
In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2013),
Prague, Czech Republic, September 2013.

Model-Selection for Non-Parametric Function

Approximation in Continuous Control Problems: A

Case Study in a Smart Energy System

Daniel Urieli and Peter Stone

Dept. of Computer Science

The University of Texas at Austin

Austin, TX, 78712 USA

{urieli,pstone}@cs.utexas.edu

Abstract. This paper investigates the application of value-function-based rein-

forcement learning to a smart energy control system, specifically the task of con-

trolling an HVAC system to minimize energy while satisfying residents’ comfort

requirements. In theory, value-function-based reinforcement learning methods

can solve control problems such as this one optimally. However, since choos-

ing an appropriate parametric representation of the value function turns out to be

difficult, we develop an alternative method, which results in a practical algorithm

for value function approximation in continuous state-spaces. To avoid the need

to carefully design a parametric representation for the value function, we use

a smooth non-parametric function approximator, specifically Locally Weighted

Linear Regression (LWR). LWR is used within Fitted Value Iteration (FVI), which

has met with several practical successes. However, for efficiency reasons, LWR is

used with a limited sample-size, which leads to poor performance without careful

tuning of LWR’s parameters. We therefore develop an efficient meta-learning pro-

cedure that performs online model-selection and tunes LWR’s parameters based

on the Bellman error. Our algorithm is fully implemented and tested in a realistic

simulation of the HVAC control domain, and results in significant energy savings.

1 Introduction

This paper is motivated by a real-world discrete-time continuous control problem in

which the state space is continuous and the action space is discrete. Specifically, we

focus on the task of controlling an HVAC system’s thermostat1 in a house with ‘heat’,

‘cool’, ‘auxiliary-heat’ or ‘off’ actions, with the goal of reducing yearly energy con-

sumption while satisfying temperature comfort requirements for the occupants. Such

discrete-time continuous control problems commonly arise when a digital controller

controls a physical system, and when the possible control actions constitute either a fi-

nite set, or a low dimensional space that can be discretized without losing much control

capability. Other examples of this class of problems are robot control, autonomous he-

licopter control, and autonomous car control. When the controlled system’s dynamics

is unknown in advance, model-based Reinforcement Learning can be used to efficiently

1 HVAC: Heating, Ventilation, and Air-conditioning

2 Daniel Urieli and Peter Stone

learn the dynamics first, and then solve the control problem, possibly by computing or

approximating a value function[13].

When using such a method to learn fine-grained control actions, one of the most

crucial choices is how to represent the value function. One reason that this choice is

so crucial is that the cycle time between consecutive control actions is typically short,

compared to the time-range, or the horizon, over which the overall system behavior is

optimized. Therefore, a single action often has a relatively minor effect on both the state

of the system and on the immediate cost/reward, so that the overall performance is a sum

of large number of minor contributions. Consequently, the value of a state that results

from a suboptimal action is typically close to the value of the state that results from

an optimal action. To induce the optimal policy, a value function approximator must

be able to capture these fine differences between state values. Note that taking a sub-

optimal action may not seem like a problem when action effects are minor. However,

since the problem’s horizon can be orders of magnitude longer than the length of an

action, the number of actions taken within the horizon is typically large, and repeatedly

choosing suboptimal actions can accumulate to large losses.

Value function approximation is an active area of research: it is often unclear how to

approximate the value function well enough so as to distinguish an optimal action from

a suboptimal action. The three most common methods to approximate a value-function

are lookup-tables, parametric methods, and non-parametric methods [16]. Lookup ta-

bles often suffer from Bellman’s curse of dimensionality at the resolution levels that are

required for continuous control problems. Parametric methods are typically computa-

tionally efficient, but assume that the value function takes some global, parametric form.

Non-parametric methods make much weaker assumptions about the value-function’s

form, and therefore can, in principle, approximate any function. However, they typi-

cally require more data and computation than parametric methods.

