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Big Picture
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Optimization Over Time

Consider: Time-disrete proess t = 0, 1, 2, . . . with

X ⊂ RD state spae (ontinuous), A ation spaeTransition probabilities p(xt+1|xt, at) (Markov)Reward funtion R(xt+1,xt, at) (immediate payo�)De�ne: Utility under a poliy (expeted sum of rewards)Poliy π : X → A (deterministi).For a given poliy π the value funtion (with γ ∈ (0, 1) being a disount fator)

∀x : V π(x) := E
{∑

t≥0

γtR(xt+1,xt, π(at))|x0 = x
}

(where expetation is wrt the randomness of future events)Goal: Find a poliy π∗ with maximum utility, i.e. �nd π∗ := argmaxπ V π, an optimal poliy.

=⇒ Not surprisingly, a vast number of appliations: robotis, ontrol, AI, game playing, eonomis &�nane, operations researh . . .

Feature Selection for VFA Using GTPD – ECML 9/10/09 – p.3/21



Dynamic Programming/Reinforcement LearningIn theory: One framework to �nd π∗ is poliy iteration:Guess initial poliy π1. For k = 1, 2, . . .Compute V πk (poliy evaluation)Compute improved poliy πk+1 from V πk (poliy improvement)In pratie: quite triky to get it right. Lots of open questions. Our fous here: poliy evaluation.

Approximate poliy evaluation (APE):Problem #1: State spae large. =⇒ Funtion approximation. One good hoie: linear

V π(x) ≈ Ṽ (x;w) =
m∑

i=1

wi
︸︷︷︸weights φi(x)

︸ ︷︷ ︸basis funtions/features (known)Problem #2: System dynamis P , R unknown. =⇒ Instead: sample transitions

Good news: Given samples and 'good' features, APE is well understood: TD, LSTD, LSPE, BRM, ...Bad news: What are 'good' features? (How an we �nd them from the data?)
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Why is choosing ’good’ features difficult?
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Overview of the talkSope: Dynami programming/reinforement learningrequires repeated solution of least-squares-like problems (poliy evaluation)Problem addressed: How to �nd good approximate representations for V π?Without the manual tweaking, trial & error usually plaguing RL?Without prior knowledge of the domain? Using just the observed training data?Our approah: Leverage modern mahine learning tehniques:Non-parametri Gaussian proesses (no need to worry about individual basis funtions)Prinipled framework for model seletion (Bayesian)Novelty: Model seletion in RL (via marginal likelihood optimization for GPTD)Framework for feature seletion: �nd & eliminate irrelevant state variables/diretionsimproves generalization & predition performaneredues runtime omplexityEmpirial demonstration: it works! (despite minor violation of theoretial assumptions)
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Background GPTD
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Why Use GPs for APE?Non-parametri: Instead of individual basis funtions, speify lass of funtions viaSmoothness: how muh V (x), V (x′) an vary in relation to distane of x,x′Gaussian proess: lass of funtions -> distribution over funtions (Gaussian) (prior)smoothness -> ovarianeExample: Let ovariane kθ(x,x′) = exp{−h ‖x − x′‖2}

lengthscale h=1 lengthscale h=1000

Important pratial advantages:Easy to use: only have to speify kθ or its hyperparameter (e.g. one salar)Linear: e�ient + robustClosed form solution (simple linear algebra, e�ient implementation BLAS/LAPACK)Convergene APEModel seletion: good values for hyperparameters an be found automatially (from data)In pratie: good performane; at least equal to well-tuned NNs, but without the hassles ...
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GPTD (Summary)Training data: Observed transitions under πsequene of states X := [x1, . . . ,xn], where xi ∼ p(· |xi−1, π(xi−1)) 'Inputs'assoiated rewards r := [r1, . . . , rn−1], where ri := R(xi,xi+1, π(xi)) 'Targets'Note: Unlike ordinary regression, in RL we annot observe samples from V diretly. Instead: reursionvalue of one state = value of suessor state + reward (Bellman equation)

GPTD for stohasti transitions (Engel et al. 2003, 2005)
r |X, θ ∼ N (0,Q), where Q := (HKHT + σ2

0HHT), [K]ij := kθ(xi,xj)To predit: the funtion value V (x∗) at a new state x∗, we have
V (x∗) |X, r,x∗, θ ∼ N (µ(x∗), σ2(x∗))where

µ(x∗) :=
feature vetor

︷ ︸︸ ︷

k(x∗)T

weights
︷ ︸︸ ︷

HTQ−1r

σ2(x∗) := k(x∗,x∗) − k(x∗)THTQ−1Hk(x∗).Note: to make all of this work, all we need to know is data + hyperparameters θ ( inl. noise)
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SR Approximation for GPTD

