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Abstract—Multiagent reinforcement learning algorithms are
designed to enable an autonomous agent to adapt to an op-
ponent’s strategy based on experience. However, most such
algorithms require a relatively large amount of experience to
perform well. This requirement is problematic when opponent
interactions are expensive, for example, when the agent has
limited access to the opponent during training. In order to make
good use of the opponent as a resource to support learning, we
propose SElf-PLay by Expert Modeling (SEPLEM), an algorithm
that models the opponent policy in a few episodes, and uses it to
train in a simulated environment where it is cheaper to perform
learning steps than in the real environment. Our empirical
evaluation indicates that SEPLEM, by iteratively building a
Curriculum of simulated tasks, achieves better performance than
both only playing against the expert and using pure Self-Play
techniques. SEPLEM is a promising technique to accelerate
learning in multiagent adversarial tasks.

I. INTRODUCTION

Reinforcement Learning (RL) [1] agents have the ability to
learn through experience, which allows them to autonomously
acquire behaviors and learn how to solve tasks under minimal
supervision. However, classical model-free RL techniques are
known to require a huge number of interactions with the
environment for learning optimal task solutions [2], especially
if other autonomous agents are in the environment, requiring
learning how to adapt to another agent’s actions [3].

For this reason, additional techniques are needed for accel-
erating learning. Curriculum Learning [4] has recently become
a popular approach for enabling the solution of complex tasks.
Curriculum Learning builds on the much older general idea
of decomposing a complex task into several simpler ones [5].
The agent can then reuse knowledge from simpler tasks to
learn faster overall when compared to directly training in the
complex task or at least to reduce the time taken in the last task
(often costlier or riskier than the simple tasks). In adversarial
tasks, the agent might play against different versions of itself,
building a Curriculum of self-play tasks aiming at learning
how to play against a skillful agent [6].

However, playing against a copy of the agent might cause
a suboptimal exploration of the task, as the agent only adapts
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against itself [7], failing to explore varied strategies. For this
reason, more effective self-play techniques train against a
different version of the agent, such as training more than
one agent simultaneously [8]–[10], or against a previously
successful version of the agent [6]. We here propose a self-
play algorithm to learn how to adapt against expert agents
in adversarial tasks faster than playing directly against them.
When trying to learn how to beat an expert, the agent might
take very long to find a good solution, as winning the game
often requires a carefully selected sequence of actions that has
to be initially observed randomly. However, the agent might
benefit from learning how to beat easier opponents first, only
facing the expert after achieving reasonable performance.

We here contribute a self-play approach, named SElf-PLay
by Expert Modeling (SEPLEM), that uses the expert as a
resource for building self-play tasks. Instead of playing against
copies of the learning agent [7], we build a model of the expert
by playing against it a few rounds. Then, we use the model
for building a Curriculum task. Our contributions are:

1) We propose to use the expert agent that we intend to
defeat as a resource for building a Curriculum;

2) We propose SEPLEM for building a Curriculum online,
where tasks that do not require interactions with the
expert are generated and used in the learning process;

3) We empirically show that SEPLEM enables the agent to
learn how to adapt to an expert’s policy while playing
fewer games against the actual expert when compared
to similar approaches.

II. BACKGROUND

Single-agent Reinforcement Learning problems can be mod-
eled as Markov Decision Processes (MDP). An MDP is com-
posed of a tuple 〈S,A, T,R〉, where S is a set of environment
states, A is a set of available actions, T is a transition function,
and R is a reward function. As the agent initially does not have
information about T and R, the learning process is carried out
by applying actions in the environment and observing samples
of those functions. At every decision-making step, the agent
observes the state s and chooses action a. The action will cause
a state transition s′ = T (s, a), which on its turn generates a re-
ward r = R(s, a, s′). This cycle is repeated until a termination
condition is achieved and samples of 〈s, a, s′, r〉 are the only
information the agent has to learn how to solve a task. The goal



of the agent is to learn a policy π for dictating which action
should be applied in the current state: π : S → A. The optimal
policy (the best solution for a particular MDP) π∗ is the one
that maximizes the sum of rewards in a predefined horizon.
A possible way to learn such a policy is to first estimate
the quality of each action in each state Q : S × A → R.
Some algorithms (e.g. Q-Learning [1]) provably converge to
the true Q function: Q∗(s, a) = E

[∑∞
i=0 γ

iri
]
, where ri is

the reward received after i steps from using action a on state
s and following the optimal policy on all subsequent steps.
After learning Q∗, it is straightforward to extract the optimal
policy: π∗(s) = argmaxa∈AQ

