
In Technical Report of the 2018 AAAI Spring Symposium Series, Symposium on Data-Efficient Reinforcement Learning DERL
2018 Stanford, CA, USA March 2018

State Abstraction Synthesis for Discrete Models of Continuous Domains

Jacob Menashe and Peter Stone
{jmenashe,pstone}@cs.utexas.edu
The University of Texas at Austin

Austin, TX USA

Abstract

Reinforcement Learning (RL) is a paradigm for enabling au-
tonomous learning wherein rewards are used to influence an
agent’s action choices in various states. As the number of states
and actions available to an agent increases, so it becomes in-
creasingly difficult for the agent to quickly learn the optimal
action for any given state. One approach to mitigating the detri-
mental effects of large state spaces is to represent collections
of states together as encompassing “abstract states".
State abstraction itself leads to a host of new challenges for an
agent. One such challenge is that of automatically identifying
new abstractions that balance generality and specificity; the
agent must identify both the similarities and the differences
between states that are relevant to its goals, while ignoring
unnecessary details that would otherwise hinder the agent’s
progress. We call this problem of identifying useful abstract
states the Abstraction Synthesis Problem (ASP).
State abstractions can provide a significant benefit to model-
based agents by simplifying their models. T-UCT, a hierarchi-
cal model-learning algorithm for discrete, factored domains,
is one such method that leverages state abstractions to quickly
learn and control an agent’s environment. Such abstractions
play a pivotal role in the success of T-UCT; however, T-UCT’s
solution to ASP requires a fully discrete state space.
In this work we develop and compare enhancements to T-UCT
that relax its assumption of discreteness. We focus on solving
ASP in domains with multidimensional, continuous state fac-
tors, using only the T-UCT agent’s limited experience histories
and minimal knowledge of the domain’s structure. Finally, we
present a new abstraction synthesis algorithm, RCAST, and
compare this algorithm to existing approaches in the litera-
ture. We provide the algorithmic details of RCAST and its
subroutines, and we show that RCAST outperforms earlier
approaches to ASP by enabling T-UCT to accumulate signifi-
cantly greater total reward with minimal expert configuration
and processing time.

1 Introduction
The efficiency with which an AI agent learns the dynamics
of a domain is heavily influenced by that agent’s internal rep-
resentation of the world. This is especially true for complex,
multi-faceted domains that are often found in the real world.
For this reason, AI researchers are often forced to wrestle

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

with the so-called curse of dimensionality wherein the com-
plexity of a domain scales exponentially with the number of
variables used to describe it.

A traditional solution to this problem is through the use of
hierarchical layers of abstraction; rather than painstakingly
learning about every individual state possible in some do-
main, an agent can instead group large numbers of states
together and consider only this abstract representation during
the learning process. While such representations are merely
helpful for simpler domains, abstractions are essentially a
requirement when applying any form of machine learning to
domains over real-valued variables (such as one’s position in
continuous space).

The T-UCT algorithm (?) exemplifies the success of this ap-
proach by learning decision-tree-based models from scratch
in hierarchically structured domains. However, T-UCT has
no internal mechanism for modeling continuous state, and
while it is designed for domains with factored state represen-
tations, it performs poorly on domains whose state factors
span large value spaces. When faced with value spaces of
infinite cardinality, T-UCT often performs worse than chance.

In this work we augment T-UCT with mechanisms for
efficiently modeling actions and state transition dynamics
in continuous, factored state spaces. We call this augmented
version of T-UCT Continuous T-UCT (CT-UCT). We design
our CT-UCT augmentations in such a way that a variety of
competing abstraction synthesis algorithms can be “plugged
in" and evaluated on a single hierarchical, continuous learn-
ing task, toward the ultimate goal of enabling a CT-UCT
agent to maximize its total accumulated extrinsic reward.

