
Published in Deep Reinforcement Learning: Frontiers and Challenges, IJCAI 2016 Workshop

On-Policy vs. Off-Policy Updates for Deep Reinforcement Learning

Matthew Hausknecht and Peter Stone
University of Texas at Austin

{mhauskn, pstone}@cs.utexas.edu

Abstract

Temporal-difference-based deep-reinforcement
learning methods have typically been driven by
off-policy, bootstrap Q-Learning updates. In this
paper, we investigate the effects of using on-policy,
Monte Carlo updates. Our empirical results show
that for the DDPG algorithm in a continuous
action space, mixing on-policy and off-policy
update targets exhibits superior performance and
stability compared to using exclusively one or
the other. The same technique applied to DQN
in a discrete action space drastically slows down
learning. Our findings raise questions about the
nature of on-policy and off-policy bootstrap and
Monte Carlo updates and their relationship to deep
reinforcement learning methods.

1 Introduction
Temporal-Difference (TD) methods learn online directly
from experience, do not require a model of the environment,
offer guarantees of convergence to optimal performance, and
are straightforward to implement [9]. For all of these reasons,
TD learning methods have been widely used since the incep-
tion of reinforcement learning. Like TD methods, Monte
Carlo methods also learn online directly from experience.
However, unlike TD-methods, Monte Carlo methods do not
bootstrap value estimates and instead learn directly from re-
turns. Figure 1 shows the relationship between these meth-
ods.

In this paper, we focus on two methods: on-policy Monte
Carlo [9] and Q-Learning [10]. On-policy MC employs on-
policy updates without any bootstrapping, while Q-Learning
uses off-policy updates with bootstrapping. Both algorithms
seek to estimate the action-value function Q(s, a) directly
from experience tuples of the form (st, at, rt, st+1, at+1) and
both provably converge to optimality so long as all state-
value pairs are visited an infinite number of times and the
behavior policy eventually becomes greedy. Both methods
are driven by temporal difference updates which take the fol-
lowing form, where y is the update target and α is a stepsize:

Q(st, at) = Q(st, at) + α(y −Q(st, at))

On-PolicyOff-Policy

B
oo

ts
tra

p
N

o-
B

oo
ts

tra
p

SARSA

Off-policy MC

n-step-return
 methods

On-policy MC

Q-Learning

Figure 1: Relationship of RL algorithms according to whether
they bootstrap the value function and if they are on or off-
policy. This work compares Q-Learning updates with On-
Policy Monte-Carlo updates. N-step-reward methods such as
n-step Q-Learning bridge the spectrum between Q-Learning
and on-policy Monte-Carlo.

The main difference between these methods may be under-
stood by examining their update targets. The update targets
for Q-Learning, n-step-Q-learning, and on-policy MC may be
expressed as follows:

yq-learning = rt + γmax
a

Q(st+1, a)

yn-step-q = rt + · · ·+ γn−1rt+n + γnmax
a

Q(st+n+1, a)

yon-policy-monte-carlo =

∞∑
i=t

γi−tri

As seen in the update, the on-policy MC targets are esti-
mated directly from the rewards received in the experience
tuples. In contrast the Q-Learning target truncates the reward
sequence with its own value estimate.

One way of relating Q-Learning to on-policy MC is to
consider n-step-return methods. These methods make use of
multi-step returns and are potentially more efficient at prop-
agating rewards to relevant state-action pairs. On-policy MC
is realized when n approaches infinity (or maximum episode
length). Recently, multi-step returns have been shown to be
useful in the context of deep reinforcement learning [7].

The next section introduces background on deep reinforce-
ment learning before discussing how to efficiently compute
and utilize on-policy Monte Carlo updates.

Published in Deep Reinforcement Learning: Frontiers and Challenges, IJCAI 2016 Workshop

2 Background
Using deep neural networks to approximate the value func-
tion is a double-edged sword. Deep networks are power-
ful function approximators and strongly generalize between
similar state inputs. However, generalization can cause
divergence in the case of repeated boostrapped temporal-
difference updates. Let us consider the case of the same Q-
Learning update applied to deep neural network parameter-
ized by θ:

Q(st, at|θ) = rt+1 + γmax
a

Q(st+1, a|θ)

If it is the case that rt+1 > 0 and st is similar to st+1,
then Q-Value estimates will quickly diverge to infinity as this
update is repeated. The divergence is because the network’s
generalization causes the estimate of st+1 to grow with the
estimate of st, causing update targets to continually grow.