∗(s, a).
When more than one agent is present in the environment,

the state space is composed of local states of multiple agents
S = S1 × S2 × · · · × Sn and multiple action sets exist
U = A1 × A2 × . . .An. The transition function is now
dependent on the joint action and every agent has their
own reward function. Therefore, the learning agent has to
coordinate with the other agents, for maximizing its sum of
rewards according to joint actions. If the policy of the other
agents can be assumed to be fixed, it is possible to learn in
such a multiagent setting as in an MDP. However, if the other
agents have non-stationary policies (i.e., they are learning or
adapting to the learning agent’s policy), then the task should
be modeled as a Stochastic Game [11].

Even though the optimal policy will be eventually learned
under certain conditions [12], learning Q can take a lot of
data, as usually the state-action space to be explored is huge
for all but the most simple tasks. For this reason, RL needs
additional techniques for accelerating and scaling learning.
An early but very effective idea is to first solve manually
defined simplifications of the task [5]. Then, the agent can
progressively solve harder tasks until eventually solving the
full task. Recently, this idea has been revisited by Curriculum
Learning approaches [13], [14] that automatically decompose
a hard RL task into a sequence of easier tasks. If an appropriate
task decomposition and sequencing is available, those tech-
niques have been shown to accelerate learning in challenging
domains. We here propose a Curriculum Learning approach
based on switching the learning task between the real task
with other agents and a simulated task used for accelerating
learning. The problem formulation is described next.

III. PROBLEM STATEMENT

We are interested in tasks composed of two or more
agents. In this paper, we describe the two-agent case, but the
formulation can be easily extended to more agents. A learning
agent l has to solve an adversarial RL task T in the presence
of an expert agent e. Although e is expected to have a good
policy πe for solving T , no information about πe is initially
available to l. Since T is an adversarial task (e.g., a zero-sum
game), πl should be specialized to achieve the best possible
reward against πe: πl∗ = argmaxπlV π , where π = {πl, πe}.

In order to solve the task, we assume that l can challenge e
for a round (episode) at any time, but playing with e is costly
because it requires training in the real task. However, l is also

equipped with a simulator Ts to practice the task whenever it
wants without the presence of e. For that, l has to simulate
the moves of the other player (e.g., playing against itself).

Therefore, the goal of the agent is to learn T , while
taking advantage of simulated episodes in Ts, to minimize
the number of episodes against e. We assume the following:
• Rules of the game: In order to build Ts, the learner needs

to be able to simulate the transition and reward functions,
as well as identify initial and goal states. This information
can be given to l as a black box simulator.

• Observable actions: We assume that l is able to accurately
observe expert actions when interacting with it, even
without knowing πe.

• Fully-Observable States: We assume that the agents are
solving a task in which the state (or observations) of one
agent is observable to the other. Those observations will
be used in our method to model the expert.

Those assumptions are similar to or less restrictive than the
ones found in contemporary related works [7], [14], [15].

IV. BUILDING SELF-PLAY CURRICULA

We propose a novel algorithm, hereafter named SElf-PLay
by Expert Modeling (SEPLEM), as a solution to the challenge
presented in the previous section. Algorithm 1 is a high-
level description of our proposal. At first, the agent has
no knowledge about the policy πe and, for this reason, ne
preliminary rounds are played against e (line 3). After each
step against the expert, the tuple 〈sk, aek〉 (state and action
executed by e) is recorded in a set I. This set is then used
for estimating a policy πs that resembles the observed expert
behavior (line 4). This model is later used for playing in the
simulator Ts(πs) (line 5). In order to avoid adapting only to
πs, Ts will be played for ns rounds only, and the whole process
will be iteratively repeated for building better models of e.

Algorithm 1 SEPLEM task generation

Require: task T , simulator Ts, number of rounds against
expert ne, number of self-play rounds ns.

1: I ← ∅
2: while learning do
3: play ne rounds in T , ∀ step k : I ← I ∪ 〈sk, aek〉
4: πs ←MODEL(I)
5: play ns rounds in Ts(πs)

Ideally, the modeling function should be able to easily adapt
to new instances, avoiding the need of recomputing all the set
I each time line 4 is executed (how expensive recomputing
πs is depends on the used modeling function). Any supervised
learning algorithm could be used in the general case, though
(the current expert state sk is the feature set and the chosen
action aek is the class). If the expert is reactive (i.e., changes
its strategy according to the previous actions applied by the
agent), a subset of the previous agent’s actions can be included
as additional features [16]. The simplest way to compute the
policy πs is by calculating a probability for each action as:



∀a ∈ A : πs(s, a) ← n(s,a,I)∑
ai∈A n(s,ai,I)

, where n(s, a, I) is the
number of tuples in I with state s and action a.

