
Autonomous Robots
https://doi.org/10.1007/s10514-023-10098-5

Multimodal embodied attribute learning by robots for object-centric
action policies

Xiaohan Zhang1 · Saeid Amiri1 · Jivko Sinapov2 · Jesse Thomason3 · Peter Stone4,5 · Shiqi Zhang1

Received: 25 February 2022 / Accepted: 26 February 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Robots frequently need to perceive object attributes, such as red,heavy, and empty, usingmultimodal exploratory behaviors,
such as look, lift, and shake. One possible way for robots to do so is to learn a classifier for each perceivable attribute given
an exploratory behavior. Once the attribute classifiers are learned, they can be used by robots to select actions and identify
attributes of new objects, answering questions, such as “Is this object red and empty?” In this article, we introduce a robot
interactive perception problem, called Multimodal Embodied Attribute Learning (meal), and explore solutions to this new
problem. Under different assumptions, there are two classes of meal problems. offline- meal problems are defined in this
article as learning attribute classifiers from pre-collected data, and sequencing actions towards attribute identification under
the challenging trade-off between information gains and exploration action costs. For this purpose, we introduce Mixed
Observability Robot Control (morc), an algorithm for offline- meal problems, that dynamically constructs both fully
and partially observable components of the state for multimodal attribute identification of objects. We further investigate
a more challenging class of meal problems, called online- meal, where the robot assumes no pre-collected data, and
works on both attribute classification and attribute identification at the same time. Based on morc, we develop an algorithm
called Information-Theoretic Reward Shaping (morc-itrs) that actively addresses the trade-off between exploration and
exploitation in online- meal problems.morc and morc-itrs are evaluated in comparison with competitive meal baselines,
and results demonstrate the superiority of our methods in learning efficiency and identification accuracy.
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1 Introduction

Intelligent robots are able to interact with objects through
exploratory actions in real-world environments. For instance,
a robot can use a look action to figure out if an object is
red using computer vision methods. However, vision is not
sufficient to answer if an opaque bottle is full or not, and
actions that support other sensory modalities, such as lift and
shake, become necessary. Given the sensing capabilities of
robots and the perceivable properties of objects, it is impor-
tant to develop algorithms to enable robots to usemultimodal
exploratory actions to identify object properties, answering
questions such as “Is this object red and empty?” In this
article, we use attribute to refer to a perceivable property of
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Fig. 1 A robot is tasked with
identifying if an object is red
and empty. Given the various
sensory modalities produced by
exploratory behaviors, the robot
must decide what behavior(s) to
perform to gain maximum
information

grasp shakelook

proprioceptionhapticsaudioshapecolor

What actions should I take?Is this object RED and EMPTY?

an object and use behavior1 to refer to an exploratory action
that a robot can take to interact with the object. 2

Given multimodal perception capabilities, a robot still
needs to decide which of its many exploratory behaviors to
perform on an object. In other words, the robot needs to gen-
erate an action policy for each given language request, as
illustrated in Fig. 1. For instance, to obtain an object’s color,
a robot could adjust the pose of its camera, whereas sensing
the content of an opaque container requires two behaviors:
grasp and shake. The robot has to select actions in such away
that the information gain about object attributes ismaximized
while the cost of behaviors is minimized. Sequential reason-
ing is required in this action selection process. For example,
shake would make sense only if grasp has been successfully
executed. Also, robot perception capabilities are imperfect,
so the robot sometimes needs to take the same behavior
more than once. The above-mentioned observationsmotivate
the development of this article focusing on the Multimodal
Embodied Attribute Learning (meal) problem. We infor-
mally define meal as follows:

Algorithms for meal problems aim to learn a policy
for sequentially selecting exploratory behaviors to effi-
ciently and accurately identify perceivable attributes
of objects. Those behaviors might involve multiple
sensory modalities and are not necessarily always suc-
cessful.

The capability of solving meal problems is important for
robot multimodal perception. In this article, we introduce
and investigate two types of meal problems: offline and
online. Algorithms for OFFLINE-MEAL problems aim to
learn robot behavioral exploration policies from a previously

1 The terms of “behavior” and “action” are widely used in developmen-
tal robotics and sequential decision-making communities respectively.
In this article, the two terms are used interchangeably.
2 Project webpage: https://sites.google.com/view/attribute-learning-
robotics/

collected dataset. Probabilistic planning algorithms aim at
computing action policies to help select actions toward max-
imizing long-term utility such as information gain in our
case, while considering the uncertainty resulting from non-
deterministic action outcomes. Markov decision processes
(MDPs) [1] and partially observable MDPs (POMDPs) [2]
enable an agent to plan under uncertainty with full and par-
tial observability respectively. However, the observability of
real-world domains is frequently mixed: some components
of the current state can be fully observable while others
are not. A mixed observability Markov decision process
(MOMDP) is a special form of POMDP that accounts for
both fully and partially observable components of the state
[3]. In the ONLINE-MEAL setting, the robot needs to learn
an accurate and efficient action policy for interacting with
objects without pre-collected data. As a result, algorithms for
ONLINE-MEAL problems are required to work on attribute
classification and identification at the same time. online-
meal raises the fundamental trade-off between exploration
and exploitation. The robot has a short-term goal of identify-
ing object attributes in the current task, and a long-term goal
of improving its identification accuracy over multiple tasks.
An extreme solution is to let the robot optimize its actions
focusing on only the short-term goal. In doing so, the robot
still improves its performance in identification tasks over a
long term as the robot collects data along the way. However,
the learning process in this extreme solution can be poor with
respect to regret minimization, because it lacks a mechanism
for actively improving its long-term attribute identification
performance.

• This article introduces Mixed Observability Robot
Control (morc), as the first algorithmic contribution
of this article, where we model offline- meal prob-
lems usingMOMDPs because of the mixed observability
of the world that the robot interacts with. For example,
whether an object is in the robot’s hand or not is fully
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observable, but object attributes such as color and weight
are not.

• The second algorithmic contribution of this article is
an algorithm which is called MORC with Information-
Theoretic Reward Shaping (morc-itrs) for online-
meal problems. morc-itrs, for the first time, equips
a robot with the capability of optimizing its sequential
action selection toward efficiently and accurately classi-
fying and identifying attributes at the same time.

morc and morc-itrs are evaluated using three datasets:
ISPY32 [4] which contains 32 objects with eight exploratory
behaviors and six types of sensory modalities; ROC36 [5]
which includes 36 objects with eleven behaviors and four
types of modalities; CY101 [6] which has 101 objects with
ten behaviors and seven types of modalities. These datasets
have previously been used for a variety of tasks includ-
ing language grounding [7,8], object recognition [9], object
categorization [10], and sensorimotor learning [11]. Exper-
iments on offline- meal problems show that the policies
from morc improve accuracy for recognizing new objects’
attributes while reducing exploration cost, in comparison to
baseline strategies that deterministically or randomly use pre-
defined sequences of behaviors. For online- meal settings,
compared with existing methods from the meal literature
which also include a variant of morc, morc-itrs reduces
the overall cost of exploration in the long term while reach-
ing a higher accuracy of attribute identification.

Initial versions of the morc and morc-itrs algorithms
were introduced in two separate conference papers [12,13].
Both papers aimed to enable a robot manipulator to identify
object attributes usingmultiple exploratory behaviors and the
produced multimodal sensory data. Both papers modeled the
non-determinism of action outcomes, and exploration costs
using a sequential decision-making framework under partial
observability. Despite the shared goals, the two conference
papers were developed under different assumptions. Next,
we describe the relationship between this article and the two
previous papers in the three dimensions of “problem,” “algo-
rithm,” and “evaluation.”

• Problems This article aims to solve two problems called
offline- meal and online- meal. The two problems
were initially defined under the respective names of
Robot Attribute Identification (RAI) and Online Robot
Attribute Learning (On-RAL) [13]. We observed that the
initial problem statements [13] were incomplete, because
neither the objective function nor the reward functionwas
included in the definitions. We have fixed the issues in
this article, and renamed the problems for better clarity.

• Algorithms This article develops two algorithms called
morc and morc-itrs. Our naming strategy highlights

that morc-itrs is based on morc. The key idea of
morc was initially presented in a conference paper [12],
where it was only informally described. morc-itrs was
initially presented in another [13] under the name of
ITRS. This article formally defines both algorithms using
the terminology specified in the corresponding problem
statements.

• Evaluations The evaluation of morc [12] was based on
the two datasets of ISPY32 and ROC36. The evalua-
tion of morc-itrs [13] was based on the two datasets
of ISPY32 and CY101. The different datasets in the two
conference papers made it hard to directly compare the
different methods. In this article, new experiments were
performed to include all three datasets in the evaluations.

