Feature Selection for Value Function Approximation Using Bayesian Model Selection

Tobias Jung and Peter Stone

Department of Computer Sciences University of Texas at Austin {tjung,pstone}@cs.utexas.edu

Summary: Model Selection for GPTD

Feature Selection for VFA Using GTPD - ECML 9/10/09 - p.1/21

Big Picture

Optimization Over Time

Consider: Time-discrete process t = 0, 1, 2, ... with

- Transition probabilities $p(\mathbf{x}_{t+1}|\mathbf{x}_t, a_t)$ (Markov)
- **P** Reward function $R(\mathbf{x}_{t+1}, \mathbf{x}_t, a_t)$ (immediate payoff)

Define: Utility under a policy (expected sum of rewards)

- **Policy** $\pi : \mathcal{X} \to \mathcal{A}$ (deterministic).
- For a given policy π the value function (with $\gamma \in (0, 1)$ being a discount factor)

$$\forall \mathbf{x}: \qquad V^{\pi}(\mathbf{x}) := \mathbb{E}\left\{\sum_{t\geq 0} \gamma^{t} R(\mathbf{x}_{t+1}, \mathbf{x}_{t}, \pi(a_{t})) | \mathbf{x}_{0} = \mathbf{x}\right\}$$

(where expectation is wrt the randomness of future events)

Goal: Find a policy π^* with maximum utility, i.e. find $\pi^* := \operatorname{argmax}_{\pi} V^{\pi}$, an **optimal** policy.

Not surprisingly, a vast number of applications: robotics, control, AI, game playing, economics & finance, operations research . . .

Dynamic Programming/Reinforcement Learning

In theory: One framework to find π^* is policy iteration:

- Guess initial policy π_1 . For k = 1, 2, ...
 - Compute V^{π_k} (policy evaluation)
 - Compute improved policy π_{k+1} from V^{π_k} (policy improvement)

In practice: quite tricky to get it right. Lots of open questions. Our focus here: policy evaluation.

Approximate policy evaluation (APE):

Problem #1: State space large. \implies Function approximation. One good choice: **linear**

$$V^{\pi}(\mathbf{x}) \approx \tilde{V}(\mathbf{x}; \mathbf{w}) = \sum_{i=1}^{m} \underbrace{w_{i}}_{\text{weights basis functions/features (known)}} \underbrace{\phi_{i}(\mathbf{x})}_{\text{weights basis functions/features (known)}}$$

Problem #2: System dynamics P, R unknown. \implies Instead: sample transitions

Good news: Given samples and 'good' features, APE is well understood: TD, LSTD, LSPE, BRM, ... **Bad news:** What are 'good' features? (How can we find them from the data?)

Why is choosing 'good' features difficult?

Overview of the talk

Scope: Dynamic programming/reinforcement learning

requires repeated solution of least-squares-like problems (policy evaluation)

Problem addressed: How to find good approximate representations for V^{π} ?

- Without the manual tweaking, trial & error usually plaguing RL?
- Without prior knowledge of the domain? Using just the observed training data?

Our approach: Leverage modern machine learning techniques:

- Non-parametric Gaussian processes (no need to worry about individual basis functions)
- Principled framework for model selection (Bayesian)

Novelty:

- Model selection in RL (via marginal likelihood optimization for GPTD)
- Framework for feature selection: find & eliminate irrelevant state variables/directions
 - improves generalization & prediction performance
 - reduces runtime complexity
- Empirical demonstration: it works! (despite minor violation of theoretical assumptions)

Background GPTD

Why Use GPs for APE?

Non-parametric: Instead of individual basis functions, specify class of functions via

- **Smoothness:** how much $V(\mathbf{x}), V(\mathbf{x'})$ can vary in relation to distance of $\mathbf{x}, \mathbf{x'}$
- Gaussian process: class of functions -> distribution over functions (Gaussian) (prior) smoothness -> covariance

Example: Let covariance $k_{\theta}(\mathbf{x}, \mathbf{x}') = \exp\{-\frac{h}{\|\mathbf{x} - \mathbf{x}'\|^2}\}$

Important practical advantages:

- **D** Easy to use: only have to specify k_{θ} or its hyperparameter (e.g. one scalar)
- Linear: efficient + robust
 - Closed form solution (simple linear algebra, efficient implementation BLAS/LAPACK)
 - Convergence APE
- Model selection: good values for hyperparameters can be found automatically (from data)
- In practice: good performance; at least equal to well-tuned NNs, but without the hassles ...

