the teammate, and thus hindering the col-
laboration. This work aims to address this challenge by learning how suboptimal
human policies tend to be in a specific AHT scenario.



By providing a means to learn human policies in AHT, this work will help
create robots that can adapt to any human agent and work together to achieve
a common goal. The approach used in the work is optimization using example
human trajectories. We focus on a simple, yet powerful model for representing
agents with bounded rationality. The main contributions presented in this paper
are as follows:

– To the best of our knowledge, this is the first work to investigate whether it is
possible to quantify human rationality for artificial agents’ decision making
in the context of the AHT challenge.

– It presents a basic algorithm that can fit the parameters of a bounded ratio-
nality model to learn human behaviour.

– The paper provides preliminary results showing the fitting of the bounded
rationality model in a specific domain.

Moving forward, we aim to use the learned model to decide on the action that
the robot should take in response to the human behavior in ad-hoc human-robot
interactions.

2 Background

In this work, we rely on two main research thrusts and combine them together:
AHT, and bounded rationality.

2.1 Ad-hoc Teamwork

Ad-hoc teamwork is defined as the challenge to create an autonomous agent that
is able to efficiently and robustly collaborate with previously unknown team-
mates on tasks to which they are all individually capable of contributing as
team members [17]. Previous work investigated the formation of AHT with hu-
man team-members [7,9], and Stone et al. [17] formally defined the challenge of
designing AHT artificial agents. There are two main properties that distinguish
AHT from other multiagent systems. First, it assumes that all teammates strive
to be collaborative [6]. Second, the properties of the environment and of the
teammates cannot be changed by the AHT agent, and the behavior of the team-
mates is not necessarily known in advance. The AHT agent’s task is to reason
and plan towards the team’s goals under these conditions.

Subsequent works proposed to model teammates by mapping them to one
out of a set of types [1, 14] or by modeling them directly [2]. For approaches
which employ a learned type set, learned decision trees were common [3]. More
recently, AHT research modeled the information pertaining to teammates’ be-
havior by using classes of types into which any new teammate is classified. Such
methods have been used to learn a neural network-based encoder that maps
observations of teammates to an embedding of the agent’s type [12, 13, 20, 21].
While these works do narrow the gap between learning agents collaborating in
simulation and real-world AHT, they have not evaluated human users or human



decision makers as one or more of the teammates in their tasks. Recently, Suriad-
inata et al. [18] presented an experiment that evaluates human behavior in AHT
under three different conditions of instructions prior to the interaction, where
the users’ performance was evaluated in terms of optimality and legibility. This
paper showed that the optimality and legibility values are significantly different
between the conditions, thus highlighting the importance of acquiring a model
that encompasses different human behaviors.

2.2 The Tool Fetching Domain

One of the simulated domains created to evaluate the performance of AHT
agents is called the tool fetching domain [11]. This domain is a grid world with
workstations, in which there are two teammates – one agent, the worker, needs
to reach a specific workstation, while the other agent, the fetcher, needs to fetch
the worker an appropriate tool from a toolbox, according to the workstation the
worker goes to.

Fig. 1: A depiction of the Tool Fetching domain. The robot is the fetcher that
needs to fetch the right medicine to the physician, according to the room the
physician is heading for.

This setup means that the fetcher’s goal depends on the goal of the worker,
and hence its choice of actions relies on its understanding of the worker’s goal.
For example, as depicted in Figure 3, if the physician (the worker) walks North 6
steps, the fetcher cannot decide whether to pick up the medicine for the patient
in the yellow room or for the patient in the green room.

In Suriadinata et al. [18], a human user played the role of the worker, and
the fetcher was an artificial agent which was modelled using the baseline agent
from Mirsky et al. [11]. That artificial agent is defined as follows: if there is no
ambiguity regarding the goal of the worker, the artificial agent acts optimally
to minimize the number of actions it takes to fetch the right tool (e.g., if the
physician in Figure 3 turns east, it is clear that the fetcher needs to fetch the



medicine for the patient in the green room). If there is some ambiguity regarding
the goal of the worker, there are two options: if there is an action that is optimal
for all goals with a probability higher than zero, then the fetcher will take that
action (e.g., no matter what action the physician takes, the robot needs to first
reach the toolbox and hence it will know what to do for the first five steps).
Otherwise, the fetcher cannot be certain about which action to take and it needs
more information to act optimally. In this situation, the fetcher will wait in its
current location until there is at least one optimal action that is common to all
likely goals. Notice that this policy depends on the fetcher’s mental model of the
worker’s policy: the fetcher needs to have some assumptions about the behavior
of the worker. For the sake of the described experiment, the worker was assumed
to behave optimally, but the final results show that people did not always act
optimally nor legibly. This result motivates the need to have a better model of
human behavior in AHT scenarios, such as the tool fetching domain.

2.3 Modeling Human Rationality

Many approaches exist to represent human rationality and predict how peo-
ple would behave under specific interaction protocols such as negotiations, au-
tonomous driving, games, and more [15]. These approaches leverage game theo-
retical models, deep learning, case-based reasoning, and more.