In addition, we discuss related work more comprehensively
and point out the limitations of both algorithms while iden-
tifying research directions for future work.

The remainder of this article is organized as follows. Sec-
tion2 discusses existing research on meal-related topics.
Section3 formally defines three meal problems, includ-
ing the offline- meal and the online- meal. Section4
presents existing research on Action-Conditioned Attribute
Classification (ACAC), which serves as a building block
of algorithms and systems developed in this article. Sec-
tions5 and 6 describe two algorithms respectively:morc for
offline- meal and morc-itrs for online- meal. Experi-
mental results and demonstrations are detailed in Sect. 7. The
article is concluded in Sect. 8, including discussions about the
limitations of our algorithms and directions for future work.

2 Related work

This section summarizes a few research areas that are rel-
evant to Multimodal Embodied Attribute Learning (meal),
the focus of this article. We first briefly describe the con-
cept of “attribute”, which is widely used in the computer
vision community, and then discuss existing research on
robot perception (unimodal and multimodal). After that,
a representative sample of algorithms for planning under
uncertainty is described, based on which we develop morc
and morc-itrs. Finally, we present existing work on object-
centric robot perception, which is the application domain of
this article.
Visual attribute learning

The word “attribute” refers to as “an inherent characteris-
tic” of an object in the computer vision community [14].
Attributes are also semantic and machine-understandable
properties that are used by people to describe images [15].
Early vision-based attribute learning methods used image
segments to learn visual attributes as patterns [16]. Later,
researchers studied visual attribute learning in the context of
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generalization across object categories [17], and considered
transferring visual attributes for previously unseen object
classes [18]. More recent approaches focused on zero-shot
or few-shot learning for specifying attributes [19–21], rela-
tive attributes to enable visual comparisons between images
[15,22], and attributes for an unconstrained set of objects by
providing large-scale datasets [23–25]. In contrast to tradi-
tional attribute learning using these visionmethods, we focus
on Multimodal Embodied Attribute Learning (meal), where
objects are explored and attributes are detected by a physical
robot. Modern robots have the capability to actively interact
with objects, producing rich sensory signals that go beyond
vision.

Early research on symbol grounding introduced the term
of “category” as an invariant feature of objects and events
from their sensory projections [26]. In this article, we focus
onobject-centric robot perception, and use “attribute” to refer
to the categorical representations of object features that are
perceivable through a robot’s multimodal exploratory behav-
iors.
Unimodal perception in robotics

Among various modalities that have been researched
in robotics, visual perception has been widely studied,
including visual manipulation [27] and navigation [28]. Lan-
guage is another importantmodality that robotics researchers
frequently focus on, solving the challenge of grounding nat-
ural language into noisy percepts and physical actions (as
reviewed in a recent article [29]). Tactile sensing is tradition-
ally studied in the area of sensors, but recent papers have
investigated more about correlations with robot actions, as
reviewed in articles [30,31]. There are also a few works that
demonstrate the usefulness of smell for robots, especially
in the application domain of gas source localization [32].
A limited number of papers have even mimicked the sense
of taste for the interaction and cognitive abilities of mod-
ern robots [33]. Every single modality has been shown its
effectiveness towards improving the perception capability of
intelligent robots. Our agent learns from sensory modalities
such as vision, audio, and haptics, and works on the problem
of robot multimodal perception, which is reviewed in detail
in the next paragraph.
Multimodal perception in robotics

Significant advances have been achieved recently in com-
puter vision [34,35] and natural language processing [36,37].
While language and vision are important communication
channels for robotic perception, many object attributes can-
not be detected using vision alone [38] and people are not
always available to verbally provide guidance in exploration
tasks. Therefore, researchers have jointly modeled language
and visual information for multimodal text-vision tasks [39].
However, many of the most common nouns and adjectives
such as soft and empty have a strong non-visual compo-
nent [40] and thus, robots need to perceive objects using

additional sensory modalities to reason about and perceive
such linguistic descriptors. To address this problem, several
lines of research have shown that incorporating a variety of
sensory modalities is the key to further enhancing the robotic
capabilities in recognizing multisensory object attributes, as
reviewed in recent articles [31,41]. For example, visual and
physical interaction data yields more accurate haptic classi-
fication for objects [42], and non-visual sensory modalities,
such as audio and haptics, coupled with exploratory behav-
iors such as touch or grasp, have been shown useful for object
recognition [43–45]. Grounding natural language descriptors
that people use to refer to objects has also been a promis-
ing method for attribute recognition problems [4,46]. More
recently, researchers have developed end-to-end systems to
enable robots to learn to perceive the environment and per-
form actions at the same time [47,48]. A major limitation of
these and other existing methods is that they require large
amounts of object exploration data, which is much more
expensive to collect as compared to vision-only datasets. A
few approaches have been proposed to actively select actions
at test time, for instance, when recognizing an object [10,49].
One recent work has also shown that robots can bias which
behavior to perform at training time, that is, when learning a
model grounded in multiple sensory modalities and behav-
iors, but they did not learn an actual policy for doing so [8].
Different fromexistingwork,morc for offline- mealprob-
lems is for learning an action policy when deciding whether
a set of attributes hold true for an object. morc-itrs for
online- meal problems learns an action policy for object
exploration that a robot can use when learning to ground the
semantics of attributes.
Planning under uncertainty

Decision-theoretic methods have been developed to help
agents plan actions and address uncertainty in non-
deterministic action outcomes [1,50]. Existing planning
models such as partially observable Markov decision pro-
cess (POMDP) [2], belief space planning [51] and Bayesian
approaches [52] have shown great advantages for plan-
ning robot perception behaviors, because robots need to use
exploratory behaviors to estimate the current world state. To
learn semantic attributes, robots frequently need to choose
multiple actions, so POMDP which is useful for long-term
planning is particularly suitable. Many of the POMDP-
based robot perception methods are vision-based [53–56].
Compared to those methods, our robot takes advantage of
non-visual sensorymodalities, such as audio and haptics.Our
proposed algorithms both modeled the mixed observability
[3] in domains of a robot interacting with objects. The main
difference between offline- and online- meal is that the
former assumed that sufficient training data and annotations
are available for the robot to learn the perception models
of its exploratory behaviors, and the latter deals with data
collection and task completion processes simultaneously.
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Object-centric robot perception
To select actions to identify objects’ perceivable attributes

such as heavy, red, full, and shiny, robots need observa-
tionmodels for their exploratory behaviors. Researchers have
developed algorithms to help robots determine the presence
of possibly new attributes [57] and learn observation models
of objects’ perceivable attributes given different exploratory
behaviors [4,7,58]. In the case where the object attributes
refer to the object’s function, they are then referred to as
0-order affordances [59]. Task and motion planning meth-
ods have been applied to object-centric perception while
leveraging physics simulation [68]. Those methods focused
on learning to improve the robots’ perception capabilities.
Once the learning process is complete, a robot can use the
learned attributes to perform tasks, such as attribute iden-
tification, for example, to tell if a bottle is heavy and
red. Compared to those learning methods, we consider both
offline- and online- meal, where the robot learns the
attribute classifiers (an exploration process) and uses the
learned classifiers to identify object attributes (an exploita-
tion process). Because online- meal agents iteratively learn
and identify attributes, the exploration-exploitation trade-off
is a fundamental decision-making challenge in this unknown
robot perception environment. While the problem has been
studied in multi-armed bandit [60] and reinforcement learn-
ing settings [50], it has not been studied in meal contexts.

3 Problem definitions

In this section, we first introduce the terminology of our work
(Table 1). Then we formally define three types of robot mul-
timodal perception problems.

A robot has a set of behaviors, such as look, push, and
lift, that can be used for interacting with everyday objects as
shown in Fig. 2. Let o ∈ Obj be an object and a ∈ Ae be an
exploratory behavior. Examples of a robot executing some
of the exploration behaviors are shown in Fig. 3.

Each exploratory behavior is coupled with a set of sensory
modalities, e.g., vision, haptics, and audio.We usem ∈ M to
refer to a sensory modality. This behavior-modality coupling
is formulated using function �:

Ma = �(a) (1)

whereMa ⊆ M. For example, {audio, haptics, vision} =
�(push) means that behavior push produces signals from
audio, haptics, and vision modalities. When a is performed
on an object o, for eachm ∈ Ma , the robot is able to record a
data instance f ma ∈ R

Nm
, where Nm is the dimensionality for

the modalitym. Table 2 shows the set of viable combinations
of behavior-modality pairs for one of the datasets used in
our experiments (detailed in Sect. 7), along with the feature

dimensionality Nm . We use fa to represent a set of sensory
data instances from all modalities (m ∈ Ma) that a robot
receives after performing a.