To address this problem a target network is used to make
bootstrap updates more stable [8]1. By updating the target
network at a slower rate than the main network, it is possible
to limit the generalization from st+1 to st, stabilize the update
targets, and prevent Q-Value divergence. Using τ (typically
.001) to govern the rate that the target network follows the
main network, the same update using a target network θ̂ takes
the following form:

Q(st, at|θ) = rt+1 + γmax
a

Q(st+1, a|θ̂)

θ̂ = τθ + (1− τ)θ̂

On-policy Monte Carlo updates remove the need for a tar-
get network since the target is computed directly from the
rewards of the trajectory rather than bootstrapped. Such an
update makes sense particularly when there is reason to be-
lieve that the neural network’s estimates of the next state
Q(st+1, a|θ̂) are inaccurate, as is typically the case when
learning begins. Additionally, Monte Carlo update targets
cannot diverge since they are bounded by the actual rewards
received. However, on-policy MC updates suffer from the
problem that exploratory actions may negatively skew Q-
Value estimates. We now address the issue of how to effi-
ciently compute on-policy MC targets.

3 Computing On-Policy MC Targets
We store on-policy targets yt in the replay memory by
augmenting each transition to include the on-policy target:
(st, at, rt, yt, st+1, at+1). As shown in Algorithm 1, we first
accumulate a full episode of experience tuples then work
backward to compute on-policy targets and add augmented
experiences to the replay memory. Once stored in the replay
memory, on-policy MC targets can be accessed directly from
the augmented experience tuples without requiring any addi-
tional computation.

1Another way to address this problem is to not repeatedly update
the same experience tuple.

Algorithm 1 Compute On-Policy MC Targets

Given: Trajectory T0...n, Replay Memory D
R← 0
for t ∈ {n . . . 0} do

R← rt + γR
yt ← R
D ← (st, at, rt, yt, st+1, at+1)

4 Mixing Update Targets
Rather than using exclusively on-policy or off-policy targets
it is possible, and in many cases desirable, to mix on-policy
MC targets with off-policy 1-step Q-Learning targets. Mixing
is accomplished using a β parameter in [0, 1]. The overall
mixed update target is expressed as follows:

y = β yon-policy-MC + (1− β) yq-learning

Like n-step-return methods, mixed targets present a way to
tradeoff between on-policy MC updates, and off-policy boot-
strap updates. The next sections present results using mixed
update targets for the cases of discrete action space learn-
ing using DQN and continuous action space learning using
DDPG.

5 Results in discrete action space
The DQN architecture [8] uses a deep neural network and
1-step Q-Learning updates to estimate Q-Values for each dis-
crete action. Using the Arcade Learning Environment [2],
we evaluate the effect of mixed-updates on the Atari games
of Beam Rider, Breakout, Pong, QBert, and Space Invaders.
Results are presented for a single training run in Figure 2.
Mixed updates dramatically slow learning for all the games
except Q-Bert.2 The next section explore results in continu-
ous action space.

6 Results: DDPG
Deep Deterministic Policy Gradient (DDPG) [6] is a deep
reinforcement learning method for continuous action space
learning. DDPG uses an actor-critic architecture (Figure 3)
with the following approximate 1-step Q-Learning update,
where θ̂Q denotes the parameters of the critic target network
and θ̂µ the parameters of the actor target network:

yq-learning = rt + γQ(st+1, µ(st+1|θ̂µ)|θ̂Q)

This update is approximate in the sense that it replaces a
max over the possible next state actions with with the actor’s
preferred action µ(st+1|θ̂µ). Such an approximation is nec-
essary because computing a max in continuous space is diffi-
cult. However, the approximation is only true when the actor
is optimal with respect to the critic. As shown in the results,
mixed updates may reduce the error in this approximation.

2We are unsure why the agent’s performance in Q-Bert remains
unaffected by on-policy MC updates.

