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Abstract. Feature selection in reinforcement learning (RL), i.e. choos-
ing basis functions such that useful approximations of the unkown value
function can be obtained, is one of the main challenges in scaling RL
to real-world applications. Here we consider the Gaussian process based
framework GPTD for approximate policy evaluation, and propose fea-
ture selection through marginal likelihood optimization of the associated
hyperparameters. Our approach has two appealing benefits: (1) given
just sample transitions, we can solve the policy evaluation problem fully
automatically (without looking at the learning task, and, in theory, inde-
pendent of the dimensionality of the state space), and (2) model selection
allows us to consider more sophisticated kernels, which in turn enable
us to identify relevant subspaces and eliminate irrelevant state variables
such that we can achieve substantial computational savings and improved
prediction performance.

1 Introduction

In this paper, we address the problem of approximating the value function under
a stationary policy π for a continuous state space X ⊂ RD,

V π(x) = E
x
′|x,π(x) {R(x, π(x),x′) + γV π(x′)} (1)

using a linear approximation of the form Ṽ (· ;w) =
∑m

i=1 wiφi(x) to represent
V π. Here x denotes the state, R the scalar reward and γ the discount factor.
Given a trajectory of states x1, . . . ,xn and rewards r1, . . . , rn−1 sampled under
π, the goal is to determine weights wi (and basis functions φi) such that Ṽ is a
good approximation of V π. This is the fundamental problem arising in the policy
iteration framework of infinite-horizon dynamic programming and reinforcement
learning (RL), e.g. see [21, 3]. Unfortunately, this problem is also a very difficult
problem that, at present, has no completely satisfying solution. In particular,
deciding which features (basis functions φi) to use is rather challenging, and
in general, needs to be done manually: thus it is tedious, prone to errors, and
most important of all, requires considerable insight into the domain. Hence, it
would be far more desirable if a learning system could automatically choose its
own representation. In particular, considering efficiency, we want to adapt to the
actual difficulties faced, without wasting resources: often, there are many factors



that can make a particular problem easier than it initially appears to be, for
example, when only a few of the inputs are relevant, or when the input data lies
on a low-dimensional submanifold of the input space.

Recent work in applying nonparametric function approximation to RL, such
as Gaussian processes (GP) [6, 16, 18, 5], or equivalently, regularization networks
[8], is a very promising step in this direction. Instead of having to explicitly spec-
ify individual basis functions, we only have to specify a more general kernel that
just depends on a very small number of hyperparameters. The key contribution
of this paper is to demonstrate that feature selection in RL from sample transi-
tions can be automated, using any of several possible model selection methods for
these hyperparameters, such as marginal likelihood optimization in a Bayesian
setting, or leave-one-out (LOO) error minimization in a frequentist setting. Here,
we will focus on the Bayesian setting, and adapt marginal likelihood optimiza-
tion for the GP-based approximate policy evaluation method GPTD, introduced
without model selection in [6]. Overall, this will have the following benefits: First,
only by automatic model selection (as opposed to a grid-based search or manual
tweaking of kernel parameters) will we be able to use more sophisticated ker-
nels, which will allow us to uncover the ”hidden” properties of given problem.
For example, by choosing an RBF kernel with independent lengthscales for the
individual dimensions of the state space, model selection will automatically drive
those components to zero that correspond to state variables irrelevant (or redun-
dant) to the task. This will allow us to concentrate our computational efforts on
the parts of the input space that really matter and will improve computational
efficiency. Second, because it is generally easier to learn in ”smaller” spaces, it
may also benefit generalization and thus help us to reduce sample complexity.

Despite its many promises, previous work with GPs in RL rarely explores the
benefits of model selection: in [18], a variant of stochastic search was used to de-
termine hyperparameters of the covariance for GPTD using as score function the
online performance of an agent. In [16], standard GPs with marginal likelihood
based model selection were employed; however, since their approach was based
on fitted value iteration, the task of value function approximation was reduced
to ordinary regression. The remaining paper is structured as follows: Section 2-3
contain background information and summarize the GPTD framework. As one
of the benefits of model selection is the reduction of computational complex-
ity, Section 4 describes how GPTD can be solved for large-scale problems using
SR-approximation. Section 5 introduces model selection for GPTD and derives
in detail the associated gradient computation. Finally, Section 6 illustrates our
approach by providing experimental results.