Let P specify a set of attributes that are used to describe
objects in a domain. Given an object o, v p is either true or
false, depending on if p applies too, whereweuse ID(p, o) to
refer to this attribute identification function. Here we “over-
ride” the function ID to use it to process a set of attributes:

v = ID(p, o) (2)

where v = [v p0 , v p1 , · · · ], p = [p0, p1, · · · ], and v pi is the
value of the i th attribute of object o. For instance, given a red
empty object (i.e., o) and two attributes [blue, empty] (i.e.,
p), ID([blue, empty], a red empty object) outputs
[ f alse, true]. The reporting action set Ar includes actions
that are used for the robot to report v to the human user. For
the same red empty object, there will be two binary variables
specifying whether each of the attributes is true or false. As
a result, there will be four reporting actions corresponding
to the four combinations of the attributes’ values. The action
set A = Ae ∪ Ar .

The robot state space is mixed observable and has two
components, X and Y . The global state space S includes a
Cartesian product of X and Y ,

S = {(x, y) | x ∈ X and y ∈ Y} (3)

X is the state set specified by fully observable domain
variables. In our case, x ∈ X represents the current state of
the robot-object system, e.g., whether lift and drop behaviors
are successful or not, or whether the object is in hand or not
(i.e., the effect of behavior grasp). Y is the state set specified
by partially observable domain variables. In our case, these
variables correspond to the values of object attributes that
are queried about, i.e., v. Thus, | Y |= 2N

p
, where N p

is the number of queried attributes, i.e., | p |. For instance,
given an object description that includes three attributes (e.g.,
[red, empty, bottle]), Y includes 23 = 8 states. Since y ∈
Y is partially observable, it needs to be estimated through
observations, which will be defined in the next paragraph.
Note that there is no state transition in the space of Y , as we
assume object attributes do not change over executions of
robot actions.

Let Z = Zh ∪ ∅ be a set of observations. Elements in Zh

include all possible combinations of object attributes (i.e., v)
and have one-to-one correspondence with elements in Ar .
For instance, when p = [red, empty, bottle], there exists
an observation z ∈ Zh that is [true, false, true] that repre-
sents “the object’s color is red; it is not empty, and it is a
bottle.” Behaviors that produce no information gain (includ-
ing those failed behaviors) and reporting actions inAr result
in a ∅ (none) observation.
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Table 1 Table of Notation

Symbol/Notation Definition

o An object

Obj The set of all objects

a A behavior

Ae The set of all exploratory behaviors

m A modality

M The set of all modalities

�(a) A behavior and modality coupling function

Ma A set of modalities that a behavior a produces

f ma A sensory data instance of a modality m being recorded

when a behavior a is applied

fa A set of sensory data instances from all modalities (m ∈ Ma)

that a robot receives after performing a

Nm Dimensionality for a modality m

P The set of all attributes

p An attribute

v p The Boolean value of an attribute p indicating if p applies to an object

ID(p, o) An attribute identification function

v Values of a set of attributes

p A set of attributes

Ar The set of all reporting actions

A The set of all actions including exploratory behaviors and reporting actions

S The global state space

X The state set specified by fully observable domain variables

x A fully observable state

Y The state set specified by partially observable domain variables

y A partially observable state

N p The number of queried attributes

Z A set of observations including ∅ (none) observation

Zh A set of observations excluding ∅ (none) observation

R(s, a) The reward function

ta Time length for executing a behavior a

r− Negative reward by given an incorrect report action

r+ Positive reward by given a correct report action

ξ An episode for representing a single attribute identification task

s � a An operation that outputs true (or false)

when the identification task is successful (or not)

Rst(ξ) A function that outputs if a task is successful

Cst(ξ) A function that outputs the accumulative action cost in a task

D A dataset where each instance is in the form of ( fa, p) : v p

�( fa, p) A binary classifier. A robot collect data instance fa on an object

after performing action a, and �( fa, p) outputs if attribute p applies to

this object

Ĉ An action cost budget

�( f ma , p) A binary classifier that is similar to �( fa, p)

but with modality specifications

α A normalization constant
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Table 1 continued

Symbol/Notation Definition

wm
a A weight for a binary classifier �( f ma , p)

�a
p A confusion matrix that are computed by cross-validation at training stage

TX Transition functions for fully observable states in MOMDP

TY Transition functions for partially observable states in MOMDP

γ A discount factor in MOMDP

O(s, a, z) An observation function that specifies the probability of observing z

when action a is executed in state s

v
pi
s The true value of the i th attribute in state s

v
pi
z The observed value of the i th attribute in observation z

Ent(s, a) The entropy that is used for indicating the perception quality

IE(s, a) The interaction experience of applying action a to identify attribute p

δ A sufficiently large integer to ensure IE(s, a) is the range of [0,1)

α A natural number for adjusting Ent(s, a)

β A natural number for adjusting IE(s, a)

Fig. 2 Everyday objects in the
three datasets that are used in
the experiments of this article: a
ISPY32 [4] b ROC36 [5] c
CY101 [6]

Fig. 3 Examples of behaviors and their durations in seconds (behaviors
are from the ISPY32 dataset detailed in Sect. 7)

Table 2 The number of features extracted from each combination of
robot behavior and perceptual modality for ISPY32. “VGG” modality
is computed from 2D image of the object and is deep visual features
from the 16-layer VGG network [4]

Behavior Modality

Color Shape VGG

look 64 308 4096

Audio Haptics Proprioception

grasp 100 60 20

drop, hold, lift, lower, press, push 100 60

R → R is the reward function. Each exploration behavior,
ae ∈ Ae, has a cost that is determined by the time required to
complete the behavior. These costs are empirically assigned
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according to the datasets used in this research. The costs of
reporting actions depend on whether the report is correct.

R(s, a) =

⎧
⎪⎨

⎪⎩

−ta, if s ∈ S, a ∈ Ae

r−, if s ∈ S, a ∈ Ar , s � a = false

r+, if s ∈ S, a ∈ Ar , s � a = true

(4)

where ta is the time length for executing the behavior a,
r− (or r+) is negative (or positive) given an incorrect (or
correct) report. s � a outputs true (or false) when the iden-
tification task is successful (or not). We further define an
episode as ξ = [s0, a0, r0, s1, a1, r1, · · · ] for representing a
single attribute identification task, where si ∈ S, ai ∈ A, and
ri ∈ R. Function Rst(ξ) outputs if a task ξ is successful:

Rst(ξ)=

⎧
⎪⎨

⎪⎩

1, if there exists si , ai ∈ ξ, si ∈ S, ai ∈ Ar ,

si � ai=true

0, otherwise

(5)

Function Cst(ξ) outputs the accumulative action cost in task
ξ :

Cst(ξ) =
∑

ai∈Ae

tai = −
∑

ai∈Ae

ri (s, ai ) (6)

Definition 1 (ACAC) At training time, the input includes a
set of labeled sensory data instances, each in the form of
( fa, p) : v p. This training set is sufficiently large anddenoted
asD. Solving anAction-Conditioned Attribute Classifica-
tion3 (ACAC) problem produces a binary classifier:

�( fa, p), for each pair of a ∈ Ae and p ∈ P

At testing time, given an object o, a robot collects data
instances fa after performing action a and �( fa, p) outputs
true or false estimating if attribute p applies to o.

Definition 2 (OFFLINE-MEAL) Solving anOFFLINE-MEAL

problem produces a policy π that sequentially selects action
a ∈ A to identify the value of:

ID(p, o), given D, R(s, a)

where the objective is to maximize the number of successful
task completions within a cost budget Ĉ . Let [ξ0, ξ1, · · · , ξn]

3 We use attribute classification to refer to the problem of learning the
attribute classifiers, which is a supervised machine learning problem.
We use attribute identification to refer to the task of identifying whether
an object has a set of attributes or not, which corresponds to a sequential
decision-making problem.

be a set of n attribute identification tasks, then the objective
function can be defined as follows:

arg max
π

⎛

⎝E

⎛

⎝
∑

i≤n

Rst (ξi )

⎞

⎠

⎞

⎠ ,where
∑

i≤n

Cst (ξi ) < Ĉ

(7)

Definition 3 (ONLINE-MEAL) Solving an ONLINE-MEAL

problem produces a policy π that sequentially selects action
a ∈ A to identify the value of:

ID(p, o), given R(s, a)

offline- and online- meal share the same objective func-
tion (Eq.7), while algorithms for online- meal are not
provided with pre-collected data D. At execution time, after
performing a to identify p, the robot collects data fa . After
each identification task, the robot receives v, the values of
attributes p.

Remark 1 Rational offline- meal agents treat individual
attribute identification tasks independently, whereas rational
online- meal agents learn from the data collected in early
tasks, trading off early-phase performance for long-term per-
formance.