In Section 2 we describe the necessary background for T-
UCT and CT-UCT as well as the past research on abstraction
synthesis. The primary challenge in developing CT-UCT is
that of retrofitting T-UCT’s discrete model-learning infras-
tructure with the necessary machinery for learning abstrac-
tions over continuous space; in Section 3 we present a novel
abstraction synthesis algorithm, the Recursive Cluster-based
Abstraction Synthesis Technique (RCAST), which achieves
this feat of identifying abstractions that can be consumed by
CT-UCT’s modeling framework.

In Section 4, we compare RCAST with alternative algo-
rithms from existing literature by plugging these algorithms
into CT-UCT and evaluating their performance on a challeng-
ing HRL task. Finally in Section 5 we conclude and discuss

future work.

2 Background and Related Work
In this paper we focus our discussion on state abstraction
synthesis in the context of Reinforcement Learning (RL).
Thus we begin our discussion of background literature with a
brief overview of model-based RL, and then proceed to cover
the related work on state abstraction.

2.1 Model-based Reinforcement Learning
Model-based reinforcement learning is a branch of reinforce-
ment learning in which an agent uses a model to predict the
effects of its actions in the environment. In effect, while clas-
sical Reinforcement Learning is concerned with learning a
value function dependent upon R, model-based reinforce-
ment learning is additionally concerned with invoking (and
possibly learning) an approximation of P . Often, the agent’s
model of P is used as an intermediate step toward improving
the value function.

In our work we consider models based on Conditional
Probability Trees (CPTs), which are a form of decision tree
in which each internal node “splits" based on the values of a
particular state factor F . Each branch from such an internal
node denotes a value (or set of values) for F . (?) describe
how such a model can encode the dynamics of a particular RL
domain and be used to predict a state st from its predecessor
st−1 and an action at taken in st−1 for some timestep t.

(?) describe the VISA algorithm, which uses CPTs and
〈st, at, st+1〉 histories to learn a model of its environment
from scratch. (?) use T-UCT (based on the UCT algorithm
(?)) with the CPT framework of (?) to improve learning
performance and sample efficiency in comparison with VISA,
however both T-UCT and VISA assume discrete MDPs. In
our work, RCAST provides the key mechanism for relaxing
this assumption of discreteness by producing discrete state
abstractions over continuous value spaces.

2.2 State Abstraction Synthesis
Small, finite, and factored state spaces give rise to useful and
intuitively defined state abstraction mechanisms. (?) propose
a method for state abstraction in such factored state spaces
through identification of so-called “irrelevant" factors. For
instance, if the state space S has factors X and Y , then an
abstract state might be a particular assignment X = x0 with
no assignment for Y . In this case, the abstract state space S′
consists of |X| abstract states each encompassing |Y | prim-
itive states. (?) use decision tree models of the state space
toward a similar end, where each branch encodes an assign-
ment of variables to values, and omitted variables represent
those that are irrelevant for a particular action model.

Rather than defining abstractions in terms of critical val-
ues, there has been ample work on defining abstractions
in terms of their relevance to “macro" actions using the
options framework (?). “Bottleneck" options are one such
example where the state space is divided into regions on
either side of highly-traversed intermediate states (“bottle-
neck" states). The initiation and termination sets of such
options each designate two distinct abstract states that can

be used for planning in lieu of the primitive state space (?;
?; ?). Macro actions give rise to Hierarchical Reinforcement
Learning (HRL), where a single macro action may consist
of many sub-actions, and may itself comprise part of a more
general macro action. State abstraction is often a central
component of an HRL algorithm; T-UCT is no exception,
as its entire model-learning framework is concerned with
identifying dependencies between abstract states.

State abstractions can be more difficult to synthesize in
domains with continuous-valued state variables. Due to the
negligible likelihood of visiting a single real-valued state
multiple times, an agent must instead attempt to visit the
neighborhoods about such values for effective planning. Plan-
ning with neighborhoods raises the challenge of determin-
ing the appropriate size and shape of such neighborhoods.
Option-based state abstraction extends naturally into contin-
uous domains, however this does not relieve the aforemen-
tioned difficulty in identifying continuous neighborhoods.
Such neighborhoods can be classified using a traditional su-
pervised learning approach (?), but this relies on large num-
bers of sample trajectories and predefined classes used to
label the samples.