GPTD (Summary)

Training data: Observed transitions under π

- sequence of states $\mathbf{X} := [\mathbf{x}_1, \dots, \mathbf{x}_n]$, where $\mathbf{x}_i \sim p(\cdot | \mathbf{x}_{i-1}, \pi(\mathbf{x}_{i-1}))$ 'Inputs'
- ${m extsf{s}}$ associated rewards ${f r}:=[r_1,\ldots,r_{n-1}]$, where $r_i:=R({f x}_i,{f x}_{i+1},\pi({f x}_i))$ 'Targets'

Note: Unlike ordinary regression, in RL we cannot observe samples from V directly. Instead: recursion

value of one state = value of successor state + reward (Bellman equation)

GPTD for stochastic transitions (Engel et al. 2003, 2005)

$$\mathbf{r} \, | \, \mathbf{X}, oldsymbol{ heta} \, \sim \, \mathcal{N}(\mathbf{0}, \mathbf{Q}), \quad ext{ where } \mathbf{Q} := (\mathbf{H} \mathbf{K} \mathbf{H}^{\mathsf{T}} + \sigma_0^2 \mathbf{H} \mathbf{H}^{\mathsf{T}}), [\mathbf{K}]_{ij} := k_{oldsymbol{ heta}}(\mathbf{x}_i, \mathbf{x}_j)$$

To predict: the function value $V(\mathbf{x}^*)$ at a new state \mathbf{x}^* , we have

$$V(\mathbf{x}^*) | \mathbf{X}, \mathbf{r}, \mathbf{x}^*, \boldsymbol{\theta} \sim \mathcal{N}(\boldsymbol{\mu}(\mathbf{x}^*), \sigma^2(\mathbf{x}^*))$$

where

$$\begin{aligned} \boldsymbol{\mu}(\mathbf{x}^*) &:= & \overbrace{\mathbf{k}(\mathbf{x}^*)^{\mathsf{T}}}^{\mathsf{feature vector}} \underbrace{\mathbf{H}^{\mathsf{T}} \mathbf{Q}^{-1} \mathbf{r}}^{\mathsf{weights}} \\ \sigma^2(\mathbf{x}^*) &:= & k(\mathbf{x}^*, \mathbf{x}^*) - \mathbf{k}(\mathbf{x}^*)^{\mathsf{T}} \mathbf{H}^{\mathsf{T}} \mathbf{Q}^{-1} \mathbf{H} \mathbf{k}(\mathbf{x}^*) \end{aligned}$$

Note: to make all of this work, all we need to know is data + hyperparameters θ (incl. noise)

SR Approximation for GPTD

Of course, it's not that easy ...

Problem: training $\mathcal{O}(n^3)$, memory $\mathcal{O}(n^2)$, prediction $\mathcal{O}(n)$

Subset of regressors: (well known for ordinary GPs, here for GPTD)

- Approximate kernel from subset: $k(\mathbf{x}, \mathbf{x}') \approx \mathbf{k}_m(\mathbf{x})^\mathsf{T} \mathbf{K}_{mm}^{-1} \mathbf{k}_m(\mathbf{x}')$, $m \ll n$
- Solve a reduced problem: training $\mathcal{O}(nm^2)$, memory $\mathcal{O}(m^2)$, prediction $\mathcal{O}(m)$ (details in paper)

Selection of subset:

- In general, supervised and unsupervised methods possible.
- Here: unsupervised. Use: ICD of \mathbf{K} (dual) \Leftrightarrow partial Gram-Schmidt (primal)
- Note:
 - Number m of selected elements will depend on **effective rank** of **K** (eigenspectrum)
 - Eigenspectrum of $\mathbf{K} \Leftrightarrow$ complexity of solution (cf. likelihood)

Thus: simpler solutions \implies better generalization + better runtime (important for RL!)

Model Selection for GPTD

Model Selection

Model selection = finding good hyperparameters θ automatically (in RL currently done manually)

Marginal likelihood for GPTD:

1. Consider likelihood of the data

$$p(\mathbf{r}|\mathbf{X}, \boldsymbol{\theta}) = \mathcal{N}(\mathbf{0}, \mathbf{Q})$$

as function of hyperparameters $\boldsymbol{\theta}$: (neg loglike)

$$\mathcal{L}(\boldsymbol{\theta}) := -\frac{1}{2} \log \det \mathbf{Q} - \frac{1}{2} \mathbf{r}^{\mathsf{T}} \mathbf{Q}^{-1} \mathbf{r} - \frac{n}{2} \log 2\pi$$

- 2. Find $\boldsymbol{\theta}$ that minimizes \mathcal{L}
 - Requires iterative gradient-based solver (like cg)
 - **Gradient** of \mathcal{L} can be obtained in closed form (see paper)

Note: \mathcal{L} consists of two conflicting terms

- **Somplexity** $\log \det \mathbf{Q}$ (note: log det = sum of log eigenvals)
- **9** Data fit $\mathbf{r}^{\mathsf{T}}\mathbf{Q}^{-1}\mathbf{r}$

Generally: it's either/or

- Iarge bandwidth -> high complexity (large effective rank) -> low data error
- small bandwidth -> low complexity (small effective rank) -> high data error