2 Related work

The overall goal of learning representations and feature selection for linearly pa-
rameterized Ṽ is not new within the context of RL. Roughly, past methods can
be categorized along two dimensions: how the basis functions are represented
(e.g. either by parameterized and predefined basis functions such as RBF, or



by nonparameterized basis functions directly derived from the data) and what
quantity/target function is considered to guide their construction process (e.g.
either supervised methods that consider the Bellman error and depend on the
particular reward/goal, or unsupervised graph-based methods that consider con-
nectivity properties of the state space). Conceptually closely related to our work
is the approach described in [12], which adapts the hyperparameters of RBF-
basis functions (both their location and lengthscales) using either gradient de-
scent or the cross-entropy method on the Bellman error. However, because basis
functions are adapted individually (and their number is chosen in advance), the
method is prone to overfitting: e.g. by placing basis functions with very small
width near discontinuities. The problem is compounded when only few data
points are available. In contrast, using a Bayesian approach, we can automati-
cally trade-off model fit and model complexity with the number of data points,
choosing always the best complexity: e.g. for small data sets we will prefer larger
lengthscales (less complex), for larger data sets we can afford smaller lengthscales
(more complex).

Other alternative approaches do not rely on predefined basis functions: The
method in [9] is an incremental approach that uses dimensionality reduction
and state aggregation to create new basis functions such that for every step
the remaining Bellman error for a trajectory of states is successively reduced. A
related approach is given in [14] which incrementally constructs an orthogonal
basis for the Bellman error. A graph-based unsupervised approach is presented in
[11], which derives basis functions from the eigenvectors of the graph Laplacian
induced from the underlying MDP.

3 Background: GPs for policy evaluation

In this section we briefly summarize how GPs [17] can be used for approximate
policy evaluation; here we will follow the GPTD formulation of [6].

Suppose we have observed the sequence of states x1,x2, . . . ,xn and rewards
r1, . . . , rn−1, where xi ∼ p(· |xi−1, π(xi−1)) and ri = R(xi, π(xi),xi+1). In prac-
tice, MDPs considered in RL will often be of an episodic nature with absorbing
terminal states. Therefore we have to transform the problem such that the re-
sulting Markov chain is still ergodic: this is done by introducing a zero reward
transition from the terminal state of one episode to the start state of the next
episode. In addition to the sequence of states and rewards our training data
thus also includes a sequence γ1, . . . , γn−1, where γi = γ (the discount factor in
Eq. (1)) if xi+1 was a non-terminal state, and γi = 0 if xi was a terminal state
(in which case xi+1 is the start state of the next episode).

Assume that the function values V (x) of the unknown value function V :
X ⊂ RD → R from Eq. (1) form a zero-mean Gaussian process with covariance
function k(x,x′) for x,x′ ∈ X ; in short V ∼ GP(0, k(x,x′)). In consequence, the

function values for the n observed states, v :=
(

V (x1), . . . , V (xn)
)T

, will have a
Gaussian distribution

v |X, θ ∼ N (0,K), (2)



where X := [x1, . . . ,xn] and K is the n × n covariance matrix with entries
[K]ij = k(xi,xj). Note that the covariance k(·, ·) alone fully specifies the GP;
here we will assume that it is a simple (positive definite) function parameterized
by a number of scalar parameters collected in vector θ (see Section 4).