Published in Deep Reinforcement Learning: Frontiers and Challenges, IJCAI 2016 Workshop

Figure 2: Performance of mixed updates with DQN on various Atari games. The left, middle, and right columns respectively
show performance of β = 0 (Q-Learning), β = 0.2, and β = 0.5. Rows correspond to the games Beam Rider, Breakout, Pong,
Q-Bert, and Space Invaders. With the possible exception of Q-Bert, mixed updates uniformly slow down DQN’s learning. Note
that the scale of the y-axis changes.

Published in Deep Reinforcement Learning: Frontiers and Challenges, IJCAI 2016 Workshop

State

4 Actions 6 Parameters

1024

ReLU

256

ReLU

512

ReLU

128

ReLU

Q-Value

1024

ReLU

256

ReLU

512

ReLU

128

ReLU Actor

Critic

State

ᵘθμ

4 Actions 6 Parameters

ᵘθQ

Q-Value

Actor

Critic

auQ
(s
,a
)

Figure 3: Actor-Critic architecture (left): actor and critic networks may be interlinked, allowing activations to flow forwards
from the actor to the critic and gradients to flow backwards from the critic to the actor. The gradients coming from the critic
indicate directions of improvement in the continuous action space and are used to train the actor network without explicit
targets. Actor Update (right): Backwards pass generates critic gradients ∇aQ(s, a|θQ) w.r.t. the action. These gradients
are back-propagated through the actor resulting in gradients w.r.t. parameters ∇θµ which are used to update the actor. Critic
gradients w.r.t. parameters∇θQ are ignored during the actor update.

6.1 Half Field Offense Domain
We evaluate DDPG in the Half Field Offense (HFO) domain
https://github.com/LARG/HFO. HFO is a simulated
2-D soccer task in which agents attempt to score and defend
goals. In HFO, each agent receives its own state sensations
and must independently select its own actions. HFO is nat-
urally characterized as an episodic multi-agent POMDP be-
cause of the sequential partial observations and actions on the
part of the agents. HFO features a continuous state space and
a parameterized-continuous action space.

Figure 4: HFO State Representation uses a low-level, egocen-
tric viewpoint providing features such as distances and angles
to objects of interest like the ball, goal posts, corners of the
field, and opponents.

Half Field Offense features a low-level, parameterized ac-
tion space. There are four mutually-exclusive discrete ac-
tions: Dash, Turn, Tackle, and Kick. At each timestep the
agent must select one of these four to execute. Each action
has 1-2 continuously-valued parameters which must also be
specified. An agent must select both the discrete action it
wishes to execute as well as the continuously valued param-
eters required by that action. The full set of parameterized
actions is:
Dash(power, direction): Moves in the indicated direction

with a scalar power in [0, 100]. Movement is faster forward
than sideways or backwards. Turn(direction): Turns to in-
dicated direction. Tackle(direction): Contests the ball by
moving in the indicated direction. This action is only useful
when playing against an opponent. Kick(power, direction):
Kicks the ball in the indicated direction with a scalar power
in [0, 100]. All directions are parameterized in the range of
[−180, 180] degrees.

The next sections present two tasks in the HFO umbrella
and show that in both cases, mixed updates yield superior
performance and stability compared to purely on-policy MC
or off-policy Q-Learning updates.

6.2 Experimental Parameters
The following parameters were used throughout the exper-
iments. Both actor and critic employed 5-layers networks
with 1024, 512, 256, 128 hidden nodes in each layer. Net-
works were trained using the Adam Solver [5] with momen-
tum 0.95 and an actor learning rate of 10−5 and critic learn-
ing rate of 10−3. Gradients were clipped at 10 scaled as
they approached parameter bounds [3]. Epsilon greedy ex-
ploration with random values for continuous parameters was

https://github.com/LARG/HFO

Published in Deep Reinforcement Learning: Frontiers and Challenges, IJCAI 2016 Workshop

annealed over 10,000 iterations. Gamma was set to .99 and
replay memory capacity was 500,000. Target networks were
updated using soft updates [6] with τ = .001. One actor-
critic update was performed for every ten new experience tu-
ples. Our implementation uses the Caffe library [4].