Iterative Half-Space (IHS) Abstraction Synthesis Many
alternative approaches to abstraction synthesis rely on iter-
atively dividing the state space into half-spaces using hy-
perplanes (?; ?; ?; ?; ?). Such iterative half-space (IHS)
approaches identify optimal hyperplanes for splitting some
space one at a time until all of the splits necessary to fully
describe the space’s dynamics have been identified. While
this technique can achieve arbitrary levels of precision, it
invariably results in creating unnecessary abstract states as a
side-effect of the iterative halving process. Moreover, when
multiple half-spaces are required for meaningful separation
of datapoints, the initial splits must be performed with limited
statistical indication of their relevance. Thus the algorithm
must split aggressively in anticipation of high quality abstrac-
tions many iterations in the future, and at the same time split
conservatively to avoid creating abstractions that are harm-
ful to the learning process. The overall effect is that such
algorithms tend to be either sample-inefficient or inaccurate.

(?) tackle the state abstraction problem with unidimen-
sional continuous factors by hierarchically splitting continu-
ous intervals into two parts at a time, but even this approach
suffers from creating unnecessary abstract states and is poorly
suited to continuous factors over multiple dimensions.

Our work improves upon that of ? by both removing the
need for creating unnecessary abstract states and enabling
abstraction over continuous factors of arbitrary dimensional-
ity. Section 3 provides a more detailed description of these
differences.

kd-tree Discretization k-Dimensional Trees, originally
described by (?) provide an effective means of partition-
ing continuous state with discrete and succinctly specifiable
bounds to arbitrary levels of precision. Since each facet of
a kd-tree is a hyperplane, any kd-tree is equal to some com-
bination of half-space bounds, and thus the argument can
be made that a kd-tree partitioning can be inferred via IHS
abstraction synthesis. However, such inferrences may not

always be possible within reasonable bounds on processing
time or computational complexity; an algorithm which can
identify kd-tree partitions may therefore outperform an IHS
algorithm in time-bound domains.

The Parti-Game Algorithm (?) is an example of how kd-
tree-based abstractions can be beneficial in representing dis-
crete decision boundaries over continuous-valued state spaces
of arbitrary dimensionality. This algorithm is designed for
deterministic goal-oriented RL problems where individual
leaves are mapped to decisions; however, its core idea of rep-
resenting decision boundaries with kd-trees shows promise
in the more open-ended abstraction synthesis problem.

(?) extend the application of kd-trees to more traditional
RL problems with the Variable Resolution Model-Free Func-
tion Approximation Algorithm. Here ? shows that kd-trees
can be used to approximate action dynamics over continuous
domains without the need for deterministic state transitions
or predefined goal states.

While kd-trees are used extensively in past work for the
purpose of modeling dynamics or representing decision trees,
we know of no other work where kd-trees are applied to the
Abstraction Synthesis Problem in the manner we describe
below. In Section 3 we introduce our own solution to the
abstraction synthesis problem, where we apply kd-trees to
the task of partitioning continuous, multidimensional state
abstractions.

3 The RCAST Algorithm

This section introduces RCAST, one of the primary contribu-
tions of this work and the key to enabling CT-UCT to scale to
continuous state spaces. We will first visually depict RCAST
on a hypothetical dataset in Section 3.1, and then describe an
implementation of RCAST in Section 3.2.

At each timestep t − 1 in an MDP, an RL agent chooses
an action a to take in state st, and then experiences the re-
sulting state st+1. Thus, an agent which keeps track of these
〈st, at, st+1〉 tuples can analyze them to predict future expe-
riences. A key feature of an RL model is the ability to predict
st+1 from st and a, and in a factored domain an agent may
wish to specifically predict the value of some output factor Fo

in st+1 given st and the operative action a. If Fo is causally
related to some other factor Fi, then the value of Fi in s may
be of particular relevance to predicting Fo.