However, unlike in ordinary regression, in RL we cannot observe samples
from the target function V directly. Instead, the values can only be observed
indirectly: from Eq. (1) we have that the value of one state is recursively defined
through the value of the successor state(s) and the immediate reward. To this
end, Engel et al. propose the following generative model:1

R(xi,xi+1) = V (xi) − γiV (xi+1) + ηi, (3)

where ηi is a noise term that may depend on the inputs.2 Plugging in the observed

training data, and defining r :=
(

r1, . . . , rn−1

)T

, we obtain

r = Hv + η, (4)

where the (n − 1) × n matrix H is given by

H :=







1 −γ1

. . .
. . .

1 −γn−1






(5)

and noise η :=
(

η1, . . . , ηn−1

)T

has distribution η ∼ N (0, Σ). One first choice
for the noise covariance Σ would be Σ = σ2

0I, where σ2
0 is an unknown hyperpa-

rameter (see Section 4). However, this model does not capture stochastic state
transitions and hence would only be applicable for deterministic MDPs. If the
environment is stochastic, the noise model Σ = σ2

0HHT is more appropriate,
see [6] for more detailed explanations. For the remainder we will solely consider
the latter choice, i.e. Σ = σ2

0HHT.
Let D := {X, γ1, . . . , γn−1} be an abbreviation for the training inputs. Using

Eq. (4), it can be shown that the joint distribution of the observed rewards r
given inputs D is again a Gaussian,

r | D, θ ∼ N (0,Q), (6)

where the (n − 1) × (n − 1) covariance matrix Q is given by

Q =
(

HKHT + σ2
0HHT

)

. (7)

To predict the function value V (x∗) at a new state x∗, we consider the joint
distribution of r and V (x∗)

[

r
V (x∗)

]

| D,x∗, θ ∼ N

([

0
0

]

,

[

Q Hk(x∗)
[Hk(x∗)]T k∗

])

1 Note that this model is just a linearly transformed version of the standard model in
GP regression, i.e. yi = f(xi) + εi.

2 Formally, in GPTD noise is modeled by a second zero-mean GP that is independent
from the value GP. See [6] for details.



where n × 1 vector k(x∗) is given by k(x∗) :=
(

k(x∗,x1), . . . , k(x∗,xn)
)T

and
scalar k∗ by k∗ := k(x∗,x∗). Conditioning on r, we then obtain

V (x∗) | D, r,x∗, θ ∼ N (µ(x∗), σ2(x∗)) (8)

where

µ(x∗) := k(x∗)THTQ−1r (9)

σ2(x∗) := k∗ − k(x∗)THTQ−1Hk(x∗). (10)

Thus, for any given single state x∗, GPTD produces the distribution p(V (x∗)|D, r,x∗, θ)
in Eq. (8) over function values.

4 Computational considerations

Regarding its implementation, GPTD for policy evaluation shares the same
weakness that GPs have in traditional machine learning tasks: solving Eq. (8)
requires the inversion3 of a dense (n − 1) × (n − 1) matrix, which when done
exactly would require O(n3) operations and is hence infeasible for anything but
small-scale problems (say, anything with n < 5000).

4.1 Subset of regressors

In the subset of regressors (SR) approach initially proposed for regularization
networks [15, 10], one chooses a subset {x̃}m

i=1 of the data, with m ≪ n, and
approximates the covariance for arbitrary x,x′ by taking

k̃(x,x′) = km(x)TK−1
mmkm(x′). (11)

Here km(·) denotes km(·) :=
(

k(x̃1, ·), . . . , k(x̃m, ·)
)T

, and Kmm is the submatrix
[Kmm]ij = k(x̃i, x̃j) of K. The approximation in Eq. (11) can be motivated for
example from the Nyström approximation [22]. Let Knm denote the submatrix
[Knm]ij = k(xi, x̃j) corresponding to the m columns of the data points in the

subset. We then have the rank-reduced approximation K ≈ K̃ = KnmK−1
mmKT

nm

and k(x) ≈ k̃(x) = KnmK−1
mmkm(x). Plugging these into Eq. (8), we obtain for

the mean

µ(x∗) ≈ k̃(x∗)THT
(

HK̃HT + σ2
0HHT

)−1
r

= km(x∗)T
(

GTWG + σ2
0Kmm

)−1
GTWr, (12)

where we have defined G := HKnm, W := (HHT)−1 and applied the SMW
identity4 to show that

K−1
mmGT

(

GK−1
mmGT + σ2

0W
−1

)−1
=

(

GTWG + σ2
0Kmm

)−1
GTW. (13)

3 For numerical reasons we implement this step using the Cholesky decomposition,
which has the same computational complexity.