6.3 Scoring on an empty goal

The first task we examine is that of scoring on an empty goal.
In this task, the agent is initialized at a random position on
the offensive half of the field and must learn to approach the
ball, dribble the ball towards the goal, and score. Rewards are
provided for approaching the ball (e.g. minimizing d(a, b),
the distance between the agent and the ball), for getting in
range to kick the ball (e.g. an indicator of kickable Ikickt), for
moving the ball towards the goal, and for scoring a goal Igoalt :

rt = dt−1(a, b)−dt(a, b)+Ikickt +3
(
dt−1(b, g)−dt(b, g)

)
+5Igoalt

Previously, DDPG has been demonstrated to be capable
of learning policies for performing this task [3]. However,
by incorporating mixed-updates, DDPG becomes more sta-
ble across a wide spectrum of β values, as shown in Figure 5.
These results are encouraging as learning stability is a crucial
aspect for training agents.

6.4 Scoring on a keeper

A far more difficult task is scoring on a goal keeper. The
goal keeper’s policy was independently programmed by He-
lios RoboCup 2D team [1] and is highly adept. The keeper
continually re-positions itself to prevent easy shots and will
charge the striker if it nears the goal. The keeper blocks any
shots within its reach, but the size of the goal allows a cor-
rectly positioned striker to score with a precise kick.

We modify the task initialization in order to emphasize
goal scoring rather than approaching the ball. Specifically,
to begin each episode we initialize the agent three fifths of
the way down the field and give it possession of the ball. The
agent must learn to dribble and position itself as well as learn
to precisely kick the ball at open goal angles. Rewards in this
task are the same as in the empty goal task: the agent is re-
warded for approaching the ball, moving the ball towards the
goal, and scoring.

Results in Figure 6 show that mixed updates are not only
more stable and higher performing, they are also necessary
to learn to reliably score on the keeper. Preferring off-policy
targets yields the best performance on this task with β = 0.2
exhibiting the fastest learning and and a final policy that suc-
cessfully scores goals every time in an evaluation consisting
of 100 episodes. In contrast, the expert hand-coded Helios of-
fense agent scores 81.4% of the time against the keeper. This
offense agent was programmed by an independent team of
human experts specifically for the task of RoboCup 2D soc-
cer. That it is significantly outperformed by a learned agent
is a testament to power of modern deep reinforcement learn-
ing methods. A video of the learned policy may be viewed at
https://youtu.be/JEGMKvAoB34.

7 Future Work
Much remains to be understood about why mixing off-policy
bootstrapped updates with on-policy monte-carlo updates
provides increased performance and stability for DDPG but
slows learning for DQN. DDPG features a pseudo off-policy
update in the sense that it does not compute a true max over
next state actions. Perhaps this approximate update is respon-
sible for occasional instability (as seen in β = 0 results).
Mixing on-policy targets with approximate off-policy targets
may reduce the negative effects of the approximate update. In
contrast, DQN implements a true off-policy update in discrete
action space and shows no benefit from mixed updates.

We have not explored the performance of DQN or DDPG
when using SARSA, off-policy Monte Carlo, or n-step-q-
learning.

Bootstrap updates are inaccurate when learning begins
since the untrained network’s estimate of next-state Q-Values
is inaccurate. In this case, non-bootstrapped updates provide
more stable targets. As the network’s Q-Value estimates be-
come more informed, it makes sense to trend towards off-
policy updates so that exploratory actions do not negatively
skew estimates. A natural extension would be to anneal β
to favor on-policy MC targets in the beginning of learning
where bootstrapped estimates are likely to be inaccurate and
later favor Q-Learning targets once boostrapped estimates be-
come more accurate.

Mixed updates using β likely have a relationship to n-
step-q-learning, where β = 1 is equivalent to infinite-step-
q-learning and β = 0 is equivalent to 1-step-q. The nature
of the relationship between the methods has yet to be under-
stood. Additionally, TD(λ) methods average all returns from
1-step to n-steps. Such an update target would likely be diffi-
cult to efficiently compute.

When learning from an experience database filled with tra-
jectories generated by an expert, it makes sense to prefer on-
policy updates since we trust the expert’s action selection
more than our own. In this case, off-policy updates could
easily lead to overestimating Q-values for suboptimal actions
and subsequent policy collapse.

Finally, it would be valuable to see if the benefits of mixed
updates with DDPG extend beyond the domain of Half Field
Offense to other continuous action domains.