In this work, we focus on a specific approach called bounded rationality, orig-
inally interpreted by Simon [16] and which draws from psychological and be-
havioral studies [8]. This approach assumes that people have a limited ability to
compute the outcome of every single decision they can make and thus they use a
heuristic policy, which might not choose an optimal strategy. Bounded rational-
ity means that when humans make decisions, their rationality is limited by the
outcomes from the actions, the difficulty of the challenge, the cognitive capabil-
ities, and the time available to make the decision. In this approach, the human
decision maker is often represented using a utility function that describes a bi-
ased or a sub-rational heuristic policy. One of the common models of bounded
rationality is called Quantal Response.

Quantal response assumes that humans will try to maximize their utility
function, but will noisily estimate each strategy’s expected utility [5, 10]. One
approach to represent quantal response is using the logit quantal response, as
shown in Equation 1, where P represents the set of all possible policies that
the human can follow, u(p) is the expected utility from policy p ∈ P , λ is the
rationality parameter, and P(pi) is the probability that the human would follow
policy pi ∈ P .

P(pi) =
exp[λ · u(pi)]∑
pj

exp[λ · u(pj)]
(1)

When the rationality parameter λ = 0, the decision-maker acts randomly,
using a uniform random choice over the possible policies regardless of their ex-
pected utility. When λ → ∞, the quantal response function converges to a
utility-maximizing policy, meaning that the human acts optimally given the
utility function u.



3 Bounded Rationality in AHT

In this work, we take the quantal response model as our underlying representa-
tion of human behavior in the tool fetching domain, and we fit the rationality
parameter based on the human examples gathered in previous work [18].

3.1 Policy Representation

One of the main challenges in utilizing this model, is the need to enumerate all
possible policies that the human can take. Unlike single-shot games where the
size of the policy set equals the size of possible actions, in a sequential decision
making problem like the tool fetching domain, this set can be large or even
infinite: consider a policy p0, where a human repetitively takes one step north
then one step south and never reaches a goal. As the expected utility of p0 is zero
(as the human never reaches its goal), it can be easily discarded, but any prefix
of p0 which is followed by a sequence of actions that reaches the goal is a policy
with a utility higher than zero and thus should be taken into consideration.

To overcome this challenge, we use a standard Markov Decision Process
(MDP) representation for the modeled agent [19]. An MDP is a tuple M =
⟨S,A, T,R⟩ such that S is a set of states of the environment; A is the set of
actions that the agent can execute; T : S × A × S → [0, 1] is the transition
function representing the probability of reaching s′ when the agent is at state s
and taking action a; and R : S → R is the reward of the agent for reaching state
s. A policy of an agent is p(s, a) is a function that returns the probability of the
agent to choose action a ∈ A when in state s ∈ S.

With this general definition of a policy, and given the Markovian assumption
of the MDP model, we can break down the quantal response model into a set of
state-dependant functions, P(a, s), such that the policy p is now replaced with
a specific action a that the human can take in a specific state s. As shown in
Equation 2, each state s requires a different value of λs, and P is defined as the
probability of taking an action ai in a specific state s.

P(ai, s) =
exp[λs · u(s, ai)]∑
aj

exp[λs · u(s, aj)]
(2)

3.2 Fitting the State-dependent Rationality Parameter

We can now predict the probability of a person taking action ai in state s us-
ing Equation 2, which depends on a state-dependent rationality parameter λs.
To learn the value of this parameter in a domain, we can fit it using samples
of human behavior as observed in previous actions taken by people in state s.
We start by defining a simpler measure, R(s), which is the ratio of the num-
ber of times people acted optimally from state s to the number of times they
visited (and thus acted from) s. This calculation is shown in Equation 3, where
Opt(a, s) = 1 if a is an optimal action for state s, and 0 otherwise.



Algorithm 1 Rationality Parameter for State Algorithm

1: Input: Trajectories Ξ, States S, constant ϵ
2: R← []
3: for si ∈ S do
4: R[s]← 0

5: for ξ ∈ Ξ do
6: s, a← ξ
7: visits(s) += 1
8: if Opt(a,s) then
9: opt(s) += 1

10: for s ∈ S do
11: if visits(s) ̸= 0 then

12: R[s]← opt(s)
visits(s)

13: λ(s)← 1
|log (R(s)+ϵ)| −

1
|log ϵ|

return R

R(s) =

∑
a∈A(Opt(a, s))

visits(s)
(3)

The value of R is between [0, 1], and in the original quantal response formu-
lation λ ∈ [0,∞), so we use R(s) to compute λs as shown in Equation 4:

λs ∝
1

| log (R(s) + ϵ) |
− 1

| log ϵ |
(4)

The value of ϵ is an arbitrarily small number. In our experimental results, we
experimented with several values of ϵ and eventually chose the value of ϵ = 10−5.
Given each s and a predefined ϵ, the value of λs can now be calculated using
sampling. Algorithm 1 shows how to calculate the rationality parameter for each
state in a state space S. For a state space S and a set of trajectories Ξ such
that each trajectory is a sequence of states and actions ξ = {s0, a0, s1, a1, . . .},
the algorithm first counts the number of times the agent visited a state (line 7)
and the times it acted optimally (lines 8-9). The ratio between these two values
gives us the rationality value for each state (line 12), as described in Equation
3. Notice that for states that were not visited in the sampled trajectories, the R
value is undefined, so we set it to be 0. This R value is then used to compute λs

for each state, according to Equation 4.