The CPT framework used by VISA (?) and T-UCT (?)
enables such factor-specific predictions. A CPT allows an
agent to predict the value of Fo given the action a and the
value of Fi, but both of these algorithms assume that Fi

and Fo take on discrete values, and that an agent can keep
track of all possible values of Fi when predicting how a
will alter Fo. CT-UCT relaxes this assumption and allows
an agent to discretely model Fi and Fo even when they take
on continuous and multidimensional values by invoking an
abstraction synthesizer, namely RCAST; RCAST’s role is
thus to identify useful abstractions over Fi’s value space, so
that they may be used for branching decision trees in the CPT
framework of (?).

X Position

20 0 20 40 60 80 100 120

Y Posit
ion

20
0

20
40

60
80

100
120

O
u
tp

u
t

V
a
lu

e

200

0

200

400

600

800

1000

1200

Figure 3.1: A hypothetical dataset D consisting of inputs on
the xy plane and output on the z axis.

3.1 Visual Example
Before we describe the algorithmic details of RCAST we
will begin by visually depicting RCAST using a hypothetical
experience history H of 〈st, at, st+1〉 tuples for an RCAST
agent in some domain. Assume that we are interested in un-
derstanding whether some state factor Fo depends on another
Fi. For ease of visualization let us assume that dim(Fo) = 1
and dim(Fi) = 2.

Before analyzing the interaction between these two factors
we first projectH into an Rn subspace where n = dim(Fi)+
dim(Fo) = 3. This projection P : (S ×A× S)→ R3 maps
〈st, at, st+1〉 to (x, y, z) where (x, y) is the value of factor
Fi in state st−1 and z is the value of factor Fo in state st. We
denote the image P (H) = {(x, y, z)} as D.

In Figure 3.1 we see a scatter plot representation of D.
Identifying a dependence relationship from Fi to Fo is there-
fore similar to the task of predicting z from (x, y). The shapes
and colors used in Figure 3.1, as well as all figures in Sec-
tion 3.1, are not available to the algorithm and are shown
strictly for ease of visualization.

Figures 3.3 and 3.2 show the same dataset D restricted
to Fi and Fo, respectively. From Figure 3.2 it is clear that
two distinct classes of data exist; however, our goal is not
to simply identify these classes, but also to use them for
classifying tuples in Fi. Thus we wish to partition the plot in
Figure 3.3 such that its projection into Fo’s value space also
partitions the data in Figure 3.2 according to the two obvious
classes.

RCAST creates this partitioning by first clustering data-
points in the full Fi + Fo value space (Figure 3.1) and then
using these clusters to create a labeled kd-tree in the Fi value
space (Figure 3.3). The labeled tree describes a partition of
the Fi value space, enabling an agent to map from points in
Fi to clusters in Fo.

Figure 3.4 shows the kd-tree T generated for D. In most
areas the tree is only one layer deep, however the variety of
points found in some regions of the value space necessitate
secondary levels of refinement. Here we use a discretization
factor of δ = 3, resulting in 3dim(Fi) = 32 = 9 subdivisions
at each level, however we note that δ is configurable in the
general case.

The fully labeled T in Figure 3.5 is a classifier that maps

0 200 400 600 800 1000
Output Value

0

2

4

6

8

10

12

14

16

O
b
se

rv
e
d
 F

re
q
u
e
n
cy

Figure 3.2: A histogram of the output (z) values in the dataset
D from Figure 3.1.

20 0 20 40 60 80 100 120
X Position

20

0

20

40

60

80

100

120

Y
 P

o
si

ti
o
n

Figure 3.3: A view of D from Figure 3.1 projected onto the
input (xy) plane.