Remark 2 Onemight have noticed the difference between the
objective function defined in Eq.7 and the reward function
in Eq.4. There can be the question of whether our reward
function supports the robot in achieving the objective or not.
Note that the objective function presented in Eq.7 includes
twodimensions: identification accuracy and exploration cost.
The reward function presented in Eq.4 includes three terms,
where action execution time ta corresponds to the exploration
cost, and rewards r− and r+ correspond to the identification
accuracy. Altogether, this reward function is able to motivate
the robot to maximize identification accuracy and minimize
exploration costs at the same time. Thus, our current reward
function supports computing policies towards achieving the
objective.

4 Preliminaries

The algorithms developed in this article rely on exist-
ing research on Action-Conditioned Attribute Classification
(ACAC). For the sake of completeness, we summarize the
technical approach of previous ACAC work [4,5], which is
used as a building block for defining algorithms for meal
problems.

We define individual classifiers for connecting data
instances f ma to each attribute p, denoted as �( f ma , p). We
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Fig. 4 Example confusion matrices training from 36 objects (ROC36)
showing the TP, FP, TN, and FN rates for three of the attributes when
using the robot’s shake behavior. The behavior is good at recogniz-
ing heavy due to the rich haptic feedback produced when shaking an

object, somewhat good at recognizing beans (referring to the objects’
contents) due to the sound produced by the contents, and poor at rec-
ognizing green as no visual input is processed when performing this
behavior

assume that the outputs of � can be mapped to probabili-
ties, i.e., �( f ma , p) can estimate Prma (v p = true | f ma ). In
line with prior research [4,5], individual classifiers � were
structured using support-vector machines with a polynomial
kernel in this article. The binary classifier � (introduced
in Sect. 1) is for connecting a set of �( f ma , p) regard-
less of modality specifications. Similarly, the outputs of �

can be mapped to probabilities, i.e., �( fa, p) can estimate
Pra(v p = true | fa). It should be noted that for each behav-
ior, different modalities are not equally preferred when the
robot identifies certain attributes. For instance, color is more
useful than shape when identifying red. Thus, the probabil-
ity estimates of� are combined using weighted combination
and normalized again to compute the final probability esti-
mates of �:

Pra(v p=true | fa)=α ×
∑

wm
a × Prma (v p=true | f ma )

where α is a normalization constant to ensure the proba-
bilities sum up to 1.0 and wm

a ∈ [0.0, 1.0] is a reliability
weight indicating how good the classifier associates with the
behavior a and the modality m is at recognizing attribute
p. In other words, each behavior acts as a classifier ensem-
ble where each individual classifier’s output is combined
using a weighted combination. The weights are estimated
by performing cross-validation of the classifier specific to
that modality and behavior.

At the end of the training stage, cross-validation at the
behavior level is used to compute the confusion matrix
�a

p ∈ R
2×2 for each pair of attribute p and behavior a. These

confusion matrices are normalized to compute the True Pos-
itive, True Negative, False Positive, and False Negative rates
for each behavior-attribute pair. Cross-validation is not a gen-
eral step for ACAC, but will later be used in morc. Example
confusionmatrices are shown in Fig. 4. Next, we describe our
morc approach to address the problem of offline- meal
which is defined in Sect. 1.

5 An algorithm for OFFLINE-MEAL: MORC

In this section, we describe the theoretical framework
of mixed observability robot control (morc) for solving
offline- meal problems. Behaviors such as look and drop,
have different costs and different accuracies in attribute
recognition. At each step, the robot has to decide whether
more exploration behaviors are needed, and, if so, select the
exploration behavior that produces the most information. In
order to sequence these behaviors toward maximizing infor-
mation gain, subject to the cost of each behavior (e.g., the
time it takes to execute it), it is necessary to further consider
preconditions and non-deterministic outcomes of the behav-
iors. For instance, shake and drop behaviors make sense only
if a preceding unreliable grasp behavior succeeds.

In this article, we assume action outcomes are fully
observable and object attributes are not. For instance, a robot
can reliably sense if a grasp behavior is successful, but it
cannot reliably sense the color of a bottle or if that bottle is
full. Due to this mixed observability and unreliable action
outcomes,we usemixed observabilityMDPs (MOMDPs) [3]
to model the sequential decision-making problem for object
exploration.

A MOMDP has mixed state variables. The fully observ-
able state components are represented as a single state
variable x (in our case, the robot-object status, e.g., the object
is in hand or not), while the partially observable components
are represented as state variable y (in our case, the object
attributes, e.g., the object is heavy or not). As a result, (x, y)
specifies the complete system state, and the state space is fac-
tored as S = X×Y , whereX is the space for fully observable
variables andY is the space for partially observable variables.

Formally, a MOMDP model is specified as a tuple,

(X , Y, A, TX , TY , R, Z, O, γ ),

whereA is the action set, TX and TY are the transition func-
tions for fully and partially observable variables respectively,
R is the reward function, Z is the observation set, O is the
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Fig. 5 A simplified version of the transition diagram in space X for object exploration. This figure only shows the probabilistic transitions led by
exploration behaviors. Report actions that deterministically lead transitions from xi ∈ X to term (terminal state) are not included

observation function, and γ is the discount factor that speci-
fies the planning horizon.

5.1 Action transition system

TX : X×A×X → [0, 1] is the state transition function in the
fully observable component of the current state. TX includes
a set of conditional probabilities of transitions from x ∈ X—
the fully observable component of the current state—to x ′ ∈
X , the component of the next state, given a ∈ A the current
action. The transition diagram is shown in Fig. 5. Reporting
actions and illegal exploration behaviors (e.g., drop an object
in state x1—before a successful grasp) lead state transitions
to term (terminal state) with 1.0 probability.

Most exploration behaviors are unreliable and succeed
probabilistically. For instance, TX (x4, drop, x5) = 0.95 in
our case, indicating there is a small probability the object
is stuck in the robot’s hand (detailed in Sect. 7.1). Such
non-deterministic action outcomes are considered in our
experiments. The success rate of the behavior look is 1.0
in our case since without changing positions of either the
camera or the object it does not make sense to keep running
the same vision algorithms.

TY : Y × A × Y → [0, 1] is the state transition function
in the partially observable component of the current state. It
is an identity matrix in our case, (we assume) because object
attributes do not change during the process of the robot’s
exploration behaviors.

5.2 Observation function

O : S × A × Z → [0, 1] is the observation function that
specifies the probability of observing z ∈ Z when action a is
executed in state s: O(s, a, z). In this article, the probabilities
are learned from performing cross-validation on the robot’s
training data. As described in Sect. 4, ACAC produces con-
fusion matrix classifiers �a

p ∈ R
2×2 for each attribute p and

each action a.

O(s, a, z) = Pr(vz | vs, a)

=
N p−1∏

i=0

�a
pi (v

pi
s , v

pi
z ) (8)

where �a
p ∈ R2×2 is a confusion matrix for attribute p and

action a; vs and vz are the true and observed values of the
attributes; v

pi
s (or v

pi
z ) is the true (or observed) value of the

i th attribute; and N p is the total number of attributes in the
query. The robot might fail in exploratory actions. In that
case, the robot receives an empty observation, which causes
no belief change.

So far, we have specified all components of morc. Next,
we discuss a way of computing high-quality policies for
offline- meal that include large numbers of attributes.

5.3 Dynamically-learned controllers

Theoffline- mealproblemcan include aprohibitively large
number of attributes. One of the datasets in our experiments
contains 81 attributes, resulting in 281 possible states in Y . It
is computationally intractable to generate a far-sighted pol-
icy while considering all the attributes. A strategy called
iCORPP was introduced for dynamically constructing mini-
mal (PO)MDPs tomodel domain attributes for robot planning
[61]. Behind iCORPP is a family of algorithms for Inte-
grated commonsense Reasoning and probabilistic Planning
(IRP) [62]. Those algorithms aim to decomposing a sequen-
tial decision-making problem into two tractable subproblems
that focus on high-dimensional reasoning (e.g., objects with
many attributes) and long-horizon planning (e.g., tasks that
require many actions). In line with iCORPP, we model only
those attributes necessary to the current query in morc,
where the goal is to include a relatively small set of attributes
in our MOMDPs while maintaining the quality of the gener-
ated policies.
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Fig. 6 An overview of the morc-itrs algorithm. A human user will
choose an object and ask a query such as “Is this object red and soft?”.
The robot will generate a perception model on the specified attributes,
i.e., red and soft. Queried attributes and the corresponding perception
model then will be used to construct states and the observation function
of theMOMDPmodel respectively. The reward function will be shaped

by the quality of the observation function and the robot’s experience.
The robot uses the generatedMOMDPmodel to compute a policyπ and
interacts with the queried object. Newly-perceived feature data will be
used to update the robot’s experience and augment the dataset. Humans
will give feedback to the robot’s answer and attach labels to the feature
data points