Automatic relevance determination

Automated procedure for hyperparameter selection:

- \blacksquare \implies can use cov with larger number of hyperparameters (infeasible to set by hand)
- \blacksquare \Longrightarrow better fit regularities of data, remove what is irrelevant

Covariance: We consider three variants of the form:

$$k_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{x}') = \boldsymbol{v}_{\mathbf{0}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \mathbf{x}')^{\mathsf{T}} \boldsymbol{\Omega}(\mathbf{x} - \mathbf{x}')\right\} + \boldsymbol{b}$$

with scalar hyperparameters v_0, b and matrix Ω given by

- **9** Variant I: $oldsymbol{\Omega}=h\mathbf{I}$.
- **•** Variant II: $\mathbf{\Omega} = \operatorname{diag}(a_1, \ldots, a_D).$
- Variant III: $\mathbf{\Omega} = \mathbf{M}_k \mathbf{M}_k^{\mathsf{T}} + \operatorname{diag}(a_1, \ldots, a_D).$

Note:

- (II), (III) contain adjustable parameters for every state variable
- Setting them automatically from data ⇒
 Model selection automatically determines their relevance

Experiments

Feature Selection for VFA Using GTPD – ECML 9/10/09 – p.14/21

Experiment 1a: 2D gridworld

Scenario:

- **9** 2D gridworld $(11 \times 11 \text{ cells})$
- ${old p}$ -1 per step, except when in goal G
- stochastic transitions
- y-coordinate irrelevant for predicting V^π

Results:

- sample 500 transitions under optimal policy, GPTD with (I),(II)
- whole learning was fully automated

Results from model selection:

	Hyperparameters $oldsymbol{ heta}$	Complexity	Data fit	${\cal L}$ (smaller is better)
(I)	h = 2.89	-2378.2	54.78	-2323.4
(11)	$a_1 = 3.53$ $a_2 = 10^{-5}$	-2772.7	13.84	-2758.8
(II) without y	$a_1 = 3.53$ $a_2 = 0$	-2790.7	13.84	-2776.8

Analysis: How a data-adapted covariance reduces complexity of the model

Experiment 1b: 6D gridworld

Even as we add more (irrelevant) state variables, optimization of the marginal likelihood with the ARD kernel correctly identifies those that matter:

6D state $\mathbf{x} = \begin{bmatrix} x & y & x + \text{small noise} & x + \text{large noise} & y + \text{small noise} & y + \text{large noise} \end{bmatrix}^{\mathsf{T}}$

Experiment 2: Inverted pendulum

Results: 1000 transitions from optimal policy, GPTD for (I), (II), (III)

Analysis

Analysis:

- No irrelevant state variable but
 - (III) finds dominant direction
 - (II) is restricted to axis aligned directions (same as (I))
- Consequence:
 - (III) achieves best generalization with the least complex model
 - the least complex model also requires the least computational resources

Finish

Summary (so far):

- **P** Framework for **automatic** feature selection/generation in RL
 - based on GPs as underlying function approximator
 - based on Monte-Carlo rollouts/LSTD(1) as policy evaluation method (=GPTD)
 - based on likelihood-based model selection
- Framework doesn't come with theoretical guarantees (violates some independence assumptions)
- Framework seems to work in practice

Ongoing work:

- Solve the full optimal control problem, i.e. do policy iteration
 - requires policy improvement
 - requires exploration (or strategy for sample generation)
 - may require extension to joint state-action space (Q-function)
- More complex experiments/simulations.
- Gain more theoretical insights, e.g. when will GPTD fail?
- Compare with other policy evaluation methods, like LSTD, LSPE, ...

Related work

GPTD:

 Y.Engel, S. Mannor, and R. Meir. Bayes meets Bellman: The Gaussian process approach to temporal difference learning. ICML 20, 2003
 Y.Engel, S. Mannor, and R. Meir. Reinforcement learning with Gaussian processes. ICML 22, 2005

Adaptation of basis functions in RL:

[3] N. Menache, N. Shimkin, and S. Mannor. Basis function adaptation in temporal difference reinforcement learning. Annals of Operations Research, 134:215-238

Other:

[4] P. Keller, S. Mannor, and D. Precup. Automatic basis function construction for approximate dynamic programming and reinforcement learning. ICML 23, 2006
[5] R. Parr, C. Painter-Wakefield, L. Li, and M. Littman. Analyzing feature generation for value-function approximation. ICML 24, 2007
[6] S. Mahadevan and M. Maggioni. Proto-value functions. A Laplacian framework for learning representation and control in Markov decision processes. JMLR, 8:2169-2231, 2007
[7] J. Reisinger, P. Stone, and R. Mikkulainen. Online kernel selection for Bayesian reinforcement learning. ICML 25, 2008