However, this model might be inapplicable when the exact
same state is not expected to be observed frequently (e.g.,
continuous domains). In this case, a more sophisticated model
should be used. Algorithm 2 shows how a model can be built
by using a Supervised Learning algorithm. First, the model is
initialized or retrieved from a previous iteration (line 1). Then,
the observed instances are used to train the model, where the
state variables are the features for the classifier and the chosen
action the class (line 2). Finally, the trained model is used
to define the simulated policy, where the action with highest
probability for the current state is chosen. Alternatively, I
might be saved each time the algorithm is executed and M
might be trained from scratch on line 2 using all the data.
Notice that every time the agent improves the expert model,
a new task is implicitly created. The objective of this task
is beating the model in the simulator. Therefore, by switching
between playing against the expert and different expert models,
the agent is building a Curriculum of adversarial tasks and
reusing the gathered knowledge across them.

Algorithm 2 Classification MODEL

Require: Set of observed instances I
1: M← initialize classifier.
2: train(M, I)
3: return M

V. EXPERIMENTAL EVALUATION

In order to evaluate SEPLEM, we empirically compare the
performance achieved by both our algorithm and alternative
similar approaches for solving the same problem. The follow-
ing approaches were considered:
• Q-Learning: The expert is continually challenged for

new rounds and the regular Q-Learning algorithm is
applied as if the expert were part of the environment.

• Self-Play: The agent trains exclusively from simulated
rounds against itself. Instead of using the expert, only
self-play rounds are used to apply the RL algorithm,
similarly to the AlphaZero algorithm [6].

• SEPLEM-Prob: Here, our approach is implemented with
a probabilistic model (counting samples as described in
Sec. IV). Even though this model is only expected to
work in discrete state spaces,its simplicity and the speed
with which this model is able to mimic the expert moves
makes it appealing when applicable.

• SEPLEM-NN: Here, the expert policy is modeled
through a Neural Network. Even though this model takes
longer to converge, it has better generalization capabilities
and is applicable to a wide range of domains, including
continuous state spaces.

A. Evaluation Domain

Tic-Tac-Toe is a simple and well-known competitive two-
player game. The players (represented by either a X or O

mark) alternate by choosing an open position in a 3×3 board
to write down its mark. The objective is to get three marks
in a row, horizontally, vertically, or diagonally, after which
the game ends. In case the nine positions are filled and no
player won, the game finishes as a draw. Despite its simplicity,
this domain has interesting properties for serving as a proof-
of-concept to our algorithm. First, it is easy to come with a
manually defined optimal policy that never loses the game,
as well as to progressively degrade this policy to study the
effect of using experts of different levels. Second, random
policies perform poorly (most likely losing all rounds) when
playing against high-level agents, which means that in this
domain the agents are expected to benefit from smarter ways to
improve initial performance. Third, due to the relatively simple
representation of the environment, full observability, and ease
of observing opponent’s actions, we can study the performance
on learning and adapting to game strategies without additional
noise introduced by partial observability or learning by using
more complicated state representations.

A player playing the optimal policy never loses, which
means that two players playing perfectly would always draw
the game. The expert was programmed with a policy that never
loses, while the learning agent has to learn from scratch. This
domain is modeled as an RL problem by considering each
of the possible positions as a state variable. Each of the 9
state variables might be empty, occupied by the player, or
occupied by the opponent, hence three values are possible
for each of them. The available actions are the positions that
can be marked. A reward of +1 is awarded to the winner,
while a reward of −1 is given to the loser. In case of a
draw, both players receive −0.1 reward. In order to evaluate
the algorithms, we designed different scenarios to evaluate
different aspects of the algorithm, as described in the next
subsections. In all cases, the extracted metric was the average
of the sum of rewards observed in 16 rounds against the expert.
Those evaluations are executed every 150 learning steps and no
exploration or updates are executed during evaluation rounds.
After each game, the players switch sides. During training,
the agents might freely use the simulator or “challenge” the
expert according to their learning algorithms.

The environment and algorithms were implemented in
Python and TensorFlow for Neural Network training1. The
parameters below were set based on preliminary experiments.
The algorithms are not very sensitive to them: Similar results
are observed for similar parameters.
• SEPLEM-Prob: A probabilistic model as described in

Section IV was used. For this algorithm, we set the
number of expert interactions ne = 200 and the number
of simulated steps ns = 5, 000.