Algorithm 1 morc
Require: P; TX ; Ae; Sol; R(s, a); D
1: Take queried attribute(s) p from human, where p ⊆ P
2: Generate X , Y , Ar , TY and Z using p
3: Compute confusion matrix �a

p using D where p∈p, a∈A
4: Generate O(s, a, z) with �a

p for p ∈ p using Eqn. 8
5: Compute policyπ using Sol for (X , Y, A, TX , TY , R, Z, O, γ )

6: Uniformly initialize belief b
7: while Current state s is not term do
8: Select action a with π based on b, and execute a
9: Make an observation z where z ∈ Z
10: Update b with z and a using Bayesian rule
11: end while

Algorithm 1 shows the complete process of morc.4 We
dynamically constructMOMDPcontrollers by specifying the
following components in order: 1) State set Y that includes
only the attributes that arementioned in the query (e.g.,blue,
heavy, and bottle, given that a user asks whether an object
is a blue heavy bottle or not); 2) State set S, the Cartesian
product of X (predefined) and Y; 3) Action set Ar , where
each reporting action ar ∈ Ar corresponds to a state in Y;
4) Action set A, union of Ae (predefined) and Ar ; 5) Zh ,
object attribute combinations; 6) Z , union of Zh and ∅. The
components together form a complete MOMDP that is rel-
atively very small, and typically includes fewer than 100
states at runtime. Our approach enables automatic genera-
tion of complete MOMDP models, which can be encoded,
as in our experiments, such that existing planning algorithms
(e.g., [63]) can be used to generate policies.

The implementation of the transition system of morc is
introduced in Sect. 5.1. Figure5 also presents how we man-
ually specify transition diagrams for different datasets. The
observation function (detailed in Sect. 5.2) depends on clas-
sifiers produced by ACAC. When learning those classifiers,
morc assumes that sufficient training data and annotations

4 Source code: https://github.com/keke-220/Predicate_Learning

are available for the robot. However, a large amount of
object exploration data is very expensive for robots to col-
lect in the real world. Our solution is to interleave ACAC
and attribute identification where the robot interacts with the
current object, collects exploration data, and uses the data to
improve attribute classifiers for future identifications. This
online process is referred to as online- meal, which will be
discussed in the next section.

6 An algorithm for ONLINE-MEAL:
MORC-ITRS

In this section, we describemorcwith information-theoretic
reward shaping (morc-itrs), which is a novel algorithm
that is built on morc but focuses on balancing exploration
and exploitation in online- meal problems. An overview of
morc-itrs as applied toonline- meal is presented in Fig. 6.

6.1 Information-theoretic reward

We first introduce the shaped information-theoretic reward
function inmorc-itrs. In online- meal problems, the robot
needs to optimize its actions toward not only improving the
accuracy of attribute identification but also minimizing the
cost of exploratory behaviors.We introduce the two factors of
perception quality and interaction experience into the reward
design of MOMDPs to achieve the trade-off between explo-
ration (actively collecting data for attribute learning) and
exploitation (using the learned attributes for identification
tasks).

Let Ent(s, a) be the entropy of the distribution over Z ,
given s and a, which is used for indicating the perception
quality of exploratory behavior a over the y component of s:

Ent(s, a) = −
∑

zi∈Z
O(s, a, zi ) log2 O(s, a, zi ) (9)
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where zi is the i th observation and O(s, a, zi ) is the
probability of observing zi in state s after taking action a.
O(s, a, zi ) is computed using the data instances gathered in
the online- meal process.

Let IE(p, a) be the interaction experience of applying
action a to identify attribute p, which is in the form of:

IE(p, a) = 1

δ
· | { f ∈ fa, labeled( f , p) = true} | (10)

where fa is a set of instances that a robot has collected so far,
and labeled( f , p) returns true if f has been labeled w.r.t.
p, where the value v p is true or false. δ is a sufficiently large
integer to ensure IE(p, a) is in the range of [0,1). A lower
value of IE(p, a) reflects a higher need of further exploring
(p, a).

Building on the concepts of perception quality and inter-
action experience, our information-theoretic reward function
is defined as follows:

RIT (s, a) = R(s, a) + α · Ent(s, a) − β · IE(p, a) (11)

where α and β are natural numbers and used for adjusting
how much perception quality and interaction experience are
considered in reward shaping. Informally, when O(s, a, z) is
close to being uniform, the perceptionmodel of (s, a) is poor,
and the value of Ent(s, a) is high. As a result, our new reward
function will encourage the robot to take action a by offering
extra reward α · Ent(s, a). When the robot is experienced in
applyinga to identify attribute p, IE(p, a)will be high. In this
case, an extra penalty of β ·IE(p, a)will discourage the robot
from taking those well-explored behaviors. In comparison to
standardMOMDPs, where reward and observation functions
are independently developed, morc-itrs enables the reward
function to adapt to the changes of the observation function.

6.2 Algorithm description

Algorithm 2 presents morc-itrs for active online- meal
problems. The inputs of morc-itrs include attribute set P ,
transition function TX , action set Ae, MOMDP solver Sol,
parameters α and β, naive reward function R(s, a). morc-
itrs does not have a termination condition.

morc-itrs starts with initializing the interaction expe-
rience function with zeros for all (p, a) pairs, and then
initializes datasetD that will be later augmented as the robot
interacts with objects (Lines 1 and 2). In each iteration of the
main loop (Lines 3-24), morc-itrs takes an identification
query from people (Line 4), constructs a MOMDP model
(Lines 5-10), computes its policy, uses the policy to interact
with an object (Lines 13–18), and augments its dataset for
improving theMOMDPmodel in the next iteration (Lines 20-
23).

Algorithm 2 morc-itrs
Require: P; TX ; A; Sol; α; β; R(s, a)

1: Initialize IE(p, a) = 0 for each action a ∈ A and p ∈ P
2: Initialize online training dataset D = ∅
3: repeat
4: Take queried attribute(s) p from human, where p ⊆ P
5: Generate X , Y , TY , and Z using p
6: Compute confusion matrix �a

p using D where p∈p, a∈A
7: Generate O(s, a, z) with �a

p for p ∈ p using Eqn. 8
8: Compute Ent(s, a) using Eqn. 9
9: Generate RIT (s, a) with R(s, a) using Eqn. 11
10: Compute policy π using Sol for

(X , Y, A, TX , TY , RIT , Z, O, γ )

11: Initialize action set Aselect and feature set F with ∅
12: Uniformly initialize belief b
13: while Current state s is not term do
14: Select action a with π based on b, append a to Aselect , and

execute a
15: Record data instances fa , and F ← F ∪ { fa}
16: Make an observation z where z ∈ Z
17: Update b with z and a using Bayesian rule
18: end while
19: Ask human to provide v for p as label(s) for F
20: for each a in Aselect do
21: Update D using F and v
22: Update IE(p, a) for a ∈ A and p ∈ p using Eqn. 10
23: end for
24: until end of interactions

In the first inner loop (Lines 13–18), the robot interacts
with an object based on the generated policy. π suggests an
action at each state b. The robot then executes the action and
makes an observation. Based on the action and observation,
the robot updates its belief using the Bayesian rule. After
selecting each action, morc-itrs records this action along
with its collected feature data (Lines 14 and 15). In Line 19,
we ask people to provide the label y for the collected data.
The final step is to iterate over all selected actions to augment
D, and calculate the new interaction experience (Lines 20-
23).

Intuitively, we aim to encourage the robot to select
exploratory behavior a ∈ Ae from those behaviors, where
the perception model of (s, a) is of poor quality, and there
is relatively limited experience of applying a to attribute p,
i.e., the experience of (p, a) is limited.

7 Experiments

In this section, we present the experiment setup and experi-
mental results from the evaluation of our morc and morc-
itrs algorithms. morc assumes the availability of training
data for learning action-conditioned attribute classifiers.
Accordingly, the baselines for evaluating morc includes:

• Random: Actions are randomly selected from both
reporting and legal exploration actions. A trial is termi-
nated by any of the reporting actions.
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• Random Legal: Actions are randomly selected from legal
exploration actions. Under an exploration budget, one
selects the reporting action corresponding to y with the
highest belief. This baseline corresponds to the algorithm
for meal problems of [8] (we did not use their linguistic
component).

• Predefined: An action sequence is strictly followed: ask,
look, press, grasp, lift, lower, and drop. Under an explo-
ration budget or in early terminations caused by illegal
actions, the robot selects the reporting action that makes
the best sense.