4 (A + BD−1C)−1BD−1 = A−1B(D + CA−1B)−1



Similarly, we obtain for the predictive variance

σ(x∗) ≈ k̃(x∗,x∗) − k̃(x∗)THT
(

HK̃HT + σ2
0HHT

)−1
Hk̃(x∗)

= σ2
0km(x∗)T

(

GTWG + σ2
0Kmm

)−1
km(x∗). (14)

Doing this means a huge gain in computational savings: solving the reduced
problem in Eq. (12) costs O(m2n) for initialization, requires O(m2) storage and
every prediction costs O(m) (or O(m2) if we additionally evaluate the variance).
This has to be compared with the complexity of the full problem: O(n3) ini-
tialization, O(n2) storage, and O(n) prediction. Thus computational complexity
now only depends linearly on n (for constant m).

Note that the SR-approximation produces a degenerate GP. As a conse-
quence, the predictive variance in Eq. (14) will underestimate the true variance.
In particular, it will be near zero when x is far from the subset {x̃}m

i=1 (which is
exactly the opposite of what we want, as the predictive variance should be high
for novel inputs). The situation can be remedied by considering the projected
process approximation [4, 19], which results in the same expression for the mean
in Eq. (12), but adds the term

k(x∗,x∗) − km(x∗)TK−1
mmkm(x∗) (15)

to the variance in Eq. (14)

4.2 Selecting the subset (unsupervised)

Selecting the best subset is a combinatorial problem that cannot be solved effe-
ciently. Instead, we try to find a compact subset that summarizes the relevant
information by incremental forward selection. In every step of the procedure,
we add that element from the set of remaining unselected elements to the ac-
tive set that performs best with respect to a given specific criterion. In general,
we distinguish between supervised and unsupervised approaches, i.e. those that
consider the target variable we regress on, and those that do not. Here we focus
on the incomplete Cholesky decomposition (ICD) as an unsupervised approach
[7, 1, 2].

ICD aims at reducing at each step the error incurred from approximating the

covariance matrix:
∥

∥

∥
K − K̃

∥

∥

∥

F
. Note that the ICD of K is the dual equivalent of

performing partial Gram-Schmidt on the Mercer-induced feature representation:
in every step, we add that element to the active set whose distance from the span
of the currently selected elements is largest (in feature space). The procedure is
stopped when the residual of remaining (unselected) elements falls below a given
threshold, or a given maximum number of allowed elements is exceeded. In [4, 8,
6] online variants thereof are considered (where instead of repeatedly inspecting
all remaining elements only one pass over the dataset is made and every element
is examined only once). In general, the number of elements selected by ICD will
depend on the effective rank of K (and thus its eigenspectrum).



5 Model selection for GPTD

The major advantage of using GP-based function approximation (in contrast
to, say, neural networks or tree-based approaches) is that both ’learning’ of
the weight vector and specification of the architecture/hyperparameters/basis
functions can be handled in a principled and essentially automated way.

5.1 Optimizing the marginal likelihood

To determine hyperparameters for GPTD, we consider the marginal likelihood
of the process, i.e. the probability of generating the rewards we have observed
given the sequence of states and a particular setting of the hyperparameter θ. We
then maximize this function (its logarithm) with respect to θ. From Eq. (6) we
see that for GPTD we have p(r|D, θ) = N (0,Q). Thus plugging in the definition
for a multivariate Gaussian and taking the logarithm, we obtain

L(θ) = −
1

2
log detQ−

1

2
rTQ−1r −

n

2
log 2π. (16)