20 0 20 40 60 80 100 120
X Position

20

0

20

40

60

80

100

120

Y
 P

o
si

ti
o
n

Figure 3.4: A kd-tree T which partitions the dataset D based
on its classes of output (z) values.

0 20 40 60 80 100
X Position

0

20

40

60

80

100

Y
 P

o
si

ti
o
n

Figure 3.5: A kd-tree T with filled regions visually depicting
the labels applied to its leaves.

Fi-value coordinates to labels. The union of the regions en-
compassed by the leaves of T for some label l can therefore
be considered an abstract state over Fi which is relevant to
predicting Fo. We can divide T according to these labels,
creating a set of abstract meta-states which can then be in-
tegrated into a discrete model. Similar to the way in which
singleton values can partition a tabular space for a discrete
CPT model, these abstractions partition a continuous space
for the same purpose (see (?)). In this way we are able to
discretely model Fo’s dependence upon Fi even though these
factors describe multidimensional continuous values.

3.2 Algorithm Description
RCAST’s purpose is to analyze observed dynamics in a given
environment and identify key areas of the environment that
exhibit similar dynamics. The areas identified by RCAST
then inform model refinements which allow an agent to use
its experiences to knowledgeably plan its actions.

Algorithm 3.1a provides pseudo-code to describe RCAST.
Line 1 defines the basic inputs to the algorithm including
an input factor Fi, an output factor Fo, a dataset D, and
an orthotope Q describing the bounds of Fi. In calling this
function we assume that changes in Fo depend on Fi when
Fi’s value falls within Q. RCAST analyzes D to identify the
specifics of this relationship, returning a set of subspaces of
Q which serve as abstractions over the value space of Fi.

In Line 2 we see that the use of the u operator applied toD
and Q. This operator restricts the dataset to those datapoints
whose predecessor states’ value assignments forFi fall within
the bounds ofQ. Intuitively, this means that each state-action-
state sequence “started" in Q. Line 3 then clusters this subset
of points using Expectation-Maximization Clustering, which
produces as many clusters as necessary to maximize the
BIC score of successive Expectation Maximization iterations.
We use Expectation Maximization over Gaussian models
(implemented with OpenCV (?)).

Line 4 projects the clusters’ datapoints into the value space
Q of Fi so that Q can be partitioned in accordance with these
clusters. Line 5 then hierarchically partitions Q according
to C ′ using Algorithm 3.1b as the partitioning subroutine.
Algorithm 3.1b produces a kd-tree with leaves labeled ac-
cording to the clusters they encompass. In Line 6 this tree is

1: function RCAST(Fi, Fo, D, Q)
2: D′ ← D uQ
3: C ← EM(D′)
4: C ′ ← Fi(C)
5: T ← H-Part(Q,C ′)
6: A← SplitLabels(T)
7: return A
8: end function

(a) An implementation of RCAST.
1: function H-PART(Q, C)
2: T ← an empty kd-tree with label ∅
3: C ′ ← {c uQ|c ∈ C, c uQ 6= ∅}
4: if |C ′| = 1 then
5: T.label← c.label where c ∈ C ′
6: else if diameter(Q) ≤ 1 then
7: T.label←“multi"
8: else
9: d← dimensionality of Q

10: Q ← Partition Q into δd equal parts
11: for q ∈ Q do
12: Tq ← H-Part(q, C)
13: T.children← T.children ∪ {Tq}
14: end for
15: end if
16: return T
17: end function

(b) H-Part: A hierarchical partitioning algorithm.

Algorithm 3.1: RCAST and its primary subroutine H-Part

partitioned according to its labeling, with each subtree con-
taining all the leaves for a particular label. Since each of these
leaves defines an orthotopic subspace of Q, each subtree is
associated with a distinct subspace of Q, namely the union
of its leaves’ orthotopes. Each such union is an abstraction
over the value space of Fi.