• Predefined Plus: The same as Predefined except that
unsuccessful actions are repeated until achieving the
desired result(s).

morc-itrs assumes no prior data, so the robot must learn
perception models and perform attribute identification at the
same time. We compare morc-itrs with the baselines of:

• Iterative Random Legal: It is an iterative version of one
of the baselines for solving offline- meal problems.
Just like Random Legal, the robot considers only the
“legal” behaviors (e.g., lift is legal only after a success-
ful grasp behavior), and then randomly selects one from
the legal actions. The only difference is that the robot
collects more data after identifications, and uses the data
for future tasks. With an exploration budget for each trial
(50 s and 80s for one-attribute trials, i.e., N p = 1, and
two-attribute trials, i.e., N p = 2, respectively), the robot
is forced to report y ∈ Y of the highest belief.

• Iterativemorc: It iteratively runsmorcusing all data col-
lected so far. This process is repeated after each batch.
Iterative morc enables online- meal actions by pas-
sively collecting data and training attribute classifiers.

7.1 Experiment setup

Dataset description Three public datasets of ISPY32 [4],
ROC36 [5], and CY101 [6] are used in our experiments.
CY101 (anupdatedversionof the dataset [10]) containsmany
more household objects and attributes.

In the ISPY32 dataset, a robot from the Building-
Wide Intelligence project [64] explored 32 objects using 8
exploratory behaviors: look, grasp, lift, hold, lower, drop,
push, and press (Fig. 3). The hold behavior was performed by
holding the object in place. The look behavior was performed
by taking a visual snapshot of the object using the robot’s
sensors prior to exploration. Each behavior was performed 5
times on each object in the dataset. Features of VGG, color,
SURF, auditory, finger, and hapticswere recorded in ISPY32.

InROC36, the robot explored 36 different objects using 11
prototypical exploratory behaviors: look, grasp, lift, shake,
shake-fast, lower, drop, push, poke, tap, and press 10 dif-

ferent times per object. The objects are lidded containers
with the same shape and varied along 3 different attributes:
(1) color: red, green, blue; (2) weight: light, medium,
heavy; and (3) contents: beans, rice, glass, screws.
These variations result in the 3× 3× 4 = 36 objects bearing
combinations of these attributes in the set P that the robot is
tasked with learning.

For CY101 dataset, an uppertorso humanoid robot with
7-DOF arm explored 101 objects belonging to 20 different
categories using 10 exploratory behaviors: look, grasp, lift,
hold, shake, drop, push, tap, poke, and press. Seven differ-
ent types of features including auditory, vibrotactile, finger,
color, optical flow, SURF, and haptics (i.e., joint forces) were
considered in CY101. Each behavior was performed 5 times
per object.

Every individual classifier (introduced in Sect. 4) corre-
sponds to an attribute-behavior pair. The exact numbers of
the classifiers needed by the robot depend on the datasets
that provide different numbers of attributes. For instance, in
experiments using the ROC36 dataset, there were a total of
9 × 11 = 99 classifiers.
Action costs and action failures Each exploratory behavior
a has a cost (planning and execution) in the range of [0.5,
22.0] that came with the datasets, and is modeled in R(s, a).
For instance, the cost of behavior press (22.0) is much higher
than the cost of behavior look (0.5). The costs of behaviors
in the three datasets are different because the datasets were
collected using different robots. Additionally, action ask has
the cost of 100.0.5

In morc, the reward of the reporting action was +500.0
(or −500.0) when the robot’s attribute identification is cor-
rect (or incorrect). In morc-itrs, we set the reward to be
+300.0 (or −300.0). Most actions are considered unreliable
to some degree in our MOMDP model and we uniformly
set the failure probability to 0.05 which we did not refine in
offline- or online- meal. For instance, an unsuccessful
drop behavior models the situation that the object is stuck in
the robot’s hand. We used an off-the-shelf system for solving
MOMDPs [63]. γ is a discount factor and γ = 0.99 in our
case. This setting gives the robot an unspecified, relatively
long planning horizon.

We observed different behaviors of the robot given dif-
ferent success bonuses and failure penalties. Intuitively,
increasing the success bonus (positive reward) and the failure
penalty (negative reward) encourages the robot to spendmore
time exploring objects for higher success rates, i.e., being
risk-averse.We also observed that a very large success bonus
frequently produced optimistic, risk-seeking behaviors, such
as reporting before taking any exploration behaviors. Such
discussions point to the research area of reward engineering,

5 Action ask was used only in the ISPY32 experiments, because other
exploration behaviors are not as effective as in ROC36 and CY101.
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which is a long-standing challenge to researchers working
on planning under uncertainty and reinforcement learning.
In this article, the success bonus and failure penalty values
are manually specified.

7.2 MORC evaluation

Next, we describe the experiments we conducted to evaluate
morc. We aim to answer the following questions:

• How does morc perform in efficiency and accuracy? If
morc is more efficient and more accurate than the base-
lines, then we can claim morc’s superiority in achieving
the objective of solving offline- meal problems.

• Can we build a “super” model in morc? A super model
includes all potential attributes into the sequential deci-
sionmaker. In comparison,morc dynamically constructs
query-dependent MOMDPs.

The training process of morc follows the principle of “leave
one object out.” In other words, an object was randomly
selected, and all data instances corresponding to the par-
ticular object were excluded in training the classifiers. The
excluded object was then used for evaluating the classi-
fiers’ performance. We iterated over all the objects in the
experiments for evaluating morc in solving offline- meal
problems. Specifically, for dataset ISPY32which includes 32
objects, each classifier was trained using 31 × 5 = 155 data
samples, where one object was excluded, and each behav-
ior was repeated five times. For dataset ROC36, there were
35×10 = 350 data instances used for training each classifier.

7.2.1 Illustrative trial of MORC

We now describe an example in which a robot works on an
offline- meal task. We randomly selected an object from
the ISPY32 dataset: a blue and red bottle full of water. We
then randomly selected attributes, in this case yellow and
metallic, and asked the robot to identify whether the object
has each of the attributes or not. The selected object was
not part of the robot’s training set used to learn the attribute
classifiers and the MOMDP observation model. The robot
should report negative to both attributes while minimizing
the overall cost of exploration behaviors.

Given this user query, the state space of morc includes 25
states. We then generate an action policy using past work’s
methods [63]. Currently, building the model takes almost no
time, and we uniformly gave five seconds for policy genera-
tion using the model (same in all experiments). The time for
computing the policy is insignificant relative to the time for
exploratory behaviors (which is what we are really trying to
minimize).

Fig. 7 Action selection and belief change in the exploration of a red
and blue bottle full of water usingmorc, given a query of “is this object
yellow and metallic?”

Figure 7 shows the belief change in this process. The
initial distributions over X and Y are [1.0, 0.0, · · · ] and
[0.25, 0.25, 0.25, 0.25] respectively. The policy suggests to
look first. We queried the dataset to make an observa-
tion, neg-neg in this case. The belief over Y is updated
based on this observation: [0.41, 0.28, 0.19, 0.13], where
the entries represent neg-neg, neg-pos, pos-neg, and pos-
pos respectively. There is a (fully observable) state transi-
tion in X , from x0 to x1, so the belief over X becomes
[0.0, 1.0, 0.0, · · · ]. Based on the updated beliefs, the pol-
icy suggests taking the push behavior, which results in
another neg-neg observation. Accordingly, the belief over
Y is updated to [0.60, 0.13, 0.22, 0.05], which indicates that
the robot is more confident that the object is neither yel-
low nor metallic. After behaviors of reinitialize, look,
push, and push (this first push behavior was unsuccessful,
and produced the ∅ observation), the belief over Y becomes
[0.84, 0.04, 0.12, 0.01]. The policy finally suggests report-
ing neg-neg, making it a successful trial with an overall
cost of 167 seconds, which results in an overall reward of
500−167 = 333 (an incorrect report would have resulted in
−667 reward).
Remarks: It should be noted that the classifiers associated
with each action and word will produce an output even in
cases where the sensory signals from that action are irrele-
vant to the word. For instance, although the sensory signals
relevant to push are haptics and audio, the first push behavior
results in an observation of yellow. It was “yellow:neg”,
because most objects in the prior training set are not yellow.
The robot favors behaviors that distinguish “easy” attributes
(look distinguishes yellow well in this case). If a behav-
ior is useful, the robot will prefer taking it early. The more
the behavior is delayed, the more the expected reward is dis-
counted (we use a discount factor of 0.99 in our experiments).

7.2.2 Results of applyingMORC to OFFLINE-MEAL

problems

How does MORC perform in efficiency and accuracy on
ROC36? In each trial, we place an object that has three
attributes (color, weight, and content) on a table and then
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Table 3 Performances of morc and two baseline planners in cost and
accuracy on the ROC36 dataset. Numbers in parentheses denote the
Standard Deviations over 400 trials

N p Method Overall cost (std) Accuracy

2 Random 17.56 (30.00) 0.245

Predefined Plus 37.10 (0.00) 0.583

morc (Ours) 29.85 (12.87) 0.860

3 Random 10.12 (21.77) 0.130

Predefined Plus 37.10 (0.00) 0.373

morc (Ours) 33.87 (8.78) 0.903

generate an object description that includes the values of two
or three attributes. This descriptionmatches the object in only
half of the trials. When two (or three) attributes are queried,
Y includes four (or eight) states plus the term state, resulting
in S that includes 25 (or 49) states. The other components
of morc grow accordingly, given an increasing number of
queried attributes.