Optimizing this function with respect to θ is a nonconvex problem and we have
to resort to iterative gradient-based solvers (such as scaled conjugate gradients,
e.g. see [13]). To do this we need to be able to evaluate the gradient of L. The
partial derivatives of L with respect to each individual hyperparameter θi can
be obtained in closed form as

∂L

∂θi

= −
1

2
tr

(

Q−1 ∂Q

∂θi

)

+
1

2
rTQ−1 ∂Q

∂θi

Q−1r. (17)

Note that L automatically incorporates the trade-off between model fit (train-
ing error) and model complexity and can thus be regarded as an indicator for
generalization capabilities, i.e. how well GPTD will predict the values of states
not in its training set. The first term in Eq. (16) measures the complexity of the
model, and will be large for ’flexible’ and small for ’rigid’ models.5 The second
term measures the model fit and can shown to be the value of the error function
for a penalized least-squares that would (in a frequentist setting) correspond to
GPTD.

5 A property that manifests itself in the eigenvalues of K (since the determinant equals
the sum of the eigenvalues). In general, flexible models are achieved by smaller
bandwidths in the covariance, meaning that K’s effective rank will be large and
its eigenvalues will fall off more slowly. On the other hand, more rigid models are
achieved by larger bandwidths, meaning that K’s effective rank will be low and
its eigenvalues will fall off more quickly. Note that the effective rank of K is also
important for the SR-approximation (see Section 3), since the effectiveness of SR
depends on building a low-rank approximation of K spending as few resources as
possible.



5.2 Choosing the covariance

A common choice for k(·, ·) is to consider a (positive definite) function parame-
terized by a small number of scalar parameters, such as the stationary isotropic
Gaussian (or squared exponential), which is parameterized by the lengthscale
(bandwidth h). In the following we will consider three variants of the form [13,
17]:

k(x,x′) = v0 exp

{

−
1

2
(x − x′)TΩ(x − x′)

}

+ b (18)

where hyperparameter v0 > 0 denotes the vertical lengthscale, b > 0 the bias,
and symmetric positive semidefinite matrix Ω is given by

– Variant 1 (isotropic): Ω = hI
with hyperparameter h > 0.

– Variant 2 (axis-aligned ARD): Ω = diag(a1, . . . , aD)
with hyperparameters a1, . . . , aD > 0.

– Variant 3(factor analysis): Ω = MkM
T

k + diag(a1, . . . , aD)
where D × k matrix Mk is given by Mk := [m1, . . . ,mk], k < D, and both
the entries of Mk, i.e. m11, . . . , m1D, . . . , mk1, . . . , mkD and a1, . . . , aD > 0
are adjustable hyperparameters.6

The first variant (see Figure 1) assumes that every coordinate of the input (i.e.
state-vector) is equally important for predicting its value. However, in particular
for high-dimensional state vectors, this might be too simple: along some dimen-
sions this will produce too much resolution where it will be wasted, along other
dimensions this will produce too little resolution where it would otherwise be
needed. The second variant is more powerful and includes a different parameter
for every coordinate of the state vector, thus assigning a different scale to every
state variable. This covariance implements automatic relevance determination
(ARD): since the individual scaling factors are automatically adapted from the
data via marginal likelihood optimization, they inform us about how relevant
each state variable is for predicting the value. A large value of ai means that
the i-th state variable is important and even small variations along this coor-
dinate are relevant. A small value of aj means that the j-th state variable is
less important and only large variations along this coordinate will impact the
prediction (if at all). A value close to zero means that the corresponding coordi-
nate is irrelevant and could be left out (i.e. the value function does not rely on
that particular state variable). The benefit of removing irrelevant coordinates is
that the complexity of the model will decrease while the fit of the model stays
the same: thus likelihood will increase. The third variant first identifies relevant
directions in the input space (linear combinations of state variables) and per-
forms a rotation of the coordinate system (the number of relevant directions is

6 The number of directions k is also determined from model selection: we systemati-
cally try different values of k, find the corresponding remaining hyperparameters via
scg-based likelihood optimization and compare the final scores (likelihood) of the
resulting models.
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Fig. 1. Three variants of the stationary squared exponential covariance. The direc-
tions/scaling factors in the third case are derived from the eigendecomposition of Ω,
i.e. USUT = MkM

T

k + diag(a1, . . . , aD).

specified in advance by k). As in the second variant, different scaling factors are
then applied along the rotated axes.