• SEPLEM-NN: The model has a single fully-connected
hidden layer of 20 neurons. The input layer receives the
state variables (9 neurons in total) and the output layer
consists of all possible actions (9 possible positions to
mark). We minimized the cross-entropy cost function by

1Available at https://github.com/f-leno/Online SelfPlaying Curriculum



using the Adam optimizer [17]. A softmax function is
used to stochastically select actions for the simulated
expert. For this algorithm, ne = 200 and ns = 5, 000.

For all algorithms, Q-Learning was used as the base RL
algorithm, configured with α = 0.2 and γ = 0.99. For all the
graphs in the next section, the shaded areas correspond to the
95% confidence interval over 500 repetitions.

B. Learning against an expert

We first evaluate our algorithm in the most straightforward
setting. The agent has to learn how to play against an expert
by playing as few games against it as possible. The policy
followed by the expert is unbeatable. Therefore, an optimal
policy against this agent would always draw the game. Notice
that we do not count learning steps taken in simulation for
SEPLEM, as we are interested in problems where only playing
against the real expert is costly (e.g., any task in which the
real expert is a human).

Figure 1 shows that both SEPLEM-Prob and SEPLEM-NN
achieve a significantly faster learning speed between around
800 and 3000 learning steps, converging to the same final
performance as using Q-Learning directly against the expert.
Since Self-Play never plays against the expert, the figure shows
its performance in a way that the x-axis position corresponds
to the same number of learning steps in both simulated or
real rounds for both Self-Play and SEPLEM. Initially (when
its policy resembles the random policy), Self-Play shows a
huge improvement over Q-Learning, while SEPLEM is still
acting as Q-Learning and gathering samples for opponent
modeling. However, Self-Play quickly overfits to its own
policy, deviating from the real objective of beating the expert.
As a consequence, Self-Play finally converges to a lower
performance than the other algorithms.

In order to understand the difference between using the
probabilistic and Neural Network models with SEPLEM, we
also show the results when counting steps in simulation as
if they were as costly as steps against the expert in Figure
2. Notice that SEPLEM-Prob learns faster than Q-Learning
even when steps in simulation are counted. Since the proba-
bilistic model is very simple to learn, after only a few steps
playing against the expert SEPLEM-Prob already has a good
simplified model of the expert, enabling a faster learning
speed. SEPLEM-NN however, uses a model that requires a
higher number of samples to build a good representation of the
expert. Self-Play takes much longer to improve its performance
than the other algorithms, which is not surprising since this
algorithm never plays against the expert.

C. Transfer over different experts

For our last setting, imagine a different scenario. If the final
goal is to play against an expert that is unavailable during
learning, but another expert is available to play, it might be
possible to transfer the learned policy across the experts. How-
ever, since the experts might be following different policies,
transferring this knowledge might be challenging, as the agent
needs to be able to cope with the differences in their policies.

Nevertheless, SEPLEM might be useful if playing against the
available expert is still costly, and for this reason we built
a setting to evaluate this scenario. We executed experiments
in two scenarios, degrading the optimal policy of the expert
according to a parameter p, where the expert follows the best
policy with probability p and a random action otherwise:

1) Transfer from weaker to stronger: We evaluate here the
most common transfer scenario. A lower-level expert is
available to practice against, while the higher-level ex-
pert is the agent’s true objective. We train the SEPLEM
agent against a p = 0.7 expert, and evaluate it against
an optimal expert.

2) Transfer from stronger to weaker: The available expert
might be stronger than the one the agent is trying to beat,
even though this is a less common scenario. Here, we
train the agent against an optimal expert, and evaluate
the agent performance against a p = 0.7 expert.

In both scenarios, we compare the performance of SEPLEM
with the performance achieved by applying Q-Learning di-
rectly against the expert that is the agent’s objective.

1) Results: Transfer from weaker to stronger: Figure 3
shows the results for this scenario. Clearly, using an expert
as a resource to accelerate learning is advantageous even if
the policy of the available expert does not match precisely the
expert the agent is trying to beat. The major improvement is
during the beginning of the learning process, where the use of
simulated plays enables the agent to learn very quickly how to
avoid losing the game. Both SEPLEM-NN and SEPLEM-Prob
have similarly positive results in this scenario, showing that
both simple and complex models can be used in this setting.