Algorithm 3.1b describes a general method for generating
a kd-tree from a set of clusters C and an encompassing value
space Q. In Line 3 the algorithm restricts its cluster set C to
only those clusters with datapoints in Q. Next, H-Parttakes
one of three actions. IfD contains only one class of datapoint,
the current subtree becomes a single leaf with its label taken
from that class (Line 5). If D contains multiple classes of
datapoints butQ is of minimal diameter1 then T is designated
as having the special label “multi" (Line 7). Otherwise, if the
diameter of Q is large enough, the algoritm subdivides and
recurses (Line 12). Ultimately the algorithm labels every leaf
with either a class label or “multi". We use a static minimum
diameter of 1 in this work.

In the context of CPTs, the partitions produced by Al-
gorithm 3.1a are used to split leaves of the CPT. (?) show
that a CPT leaf can be split along some input factor F ′i by
creating one child leaf per value of that factor. In a sense,
the discrete value space of F ′i is partitioned into singleton
subspaces where each value of Fi comprises one subspace.

1Here the diameter of an orthotope O is defined as
sup{d(x, y)|x, y ∈ O} where d is Euclidean distance.

In the context of a continuous and multidimensional Fi, sin-
gleton partitioning is not possible, so instead Algorithm 3.1b
produces the aforementioned unions of orthotopes to repre-
sent arbitrary subspaces of Fi’s value space, with each union
corresponding to a single leaf added to the CPT.

Thus, we can refine a CPT model over a continuous, mul-
tidimensional Fi by partitioning its value space and then
creating one new CPT leaf per label. In Section 4 we evaluate
this approach empirically and compare against alternative
abstraction synthesis methods.

4 Experiments

This section describes a set of experiments performed to eval-
uate the effectiveness of RCAST in comparison to both IHS
and a deep regression network (DRN). While it would not
be possible to evaluate RCAST against all the alternative ap-
proaches to abstraction synthesis described in Section 2, IHS
and DRN are representative of the state of the art and serve as
reasonable proxies for most other methods. Implementation
details cannot be included due to space constraints.

4.1 The Continuous Taxi Domain (C-Taxi)

In our work we are interested in evaluating T-UCT and its
derivatives on a HRL task over a factored, continuous state
space. The Taxi domain (?) is a common choice for eval-
uating HRL algorithms, but lacks the property of having a
continuous-valued state space. We therefore employ a modi-
fied version of Taxi in our work, which we refer to as Continu-
ous Taxi (C-Taxi). Rather than the traditional 5-by-5 discrete
grid, we use a 100-by-100 continuous grid containing mul-
tiple rectangular regions in which anywhere from 1 to 1000
passengers may be picked up by the Taxi agent. More for-
mally, the state space of this domain is the set of 3-tuples
〈x, y, k〉 where x, y is the position of the agent in the grid
and k is the number of passengers currently held by the agent.
There are 6 actions including actions for movement in the
four cardinal directions N,S,E,W as well as the pickup
and dropoff actions P,D. When a movement action is exe-
cuted the agent is transported a uniformly random distance
between 5 and 10 units in the appropriate direction. When P
is executed in a pickup region, a uniformly random number
of between 500 and 1000 passengers is picked up. Dropoffs
always unload all passengers.

The “goal" of the C-Taxi domain is to drop off passengers
quickly; thus, the agent receives a reward of -1 for any move-
ment actions, and a reward of 0 for pickups. When the agent
executes the dropoff action D it receives a reward equal to
the number of passengers that were dropped off.

A perfect abstraction over this domain (with respect to the
pickup action and the vehicle’s passenger count) would par-
tition the grid into two distinct regions: one non-contiguous
region matching the union of the pickup regions, and a sec-
ond region perfectly complementing the first. When used as
the basis for splitting a decision tree, such abstractions would
allow an agent to reason with respect to perfect knowledge
of where pickups occur, and where they don’t.