5.3 Example: gradient for ARD

As an example, we will now show how the gradient ∇θL of Eq. (16) is calculated
for the ARD covariance. Note that since all hyperparameters in this model, i.e.
{v0, b, σ

2
0 , a1, . . . , aD}, must be positive, it is more convenient to consider the hy-

perparameter vector θ in log space: θ =
(

log v0, log b, logσ2
0 , log a1, . . . , log aD

)

.
We start by establishing some useful identities: for any n× n matrix A we have

[HAHT]ij = aij − γiai+1,j − γjai,j+1 + γiγjai+1,j+1.

Furthermore, we have

[HHT]ij =











1 + γ2
i , i = j

−γi , i = j − 1 or i = j + 1

0 , otherwise

Now write K as K = v0C+b1n,n, where [C]ij = exp
{

−0.5
∑D

d=1 ad

(

x
(i)
d − x

(j)
d

)2
}

and 1n,n is the n× n matrix of all ones. Computing the partial derivative of K,
we then obtain

∂K

∂v0
= C,

∂K

∂b
= 1n,n

[

∂K

∂aν

]

ij

= −
1

2
v0cij

(

x(i)
ν − x(j)

ν

)2
, ν = 1 . . .D

Next, we will compute the partial derivatives of Q = (HKHT +σ2
0HHT), giving

for b:

∂Q

∂ log b
= b

∂Q

∂b
= bH

[

∂K

∂b

]

HT = bH1n,nH
T

⇒

[

∂Q

∂ log b

]

ij

= b(1 − γi − γj + γiγj).



For v0 we have

∂Q

∂ log v0
= v0

∂Q

∂v0
= v0H

[

∂K

∂v0

]

HT = v0HCHT

⇒

[

∂Q

∂ log v0

]

ij

= v0(cij − γici+1,j − γjci,j+1 + γiγjci+1,j+1).

For σ2
0 we have

∂Q

∂ log σ2
0

= σ2
0

∂Q

∂σ2
0

= σ2
0

∂

∂σ2
0

[σ2
0HHT] = σ2

0HHT

⇒

[

∂Q

∂ log σ2
0

]

ij

=











σ2
0(1 + γ2

i ) , i = j

−σ2
0γi , i = j − 1 or i = j + 1

0 , otherwise

Finally, for each of the aν , ν = 1, . . . , D we get

∂Q

∂ log aν

= aν

∂Q

∂aν

= aνH

[

∂K

∂aν

]

HT

⇒

[

∂Q

∂ log aν

]

ij

= −
1

2
aνv0(cijd

ν
ij − γici+1,jd

ν
i+1,j

− γjci,j+1d
ν
i,j+1 + γiγjci+1,j+1d

ν
i+1,j+1)

where we have defined dν
ij :=

(

x
(i)
ν − x

(j)
ν

)2
. Thus, with w := Q−1r we have for

Eq. (17)

tr

(

Q−1 ∂Q

∂θν

)

=
n−1
∑

i=1

n−1
∑

j=1

[

Q−1
]

ij

[

∂Q

∂θν

]

ji

wT
∂Q

∂θν

w =

n−1
∑

i=1

n−1
∑

j=1

[w]i[w]j

[

∂Q

∂θν

]

ij

which can be used to calculate the partial derivates with computational com-
plexity O(n2) each (except for σ2

0 , where the matrix of derivatives is tridiagonal).