8 Conclusion
Traditionally, deep reinforcement learning methods such as
DQN and DDPG have relied on off-policy bootstrap updates.
We examine alternative on-policy monte-carlo updates and
present a method for efficiently computing mixed update tar-
gets. Our empirical results show that mixed updates increase
DDPG’s performance and stability in two continuous action
tasks and hinder DQN’s learning across four out of five Atari
games. These results provide evidence that bootstrap off-
policy updates are not always the update of choice, and in
continuous action space, mixing on and off-policy targets
yields superior performance. We hope these results will spark
interest in further understanding the relationship between on-
policy and off-policy, boostrap and monte-carlo updates in
the context of deep reinforcement learning.

https://youtu.be/JEGMKvAoB34

Published in Deep Reinforcement Learning: Frontiers and Challenges, IJCAI 2016 Workshop

(a) β = 0 (b) β = 0.2 (c) β = 0.5

(d) β = 0.8 (e) β = 1

Figure 5: Performance of mixed-updates on empty goal task: The maximum possible reward is 11. Purely off-policy updates
(β = 0) achieve this maximum reward but show inconsistent performance. All of the mixed updates achieve the maximum task
performance with far greater consistency and with fewer updates. Note that the scale of the y-axis changes between plots.

(a) β = 0 (b) β = 0.2 (c) β = 0.5

(d) β = 0.8 (e) β = 1

Figure 6: Performance of mixed-updates on Keeper task: On this task, only mixed-updates (β = 0.2, 0.5) achieve the
maximum reward of 6 and are able to learn to reliably score on the keeper. Off-policy updates (β = 0) and on-policy updates
(β = 0.8, 1) never reliably learn to score. Note that the scale of the y-axis changes between plots.

Published in Deep Reinforcement Learning: Frontiers and Challenges, IJCAI 2016 Workshop

Acknowledgments
Thanks to Tim Lillicrap for insightful discussion. This work
has taken place in the Learning Agents Research Group
(LARG) at the Artificial Intelligence Laboratory, The Uni-
versity of Texas at Austin. LARG research is supported
in part by grants from the National Science Foundation
(CNS-1330072, CNS-1305287), ONR (21C184-01), AFRL
(FA8750-14-1-0070), AFOSR (FA9550-14-1-0087), and Yu-
jin Robot. Additional support from the Texas Advanced
Computing Center, and Nvidia Corporation.

References
[1] Hidehisa Akiyama. Agent2d base code, 2010.
[2] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowl-

ing. The arcade learning environment: An evaluation
platform for general agents. Journal of Artificial Intelli-
gence Research, 47:253–279, jun 2013.

[3] Matthew J. Hausknecht and Peter Stone. Deep re-
inforcement learning in parameterized action space.
CoRR, abs/1511.04143, 2015.

[4] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey
Karayev, Jonathan Long, Ross Girshick, Sergio Guadar-
rama, and Trevor Darrell. Caffe: Convolutional ar-
chitecture for fast feature embedding. arXiv preprint
arXiv:1408.5093, 2014.

[5] Diederik P. Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. CoRR, abs/1412.6980,
2014.

[6] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez,
Y. Tassa, D. Silver, and D. Wierstra. Continuous con-
trol with deep reinforcement learning. ArXiv e-prints,
September 2015.

[7] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi
Mirza, Alex Graves, Timothy P. Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. Asynchronous
methods for deep reinforcement learning. CoRR,
abs/1602.01783, 2016.

[8] Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Andrei A. Rusu, Joel Veness, Marc G. Bellemare,
Alex Graves, Martin Riedmiller, Andreas K. Fidjeland,
Georg Ostrovski, Stig Petersen, Charles Beattie, Amir
Sadik, Ioannis Antonoglou, Helen King, Dharshan Ku-
maran, Daan Wierstra, Shane Legg, and Demis Hass-
abis. Human-level control through deep reinforcement
learning. Nature, 518(7540):529–533, February 2015.

[9] Richard S. Sutton and Andrew G. Barto. Reinforcement
Learning: An Introduction. MIT Press, 1998.

[10] Christopher J. C. H. Watkins and Peter Dayan. Q-
learning. Machine Learning, 8(3-4):279–292, 1992.

	Introduction
	Background
	Computing On-Policy MC Targets
	Mixing Update Targets
	Results in discrete action space
	Results: DDPG
	Half Field Offense Domain
	Experimental Parameters
	Scoring on an empty goal
	Scoring on a keeper

	Future Work
	Conclusion