Experimental results are reported in Table 3. Not surpris-
ingly, randomly selecting actions produces low accuracy. The
overall cost is smaller in more challenging trials (all three
attributes are questioned), because in these trials there are
relatively fewer exploratory behaviors (more attributes pro-
ducemore reporting actions),making the agentmore likely to
take a reporting action. morc reduces the overall action cost
while significantly improving the reporting accuracy. Our
performance improvement is achieved by repeating actions
as needed, selecting legal actions (e.g., lift is legal only if
the current state is x2) that produce the most information or
have the potential of doing so in the future, and even arbitrar-
ily reporting without “wasting” exploratory behaviors given
queries where the exploratory behaviors are not effective.
How does MORC perform in efficiency and accuracy on
ISPY32? In this set of experiments, a user query is spec-
ified by randomly selecting one object and N p attributes
(1 ≤ N p ≤ 3), on which the robot is questioned. Each data
point is an average of 200 trials, where we conducted pair-
wise comparisons over the five strategies, i.e., the strategies
were evaluated using the same set of user queries. A trial is

successful only if the robot reports correctly on all attributes.
It should be noted that most of the contexts are misleading
in this dataset due to the large number of object attributes, so
more exploratory behaviors confuse the robot if the behaviors
are not carefully selected.

Figure 8 shows the experimental results. The overall
reward is computed by subtracting the overall action cost
from the reward yielded by the reporting action (either a
big bonus or a big penalty). We do not compute standard
deviations in this dataset, because the diversity of the tasks
results in problems of very different difficulties. We can see
morc consistently performs the best in terms of the over-
all reward and overall accuracy. When more attributes are
queried, morc enables the robot to take more exploratory
behaviors (Middle subfigure), whereas the baselines could
not adjust their question-asking strategy accordingly.
Can we build a “super” model in MORC? The last
experiment aims to evaluate the need for dynamically con-
structed controllers, answering the question “Can we build
a ‘super’ controller that models all attributes?” We con-
structed MOMDP controllers including two relevant and an
increasing number of irrelevant attributes (i.e., the ones that
are not queried). Our dynamically learned controllers include
only the relevant attributes and correspond to the curves’ left
ends. Results are shown in Fig. 9. We can see, the quality
of the generated action policies decreases soon, e.g., from
> 150 to < 25 in reward, when more irrelevant attributes
are included in morc. The right two subfigures show that
morc first tries to achieve higher accuracy by taking more
exploration behaviors and then “gives up” due to the growing
number of irrelevant attributes. The results show the infeasi-
bility of “super” controllers inmorc that model all attributes
and justify the need for dynamic controllers.

7.3 MORC-ITRS evaluation

Regarding the evaluation of morc-itrs for online- meal
problems, we aim to answer the following questions:

• How does morc-itrs perform in efficiency and accu-
racy?

Fig. 8 Evaluations of five action
strategies (including morc) on
the ISPY32 dataset.
Comparisons are made in three
categories of overall reward
(Left), overall exploration cost
(Middle), and success rate
(Right)
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Fig. 9 A “super” morc framework that models two relevant attributes,
and an increasing number of irrelevant attributes (x-axis). Our dynam-
ically learned controllers correspond to the left end of each curve, and

model only the relevant attributes. The three subfigures correspond to
three different dimensions for evaluation: overall reward (Left), overall
exploration cost (Middle), and success rate (Right)

• Does morc-itrs outperform baselines for individual
attribute?

• How sensitive is morc-itrs to the parameters?

Attributes: In order to select attributes that are learnable
given the robot’s exploratory behaviors, evaluations of all
attributes in the two datasets were performed prior to the
experiments. We set | P | to 10 and picked the attributes
that have enough positive examples for training and those
are most learnable.
Queries: At the beginning of each trial, N p was either 1 or
2. At the end of each trial, the robot is told if the identification
was correct. In the case of N p = 1, the robot could learn the
attribute’s ground-truth value from the human’s feedback. In
the case of N p = 2, the robot could do so, only if the 2D
identification was correct.
Batch-based Learning: In both datasets, we randomly split
the objects into three subsets of equal sizes. The subsets are
used for pretraining (Obj pre), training (Objtrain), and test-
ing (Objtest ) respectively. In the pretraining phase, the robot
started with a handcrafted policy where each action is forced
to be applied on the queried object once. We collected fea-
ture instances with labels from those interactions and built
a pretraining dataset D pre that represents the robot’s prior
knowledge.

In principle, we do not need a pretraining dataset inmorc-
itrs. In practice, however, without a small amount of data for
“warm up,” the robot might take a large number of interac-
tions with objects for exploration in order to identify object
attributes and learn meaningful observation models. This
number is particularly large at the early learning phase. A
practical challenge is that the datasets used in this article can
provide only a limited number of samples for each attribute-
behavior pair. As a result, we would have to reuse the same
samples from the dataset when the robot performs the same
actions more than N times (N = 5 in our case), which is
detrimental to the quality of the experiments. To alleviate
this practical issue, we provide a small amount of data for

Table 4 Early and late observation models for behavior press

Early phase Late phase
Not soft Soft Not soft Soft
(Observed) (Observed) (Observed) (Observed)

Not soft (Ground truth) 0.68 0.32 0.82 0.17

Soft (Ground truth) 0.50 0.50 0.20 0.80

pretraining, though the online- meal algorithm does not
require that.

7.3.1 Illustrative trials of MORC-ITRS

From the robot’s many trials of the learning experience, we
selected two trials (T1 and T2), where the robot faced the
same object (a Coke can that has attributes metal, empty,
and container) and needed to answer the same question
“Is this object soft?” From the dataset, we know that the
correct answer should be “no” (the robot did not know it). T1
appeared at the second batch of training, and T2 appeared at
the ninth. We present both trials and explain how the robot
performed better in T2.

In T1 (early learning phase), the robot first performed the
look behavior. Then, the robot had the following options:
grasp, tap, push, poke and press according to Fig. 5. Specif-
ically, for press, the confusion matrix �

press
soft (shown in

Table 4) was nearly uniform, which is typical in the early
learning phase. Among those “less useful” behaviors, the
robot chose grasp. The distribution overY was changed from
[0.37, 0.63] to [0.46, 0.54], where the entries represent “not
soft” and “soft” respectively. After press,morc-itrs sequen-
tially suggested grasp, lift, hold and hold. Finally, the robot
reported pos that resulted in a failed trial with a total cost of
55.5 s.

In T2 (late learning phase), behavior press became more
useful for identifying attribute soft compared toT1, as shown
in Table 4. For grasp, IE(soft, grasp) = 0.67 and �

grasp
soft

was [0.66, 0,33, 0.61, 0.38] (TN, FN, FP, TP), which meant
that the robot was experienced with behavior grasp and
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considered grasp was not as useful as press. Accordingly,
morc-itrs suggested press instead of grasp after taking look.
The belief over Y changed from [0.57, 0.43] to [0.67, 0.33].
After only look and press, the robotwas able to quickly report
neg, resulting in a successful trial with a total cost of 22.5 s.

From the above two trials (same query and object in dif-
ferent learning phases), we see how the improved perception
model of (press, soft) helped the robot correctly identify
soft with a low cost.

7.3.2 Results of applyingMORC-ITRS to ONLINE-MEAL

problems

How does MORC-ITRS perform in efficiency and accu-
racy? Fig. 10 shows the learning curve for one-attribute and
two-attribute identification queries evaluated on the three
datasets, where we conducted experiments over three differ-
ent strategies (two baselines and morc-itrs). x-axis is the
accumulative cost of all trials at the training phase. Since the
cost is determined by the time required to complete each
action, we can regard the x-axis as training time. y-axis
reflects the identification accuracy at the testing phase. The
proposed method consistently performs better in task com-
pletion rate along the whole training process and achieves
higher accuracy than baselines.