6 Experiments

This section demonstrates that our proposed model selection can be used to
solve the approximate policy evaluation problem in a completely automated way
– without any manual tweaking of hyperparameters. We will also show some of
the additional benefits of model selection, which are improved accuracy and
reduced complexity: because we automatically set the hyperparameters we can
use more sophisticated covariance functions (see Section 5.2) that depend on a



larger number7 of hyperparameters, thus better fit the regularities of a particular
dataset, and therefore do not waste unnecessary resources on irrelevant aspects
of the state-vector. The latter aspect is particularly interesting for computational
reasons (see Section 4) and becomes important in large-scale applications.

6.1 Pendulum swing-up task
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Fig. 2. Optimal value function for the
pendulum domain, computed with fitted
value iteration over a discretized state
space (400 × 400 grid).

First, we consider the pendulum
swing-up task, a common benchmark
in RL. The goal is to swing up an un-
derpowered pendulum and balance it
around the inverted upright position
(here formulated as an episodic task).
More details and the equations of mo-
tion can be found in e.g. [5]. Since
GPTD only solves (approximate) pol-
icy evaluation, to test our model se-
lection approach we chose to generate
a sample trajectory under the opti-
mal policy (obtained from fitted value
iteration). We generated a sequence
of 1000 state-transitions under this
policy (which corresponds to about
25 completed episodes) and applied
GPTD for the three choices of covari-
ance: isotropic (I), axis-aligned ARD
(II), and factor analyis (III). In each
case, the best setting of hyperparam-
eters was found from running8 scaled
conjugate gradients on Eq. (16), giving

I: v0 = 18.19 σ2

0
= 0.05 b = 0.11 h = 7.48

II: v0 = 15.95 σ2

0
= 0.05 b = 0.10 a1 = 3.62 a2 = 6.63

III: v0 = 10.82 σ2

0
= 0.08 b = 0.10 s1 = 13.91 s2 = 0.36 u1 =

ˆ

0.58 0.81
˜

u2 =
ˆ

−0.81 0.58
˜

(the last ones given in terms of the eigendecomposition of Ω). Figure 3 shows the
results: all three produce an adequate representation of the true value function
shown in Figure 2 in and near the states visited in the trajectory (MSE in states
of the sample trajectory: (I) 0.27, (II) 0.24, and (III) 0.26), but differ once they
start predicting values of states not in the training data (MSE for states on
a 50 × 50 grid: (I) 46.36, (II) 48.89, and (III) 12.24). Despite having a slightly
higher error on the known training data, (III) substantially outperforms the other

7 Setting these hyperparameters by hand would require even more trial and error;
therefore, these covariances are seldom employed without model selection.

8 We used the full data set for model selection, to avoid the complexities involved with
subset-based likelihood approximation, e.g. see [20]. In our implementation, model
selection for all 1000 data points took about 15-30 secs on a 1.5GHz PC.



models when it comes to predicting the values of new states. With respect to
model selection, (III) also has the highest likelihood. Note that (III) chooses one
dominant direction (u1 =

[

0.58 0.81
]

) to which it assigns high relevance (s1 =

13.91); the remainder (u2 =
[

−0.81 0.58
]

) has only little impact (s2 = 0.36).
Taking a closer look at Figure 2, we see that indeed the value function varies
more strongly along the diagonal direction lower left to upper right, whereas it
varies only slowly along the opposite diagonal upper left to lower right. For (II),
relevance can only be assigned along the ϕ and ϕ̇ coordinates (state-variables),
which in this case gives us no particular benefit; and (I) is not at all able to
assign different importance to different state variables.

Additional insight is gained by looking at the eigenspectrum of K. Figure 4
(left) shows that (I)’s eigenvalues decrease the slowest, whereas (III)’s decrease
the fastest. This has two consequences. First, the eigenspectrum is intimately
related with complexity and generalization capabilities (see Eq. (16)) and thus
helps explain why (III) delivers better prediction performance. Second, the eigen-
spectrum also indicates the effective rank of K and strongly impacts our ability to
build an efficient low-rank approximation of K using as small a subset as possible
(see Section 4). A small subset in turn is important for computational efficiency
because its size is the dominant factor when we employ the SR-approximation:
both for batch and online learning the operation count depends quadratically on
the size of the subset (and only linear on the number of datapoints). Keeping
this size as small as possible without losing predictive performance is essential.
Figure 4 (center and right) shows that in this regard (III) performs best and (I)
worst: for example, if we were to approximate K using SR-approximation with
ICD selection at a tolerance level of 10−1, out of our 1000 samples (I) would
choose ∼ 175, (II) would chose ∼ 140, and (III) would choose ∼ 80 elements.