2) Results: Transfer from stronger to weaker: Figure 4
shows the experimental results for this scenario. Even though
SEPLEM-Prob improves the learning speed until around step
2000, it is not able to improve over the performance achieved
against the optimal expert. Since the p = 0.7 expert allows
the agent to perform better, Q-Learning surpasses SEPLEM-
Prob after around 2000 learning steps. However, SEPLEM-NN
is able to learn a policy that achieves optimal performance
against the p = 0.7 expert as well. This result shows that the
stochastic selection of actions allowed the agent to explore
behaviors that were not demonstrated by the expert, resulting
in a better performance for this transfer scenario.

D. Summary of experimental results

The main findings in the experimental evaluation were:

• SEPLEM achieves a better learning performance than
both Q-Learning and playing only self-play matches.

• Both simple (e.g. probabilistic) and complex (e.g. Neural
Network) models can be effectively used with SEPLEM.
The choice of model to mimic expert behaviors should
be taken according to the complexity of the desired task.

• SEPLEM can also be used to transfer across experts,
where a complex model is more effective when transfer-
ring from a more competent to a less competent expert.



Fig. 1: Average sum of rewards observed in evaluation steps against the expert for each algorithm. Here, steps taken against
simulated experts are not counted for SEPLEM-Prob and SEPLEM-NN.

Fig. 2: Average sum of rewards observed in evaluation steps against the expert for each algorithm. Here, steps taken against
simulated experts are counted for all Algorithms.

Fig. 3: Evaluation of the performance against an optimal expert while training against a p = 0.7 expert.

VI. RELATED WORKS

Even though the general idea of solving “easy missions”
first dates back to the 90s [5], the modern approaches of
Curriculum Learning and Self-Play have become popular in
the past few years. AlphaGo and its newer versions are related
to our work, as they intended to win matches against a “human
expert” [6], [7]. However, they execute numerous self-play
matches, virtually learning how to play against any player
before facing the expert. We here focus on learning how to
adapt to a specific agent, making use of preliminary matches
as a resource for learning faster. Some Curriculum Learning
approaches focus on building sequences of subtasks to learn a
more complex task faster [18]–[20], as we also do. However,

they usually focus on transferring knowledge through single-
agent tasks, while we focus on building a Curriculum to learn
faster how to adapt against another agent’s strategy. Rosin and
Belew [9] introduced an earlier approach in which two agents
evolve their strategy by direct competition. Although we also
focus on learning through competition, our paper is concerned
with learning faster by modeling an expert and playing in
a simulator. The ability of modeling another agent has been
studied by a vast literature before [21]. Some approaches are
specialized to compute the best strategy against a specific
opponent as we do [22]. However, those works usually require
extensive domain knowledge to quickly compute the best
strategy once the opponent model is known, while here we also
learn how to play the game from scratch. Nonetheless, many



Fig. 4: Evaluation of the performance against a p = 0.7 expert while training against an optimal expert.

of those methods and some from other paradigms of Transfer
Learning [20] could be integrated into SEPLEM. Bansal
et al. [10] has a similar purpose of building a multiagent
Curriculum, but they aim at showing emergent competition
behaviors when multiple agents are trained together, instead
of training one agent to face another.

VII. CONCLUSION AND FURTHER WORK

Learning adversarial tasks requires the ability to quickly
adapt to an opponent’s policy, often in a setting where
gathering samples of interactions is expensive. Inspired by
the recent successes of self-play and Curriculum Learning
procedures, we here propose SElf-PLay by Expert Modeling
(SEPLEM), an algorithm that builds a model of the opponent
in a few episodes and then trains the agent in simulated
tasks that are much cheaper than playing against the real
opponent. We performed empirical evaluations that showed
that SEPLEM performs better than pure self-play and regular
RL. Our experiments also showed that SEPLEM is effective
for transferring knowledge across different opponents.

SEPLEM opens several avenues for possible future work.
The algorithm could be adapted to not only model opponents
in adversarial tasks, but also to model other agents in co-
operative or self-interested scenarios. A current limitation of
our algorithm is that SEPLEM assumes the opponent follows
a fixed or slowly-changing policy. In order to cope with
opponents that change their strategies, SEPLEM could be com-
bined with Concept Drift [23], [24] techniques, which would
allow the learning agent to detect changes of strategy and
to adapt accordingly. Finally, some works have successfully
mimicked demonstrated policies even when it is not possible
to accurately observe the actions taken by the demonstrator
[25], [26]. SEPLEM could be combined with those approaches
for modeling expert policies under partial observability.
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