Figure 4.1: A comparison of the CT-UCT+IHS, CT-
UCT+DRN, T-UCT, Random, and CT-UCT+RCAST algo-
rithms over many C-Taxi domain instances.

4.2 Experiment Setup
In each experiment we evaluate a selection of HRL algo-
rithms on the task of accumulating extrinsic reward in the
C-Taxi domain. Since T-UCT is a model-learning algorithm
that relies on extrinsic reward, we modify its internal ex-
ploration selection mechanism such that it decides between
exploitation-oriented and exploration-oriented targets. Dur-
ing its target selection phase (see Section 3.2 of (?)), the
T-UCT algorithm selects a target context based on its expec-
tation of earned intrinsic reward. For the purpose of evaluat-
ing T-UCT on its ability to earn extrinsic reward, we modify
this process such that targets are randomly selected based
on expected extrinsic reward. This allows T-UCT and its
derivatives to exploit their learned models with respect to the
domain’s reward signal. This modification is applied to all
such algorithms in this work.

We present empirical results on total reward earned in the
C-Taxi domain for the following algorithms: Random (uni-
formly random action selection), T-UCT2, CT-UCT+IHS, CT-
UCT+DRN, and CT-UCT+RCAST. The following figures
show the average results over different levels of complexity.
A domain of complexity n contains n pickup regions and n
dropoff regions. We provide results for complexities 1, 2, and
3 below. Within each complexity level, we take the average of
the results obtained over 30 different C-Taxi instances, each
having differing random placements and sizes of pickup and
dropoff regions. We then perform 10 evaluations per agent on
each such instance, and record each agent’s total processing
time and accumulated reward every 100 timesteps.

4.3 Results
Experimental results are shown in Figures 4.1 and ??. In
both figures, “Complexity n" indicates that n pickup regions
and n dropoff regions are generated for every instance of the
C-Taxi domain. In both result sets, values are averaged over

2We note that T-UCT cannot model continuous state and so
we use a simple tile coding over 3dim(F) uniform tiles that evenly
divide the value space of each factor F .

Figure 4.2: A comparison of the CT-UCT+IHS, CT-
UCT+DRN, T-UCT, Random, and CT-UCT+RCAST algo-
rithms over many C-Taxi domain instances.

30 domain instances with 10 trials per algorithm per domain
instance. Shaded regions represent standard error.

In Figure 4.1 we see that RCAST significantly outperforms
every other algorithm (p � .001). Figure ?? indicates that
as complexity increases the performance gap only widens.
These results show that RCAST is able to efficiently han-
dle complex abstraction synthesis problems and allow for
efficient exploration and exploitation in these domains.

5 Conclusion and Future Work
In this work we have described RCAST, a new method for
synthesizing abstract states based on observed data. We have
used RCAST as the core abstraction synthesis mechanism
of CT-UCT, and thereby enabled T-UCT to produce state
abstractions for continuous space and effectively incorporate
these abstractions into its discrete decision tree model. More-
over, we have shown that RCAST is superior to alternative
approaches to abstraction synthesis with respect to total accu-
mulated extrinsic reward, and is competitive to alternatives
with respect to time and configuration complexity.

Another interesting focus for future work lies in modifying
the clustering subroutine which RCAST depends upon. There
exists a vast array of EM alternatives the present literature
which may be better suited to the problem of abstraction syn-
thesis. For instance, EM is reliant upon Gaussian likelihood
comparisons and is thus biased toward ellipsoid clusters; it
may instead be advantageous to employ a hierarchical cluster-
ing algorithm that is better equipped to generate irregularly
shaped clusters with a focus on contiguity.

Acknowledgements
This work has taken place in the Learning Agents Research
Group (LARG) at UT Austin. LARG research is supported in
part by NSF (IIS-1637736, IIS-1651089, IIS-1724157), Intel,
Raytheon, and Lockheed Martin. Peter Stone serves on the
Board of Directors of Cogitai, Inc. The terms of this arrange-
ment have been reviewed and approved by the University of
Texas at Austin in accordance with its policy on objectivity
in research.