Of ourse, it's not that easy ...Problem: training O(n3), memory O(n2), predition O(n)

Subset of regressors: (well known for ordinary GPs, here for GPTD)Approximate kernel from subset: k(x,x′) ≈ km(x)TK
−1
mmkm(x′), m ≪ nSolve a redued problem: training O(nm2), memory O(m2), predition O(m)(details in paper)

Seletion of subset:In general, supervised and unsupervised methods possible.Here: unsupervised. Use: ICD of K (dual) ⇔ partial Gram-Shmidt (primal)Note:Number m of seleted elements will depend on e�etive rank of K (eigenspetrum)Eigenspetrum of K ⇔ omplexity of solution (f. likelihood)

Thus: simpler solutions =⇒ better generalization + better runtime (important for RL!)
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Model Selection for GPTD
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Model SelectionModel seletion = �nding good hyperparameters θ automatially (in RL urrently done manually)Marginal likelihood for GPTD:1. Consider likelihood of the data

p(r|X, θ) = N (0,Q)as funtion of hyperparameters θ: (neg loglike)
L(θ) := −

1

2
log detQ −

1

2
rTQ−1r −

n

2
log 2π2. Find θ that minimizes LRequires iterative gradient-based solver (like g)Gradient of L an be obtained in losed form (see paper)Note: L onsists of two on�iting termsComplexity log detQ (note: log det = sum of log eigenvals)Data �t rTQ−1rGenerally: it's either/orlarge bandwidth -> high omplexity (large e�etive rank) -> low data errorsmall bandwidth -> low omplexity (small e�etive rank) -> high data error
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Automatic relevance determination

Automated proedure for hyperparameter seletion:

=⇒ an use ov with larger number of hyperparameters(infeasible to set by hand)

=⇒ better �t regularities of data, remove what is irrelevantCovariane: We onsider three variants of the form:

kθ (x,x′) = v0 exp

{

−
1

2
(x − x′)TΩ(x − x′)

}

+ bwith salar hyperparameters v0, b and matrix Ω given by
Variant I: Ω = hI.

Variant II: Ω = diag(a1, . . . , aD).
Variant III: Ω = MkM

T
k

+ diag(a1, . . . , aD).Note: (II), (III) ontain adjustable parameters for every state variableSetting them automatially from data =⇒Model seletion automatially determines their relevane
(I)

PSfrag replaements
h

(II)

PSfrag replaements
a1

a2

(III)

PSfrag replaements
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Experiments
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Experiment 1a: 2D gridworldSenario: 2D gridworld (11 × 11 ells)

−1 per step, exept when in goal Gstohasti transitionsy-oordinate irrelevant for prediting V π

50%
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...y

xResults: sample 500 transitions under optimal poliy, GPTD with (I),(II)whole learning was fully automated
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Analysis

Results from model seletion:Hyperparameters θ Complexity Data �t L (smaller is better)(I) h = 2.89 -2378.2 54.78 -2323.4(II) a1 = 3.53 a2 = 10−5 -2772.7 13.84 -2758.8(II) without y a1 = 3.53 a2 = 0 -2790.7 13.84 -2776.8Analysis: How a data-adapted ovariane redues omplexity of the model
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Experiment 1b: 6D gridworld

Even as we add more (irrelevant) state variables, optimization of the marginal likelihood with the ARD kernelorretly identi�es those that matter:6D state x =
[

x y x + small noise x + large noise y + small noise y + large noise]T
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Experiment 2: Inverted pendulum

Senario: a more realisti benhmark
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Analysis

Analysis: No irrelevant state variable but(III) �nds dominant diretion(II) is restrited to axis aligned diretions (same as (I))Consequene:(III) ahieves best generalization with the least omplex modelthe least omplex model also requires the least omputational resoures
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Finish

Summary (so far):Framework for automati feature seletion/generation in RLbased on GPs as underlying funtion approximatorbased on Monte-Carlo rollouts/LSTD(1) as poliy evaluation method (=GPTD)based on likelihood-based model seletionFramework doesn't ome with theoretial guarantees (violates some independene assumptions)Framework seems to work in pratie

Ongoing work:Solve the full optimal ontrol problem, i.e. do poliy iterationrequires poliy improvementrequires exploration (or strategy for sample generation)may require extension to joint state-ation spae (Q-funtion)More omplex experiments/simulations.Gain more theoretial insights, e.g. when will GPTD fail?Compare with other poliy evaluation methods, like LSTD, LSPE, ...
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