Although we provided the same pretraining data, three
curves in the two subfigures (for each of the three datasets)
do not start from the same point. That is because pretraining
data only affects the observation model for the robot, but it is
not directly related to the policy for attribute identification.
Three strategies have the same observation model but they
use different methods to select exploratory behaviors. As a
result, the task-completion accuracy is not the same for them
at the starting point. morc-itrs assigns extra rewards for
exploration at the very beginning of the training phase. It
resulted in not only a bigger cost but also a higher accuracy.
Does MORC-ITRS outperform baselines for individual
attribute? At an exploration cost budget of 2h, we further
evaluated the performance of each individual attribute on
CY101 using the three strategies we mentioned, as shown
in Fig. 11, where 10 attributes are ranked by the identifica-
tion accuracy of our method, i.e. morc-itrs. The robot has
a higher identification accuracy for most of the attributes
usingmorc-itrs, while the Iterative Random Legal baseline
produces a relatively weak result compared to the other two
strategies. Attributes such as plastic, hard, and empty are
more difficult to learn since the accuracy is nomore than 80%
for all three methods. And attributes such as blue, full and
container are easier, where Iterative morc and morc-itrs
both offer pretty good results.
How sensitive is MORC-ITRS to the α and β parameters?
In Eq. 11, we have two parameters α and β. We conducted
experiments on CY101 with different α and β combinations,

as shown inFig. 12.One observation is that the selections ofα
and β affect the performance of morc-itrs. A small α value
leads to a higher identification accuracy in the beginning,
but the accuracy does not improve much when it reaches the
middle or late learning phase. A lower β value encourages
the robot to explore no matter whether it is experienced or
not, while a higher β value affects the robot to compute the
optimal policy. Thus, when β is within the middle range,
the robot has the best identification performance. We leave
the auto-learning of the parameters to future work. Another
observation is that the overall accuracy becomes higher in
the middle (Middle) and late (Right) learning phases than
early (Left) learning phase, which is expected and verifies
the robustness of morc-itrs to α and β selections.

7.4 Real robot demonstration ofMORC-ITRS

We have demonstrated the learned action policy using a real
robot (UR5e arm from Universal Robots). It should be noted
that the three datasets we used in this research were collected
on robots that are different from the robot in the demonstra-
tion. It is a major challenge in robotics of transferring skills
learned from one robot to another. To alleviate the effect
caused by the heterogeneity of robot platforms, after per-
forming each action,we sampled a data instance fromCY101
according to x ∈ X , the fully observable component of the
current state.

In the demonstration trial, our robot was given an object—
a pill bottle half-full of beans. The one-attribute query was
“Is this object empty?” The robot performed a sequence of
exploratory behaviors, as shown in Table 5, where we also
listed the observation and the belief after each behavior. For
instance, aposobservationmeans that the robot perceives that
the object is empty. Figure13 shows a sequence of screen-
shots of the UR5e robot completing the task using a learned
action policy.

Note that at step 3 in the demonstrated trial, lift was not
very useful for identifying whether the object was empty
or not. That was because the training set contained objects
that were of various weights causing a single lift action that
could not distinguish between attributes such as empty and
light- weighted. In contrast, the shake actions produced a
distinctive sound that seemed to be beneficial for leading the
robot to a correct identification.

Therewere drastic changes in the belief after the two shake
actions in Steps 5 and 6 in Table 5. At step 5, shake was
executed successfully and led the system to the next state.
However, there was uncertainty in the perceived sensory data
which caused inaccurate outputs from the classifier and unde-
sired belief changes from the robot. Intuitively, how the belief
evolves over time depends on how the robot trusts its actions
on different attributes. When the robot believes an action is
useful for detecting an attribute, this action might cause a
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Fig. 10 Time length of conducting exploratory actions in hours, and identification accuracy of online- meal tasks, where we comparedmorc-itrs
(ours) to two baseline strategies including Iterative Random Legal, and Iterative morc
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Fig. 11 Accuracy of attribute identification tasks. The attributes (x-axis) are ranked based on morc-itrs’ performance. morc-itrs performed the
best on seven out of the ten attributes

Fig. 12 We empirically
evaluated the identification
accuracies of morc-itrs in
early (a), middle (b), and late (c)
learning phase using different
values of α and β, which are
two parameters of our reward
shaping approach (Eq. 11)

Table 5 Behaviors, observations, and belief updates in the demonstra-
tion trial of morc-itrs

Step Behavior Observation Belief (Initial belief: [0.5, 0.5])

1 look pos [0.41, 0.59]

2 grasp pos [0.33, 0.67]

3 lift pos [0.20, 0.80]

4 shake neg [0.83, 0.17]

5 shake pos [0.46, 0.54]

6 shake neg [0.94, 0.06]

drastic change in its belief; otherwise, the beliefs before and
after the action might look similar. In this example, the robot
believed shake is useful for detecting empty, so the belief
updates were significant after each of the three consecutive
shake behaviors.

8 Conclusion and future work

In this article, we introduce two Multimodal Embodied
Attribute Learning (meal) problems that both require a robot
to compute a policy of leveraging multimodal exploratory
behaviors to identify object attributes. In offline- meal

problems, the robot is provided data for learning action-
conditioned attribute classifiers, whereas the robot does not
have such data in online- meal domains. Accordingly, we
have developed two algorithms called mixed observability
robot control (morc) and morc with information-theoretic
reward shaping (morc-itrs) for addressing offline- and
online- meal problems respectively.

morc uses mixed observability Markov decision pro-
cesses (MOMDPs) to solve offline- meal problems, where
a robot selects actions for multimodal perception in object
exploration tasks. Our approach can dynamically construct
a MOMDP model given an object description from a human
user, compute a high-quality policy for this model, and use
the policy to guide robot behaviors (such as look and shake)
toward maximizing information gain. The dynamically built
models in morc enable the robot to focus on a minimum set
of domain variables that are relevant to the current object and
query. Attribute classifiers in morc are learned using exist-
ing datasets collected with robots interacting with objects in
the real world. Experimental results show that morc enables
the robot to identify object attributesmore accuratelywithout
introducing extra cost from exploratory behaviors compared
to a baseline that suggests actions following a predefined
action sequence.
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Fig. 13 A demonstration of the
learned action policy. The robot
performed six actions in a row.
In the beginning, the robot
started with a uniform
distribution (it evenly believed
the object can be empty or not).
After completing the six actions,
the belief converged to
“negative” (0.94 probability).
Finally, the robot selected a
reporting action to report that
the object is not empty”

morc-itrs selects exploratory behaviors toward simulta-
neous attribute classification and attribute identification. This
algorithm is built on morc, and provoides an information-
theoretic reward function for the exploration-exploitation
trade off in online- meal problems. The proposed method
and baseline methods are evaluated using three real-world
datasets. Experimental results show that morc-itrs enables
the robot to complete attribute identification tasks at a higher
accuracy using the same amount of training time compared
to baselines.

This research primarily focuses on a robot exploring
objects in a tabletop scenario. For future work, one inter-
esting direction will be applying this approach to tasks that
involve mobile robot platforms, where exploration would
require navigation actions and perceptual modalities such
as human-robot dialog. In this article, we empirically evalu-
ated the performance of bothmorc andmorc-itrs, however
there is room to improve the evaluation through formal anal-
ysis. One common limitation of the two algorithms is that the
attribute classifiers are learned by a single robot and cannot
directly be used by another robot that has different behaviors,
morphology, and sensory modalities. It may be possible to
use sensorimotor transfer learning (e.g., [65,66,69]) in future
work to scale up our framework to allow multiple different
robots to learn such models and share their knowledge to fur-
ther speed up learning. In addition, considering correlations
between attributes and handling fuzzy attributes can poten-
tially improve the performance of online- meal. Handling

unseen attributes could be another interesting focus. Another
direction for the future is to learn theworld dynamics through
the task completion process (currently the transition function
is provided and the observation function is learned), where
reinforcement learning methods potentially can be used. It is
also important to consider human-robot dialogue to acquire
attribute labels for objects in meal problems.

Finally, we would like to explore the possibility of
formulating online- meal as Bayes-Adaptive POMDPs
(BAPOMDP) [67] where observation probabilities (func-
tions) can be considered as unobserved parameters in the
state space over which we maintain beliefs. During the
learning process, the robot will continually gather data for
approximating the BAPOMDP model while maintaining
attribute identification performance guarantees. Fundamen-
tally, a BAPOMDP model enables sequencing actions with
the optimal trade-off between exploration and exploitation,
which is exactly the underlying challenge of online- meal.
There can be practical challenges in applying BAPOMDP
to our online- meal problems, such as the lack of systems
for learning BAPOMDP policies and the necessity for more
training data. BAPOMDP assumes the reward function is
known and stationary. In our current formulation of online-
meal, however, the reward function dynamically changes
based on the learned observation function. Thus, a princi-
pled solution would require a new version of POMDP (and
corresponding algorithms and systems), where both reward
and observation functions are learned over time. Developing
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such a general-purpose framework would add a strong theo-
retical contribution to the literature, though in this article we
chose to develop solutions (morc and morc-itrs) focus-
ing on the specific meal problems. There can be interesting
future research to answer those questions.
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