6.2 A 2D gridworld with 1 latent dimension

To illustrate in more detail how our approach handles irrelevant state variables,
we use a specifically designed 2D gridworld with 11×11 states. Every step entails
a reward of −1 except when being in a state with x = 6, which starts a new
episode (teleports to a new random state with zero reward). We consider the
policy that moves left when x > 6 and right when x < 6. In addition, every time
we move left or right we will also move randomly up or down (with 50% each).
The corresponding value function is shown in Figure 5 (left). We generated 500
transitions and applied GPTD with covariance (I) and (II) with automatic model
selection resulting in9

Hyperparameters θ Complexity Data fit L (smaller is better)

(I) h = 2.89 -2378.2 54.78 -2323.4
(II) a1 = 3.53 a2 = 10−5 -2772.7 13.84 -2758.8
(II) without y a1 = 3.53 a2 = 0 -2790.7 13.84 -2776.8

9 Here we do not include results for (III) which operates on linear combinations of
states and in this scenario would have to find a direction that is perfectly aligned
with the x-axis (which is more difficult).
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Fig. 3. From top to bottom: GPTD approximation of the value function from Figure 2
for the covariances (I),(II),(III), where in each case the hyperparameters were obtained
from marginal likelihood optimization for the GPTD process in Eq. (16). Right: Asso-
ciated predictive variance. Black indicates low variance, white indicates high variance
and red circles indicate the location of the states in the training set (which was the
same for all three experiments).
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, given the size of the subset.

As can be seen from Figure 5 (center and right), both obtain a very reasonable
approximation. However, (II) automatically detects that the y-coordinate of the
state is irrelevant and thus assigns a very small weight to it (a2 < 10−5). With
a uniform lengthscale, (I) is unable to do that and has to put equal weight on
both state variables. As a consequence, its estimate is less exact and more wiggly
(MSE: (I) 0.030, and (II) 0.019). Additional insight can be gained by looking
at the likelihood L of the models (cf. Eq. (16)). Here we see that (II) has lower
complexity (cf. eigenspectrum of Q in Figure 6), fits the data better and thus
has a higher combined likelihood (note that the values in the table show the
negative log likelihood which we minimize). Moreover, if we completely remove
the y state variable (setting a2 := 0), the eigenspectrum of Q decreases more
rapidly; thus (II) without y has an even lower complexity while still having the
same fit. This indicates that state component y can be safely ignored in this
task/domain. In addition, as was mentioned before, the lower effective rank of
K will also allow us to make more efficient use of SR-based approximations.

7 Future work

It should be noted that the proposed framework for automatic feature generation
and model selection should primarily be thought of as a practical tool: despite
offering a principled solution to an important problem in RL, ultimately it does
not come with any theoretical guarantees (due to some modeling assumptions
from GPTD and the way the hyperparameters are obtained). For most practical
applications this might be less of an issue, but in general care has to be taken.

The framework can be easily extended to perform policy evaluation over
the joint state-action space to learn the model-free Q-function (instead of the
V-function): we just have to choose a different covariance function, taking for
example the product k([x, a], [x′, a′]) = k(x,x′)k(a, a′) with k(a, a′) = δa,a′ for
problems with a small number of discrete actions [8]. This opens the way for
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model-free policy improvement and thus optimal control via approximate pol-
icy iteration. Our next step then is to apply this approach to real-world high-
dimensional control tasks, both in batch settings and hybrid batch/online set-
tings; in the latter case exploiting the gain in computational efficiency obtained
through model selection to improve [6].
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