References
Bradski, G. 2000. The opencv library. Dr. Dobb’s Journal of
Software Tools.
Fayyad, U., and Irani, K. 1993. Multi-interval discretization
of continuous-valued attributes for classification learning.
Friedman, J. H.; Bentley, J. L.; and Finkel, R. A. 1977. An
algorithm for finding best matches in logarithmic expected
time. ACM Transactions on Mathematical Software (TOMS)
3(3):209–226.
Hengst, B. 2002. Discovering hierarchy in reinforcement
learning with HEXQ. In ICML, volume 2, 243–250.
Jong, N. K., and Stone, P. 2005. State abstraction discovery
from irrelevant state variables. In IJCAI, volume 8, 752–757.
Jonsson, A., and Barto, A. G. 2001. Automated state ab-
straction for options using the u-tree algorithm. Advances in
neural information processing systems 1054–1060.
Jonsson, A., and Barto, A. 2005. A causal approach to hier-
archical decomposition of factored MDPs. In Proceedings
of the 22nd international conference on Machine learning,
401–408. ACM.
Jonsson, A., and Barto, A. 2006. Causal graph based decom-
position of factored MDPs. Journal of Machine Learning
Research 7:2259–2301.
Jonsson, A., and Barto, A. 2007. Active learning of dy-
namic Bayesian networks in Markov decision processes. In
Abstraction, Reformulation, and Approximation. Springer.
273–284.
Kocsis, L., and Szepesvári, C. 2006. Bandit based Monte-
Carlo planning. In Machine Learning: ECML 2006. Springer.
282–293.
Kohavi, R. 1996. Scaling up the accuracy of naive-bayes
classifiers: A decision-tree hybrid. In KDD, volume 96, 202–
207. Citeseer.
Konidaris, G., and Barto, A. G. 2009. Skill discovery in
continuous reinforcement learning domains using skill chain-
ing. In Advances in neural information processing systems,
1015–1023.

Liu, B.; Xia, Y.; and Yu, P. S. 2000. Clustering through
decision tree construction. In Proceedings of the ninth inter-
national conference on Information and knowledge manage-
ment, 20–29. ACM.
McGovern, A., and Barto, A. G. 2001. Automatic discovery
of subgoals in reinforcement learning using diverse density.
Menache, I.; Mannor, S.; and Shimkin, N. 2002. Q-cut:
dynamic discovery of sub-goals in reinforcement learning.
In European Conference on Machine Learning, 295–306.
Springer.
Menashe, J., and Stone, P. 2015. Monte Carlo Hierarchical
Model Learning. In Proceedings of the 2015 International
Conference on Autonomous Agents and Multiagent Systems,
771–779.
Moore, A. W. 1994. The parti-game algorithm for vari-
able resolution reinforcement learning in multidimensional
state-spaces. In Advances in neural information processing
systems, 711–718.
Quinlan, J. R., et al. 1992. Learning with continuous classes.
In 5th Australian joint conference on artificial intelligence,
volume 92, 343–348. Singapore.
Reynolds, S. I. 2000. Adaptive resolution model-free re-
inforcement learning: Decision boundary partitioning. In
Proceedings of the Seventeenth International Conference on
Machine Learning, 783–790. Morgan Kaufmann Publishers
Inc.
Stolle, M., and Precup, D. 2002. Learning options in rein-
forcement learning. In International Symposium on Abstrac-
tion, Reformulation, and Approximation, 212–223. Springer.
Sutton, R. S.; Precup, D.; and Singh, S. 1999. Between MDPs
and semi-MDPs: A framework for temporal abstraction in
reinforcement learning. Artificial intelligence 112(1):181–
211.
Vigorito, C. M., and Barto, A. G. 2010. Intrinsically moti-
vated hierarchical skill learning in structured environments.
IEEE Transactions on Autonomous Mental Development
2(2):132–143.