4 Empirical Results

We elicit the rationality values from Suriadinata et al. [18], using the trajecto-
ries sampled in the experiment using MTurk. The experiment was approved by
the University of Texas at Austin (IRB 2020-07-0012). In this experiment, 45
participants played in 16 setups of the tool-fetching domain with varying board



sizes (ranging from a 3× 5 grid to a 6× 10 grid), number of goals (ranging from
2 to 4) and varying goal locations. The order in which the 16 setups were pre-
sented to each participant was randomized. Overall, the experiment consisted of
45 ∗ 16 = 720 independent runs.

In Section 3 we defined R as an auxiliary value for calculating λ. For sim-
plicity, when presenting our results we will use R with a clear value interval of
[0, 1], however it can be converted to λ using Equation 4.

At each instance, the participant played the role of the worker, and the
fetcher was an artificial agent as described in Section 2.2. The run ends when the
worker reaches the correct goal and chooses the action “work”. In this domain,
an optimal action of the worker is an action that keeps it on a shortest possible
trajectory from its current location to its goal.

For each setup, there are 45 samples. We accumulated the total number of
actions and the number of optimal actions taken at each state, and we used these
values to compute the rationality value R from Equation 3 for all of the states
visited by a worker in all 45 runs. For states that were never visited by workers,
we set the rationality value to be 0.

An example of one such setup with 4 goal stations and computed R values
for all states is illustrated in Figure 3 as a heatmap. The worker’s starting point
is labeled using W, the toolbox is labeled as T, the fetcher is labeled as F and
the four goals as labeled using G, where the goal of the worker is labeled with
G∗. The fill color of each cell defines the probability to take an optimal action
(lighter is closer to R value of 1). Unexplored states are the states filled in light
gray color. The states with the brightest color are states in which participants
always moved correctly. Some states have a distinct color compared to their
environment (for example, state (8, 4) with an R value of 0 meaning that every
time this state was visited, the worker took a non-optimal action). These drastic
changes in color usually represent cases where only one (or a few) participant
visited that state and took a non-optimal action in that visit. We expect that
with a larger sample size, the color transition between states would be smoother.
When a state has a medium-brightness color it means that most actions were
optimal and that there are more visits in order to make incorrect actions less
significant to the overall color of the state.

Figure 3 is a histogram of all states across the 16 board setups, and the R
value computed for each of these setups based on the participant trajectories.
Across the 16 board setups of varying sizes, there are 870 distinct states in total,
out of which 399 states were visited at least once. The bins of the histogram
are split by skips of 0.1. This histogram shows that participants acted optimally
and have an R value close to 1 in about 60% of the visited states (237 states).
About 30% of the visited states have R values varying from 0.9 to 0.5, stressing
the need for a bounded rationality model to capture human behavior in such
domains. Lastly, in about 10% of the visited states (40 states) the rationality
value is very low and has a value between 0 to 0.1. As mentioned before, in most
of these cases these states were only visited once by a single participant who
took a non-optimal action.



Fig. 2: A heatmap of one of the experiments, repersenting the R value of each
state on the board. G cells are the goals, G∗ is the true goal of the worker,
R is the fetcher, W is the worker, and T is the location of the toolbox. The
probability of taking a rational action is set by the state’s color. Darker colors
mean that there the action taken in the specific state were usually of always
non-optimal. Light-grey represent states that were never visited by participants
in the experiment.

Fig. 3: A histogram of all the states in all 16 experiments, showing the number of
states with an R value in each interval of size 0.1. States which were not visited
are not included in the counting.

5 Conclusion

In this paper, we presented a bounded rationality model for state-dependent poli-
cies of human agents. This variation of the quantal response model can provide a
prediction about the optimality of human participants, and can be incorporated



back into AHT agents that need to address the optimality of their teammates.
We shows some preliminary results on quantifying the rationality parameter in
the ”Tool Fetching Domain”, showing that the participants’ rationality value
varied significantly for different states.

As mentioned in the empirical section, by increasing the number of partici-
pants, we expect the rationality value of different states to smooth so it provides
a closer estimate to the real rationality value for the bounded rationality model.
In addition, as some states were never visited by the participants and might
never get visited even with additional trials, we consider using Gaussian blur in
future work to propagate a rationality value to unvisited states.

The preliminary results presented do not discuss the difference in rationality
values when participants were given different instructions, but Suriadinata et
al. [18] did identify a general decrease in optimality when participants were given
more elaborate instructions. We expect to see similar trends when explicitly
computing the rationality value, and we will examine whether this decrease in
optimality is more common in specific states, for example closer to goal stations.

Finally, we intend to leverage the learned quantal response model and feed
it back into the design of an AHT agent that needs to collaborate with people.
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