One way to avoid the difficulties in approximating a value function in continuous

spaces, is to use direct policy search methods, which directly optimize the parame-

ters of some parametrized policy. Policy search methods have recently achieved sev-

eral notable successes, e.g. [13,9,3], and have been gaining increased popularity for

real-world control problems, perhaps due to the difficulties in approximating the value

function in continuous spaces. However, if we could address the challenge of approxi-

mating the optimal value function well enough, we could gain some of the advantages

of value-function-based methods over direct policy search methods, for instance aiming

for global rather than local optimum, and requiring less interactions with the real-world

due to bootstraping.

To address our HVAC control problem, we develop a general, practical, algorithm

for approximating the value function in continuous state spaces. To avoid the need to

carefully design a parametric representation for the value function, we use a smooth

non-parametric function approximator, specifically Locally Weighted Linear Regres-

sion (LWR) (e.g. [2]). To compute the value function we use LWR within Fitted Value

Iteration (FVI), an algorithm that has proven convergence properties and often performs

well in practice [6,12]. However, being limited by a small sample size due to a run-time

efficiency requirement on the system, we must tune LWR’s parameters carefully, other-

wise the system performs poorly. We therefore develop an efficient meta-learning pro-

Model-Selection for Non-Parametric Function Approximation: A Case Study 3

cedure that performs online model-selection and tunes LWR’s parameters. The model

selection procedure is based on two main ideas, substantiated empirically through a

large number of simulations. The first idea is that minimizing the empirical L1 or L∞

Bellman error of the approximate value function is correlated with optimizing perfor-

mance on our task. It is shown that the same statement is not true for the L2 Bellman

error. The second idea is that minimizing the Bellman error by tuning LWR’s parame-

ters can be done efficiently. We note that while the Bellman error was used as a criterion

for optimization by algorithms implementing generalized policy iteration using a fixed

representation for the value function, and for tuning and generating basis functions in

linear architectures, to the best of our knowledge it has not been used as an optimization

criterion for tuning a non-parametric representation (see Sec. 6).

We apply our algorithm to the realistic control task of controlling a thermostat to

optimize energy consumption while satisfying comfort requirements in a realistically

simulated home. We build a complete Reinforcement Learning agent that uses our algo-

rithm and show that (1) our agent outperforms the thermostat strategy that is deployed in

practice, (2) our function approximation scheme leads to better performance than when

using popular methods of value function discretization, linear function approximation

with reasonable features, and non-parametric function approximation using equivalent

computation with a much denser sample and without model-selection; and (3) our on-

line model selection leads to performance that is close to that of an empirical upper-

bound achieved using a state-of-the-art optimization method (CMA-ES [7]) combined

with a clairvoyant model evaluator that returns the actual future performance of a model.

The result is an adaptive value-function approximation algorithm for continuous state-

spaces, which uses a non-parametric representation to minimize the assumptions about

representation, and tunes it online to the specific environment in which it is deployed.

2 Preliminaries

2.1 Reinforcement Learning

In this paper we focus on solving control problems through Reinforcement Learning

(RL) [19]. Reinforcement learning problems are often modeled as Markov Decision

Processes (MDPs). An (episodic) Markov Decision Process (MDP) [18] is a tuple

(S,A, P,R, T), where S is the set of states;A is a set of actions; P : S×A×S → [0, 1]
is a state transition probability function where P (s, a, s′) denotes the probability of

transitioning to state s′ when taking action a from state s; R : S × A → R is a reward

function; and T ∈ S is a set of terminal states, where entering one of which terminates

an episode. In the context of MDPs, the goal of RL is to learn an optimal policy, when

the model (namely P and/or R) is initially unknown. A policy is a mapping π : S → A

from states to actions. A policy π induces a value for each state s ∈ S, denoted as

V π(s), defined as the expected sum of rewards obtained by the agent when starting

in state s and following policy π: V π(s) = E
[

∑N

t=0R(st, at)|s0 = s, sN ∈ T, π
]

.

V π(s) : S → R is called a value function. For a given MDP, there exists an optimal

policy π∗ such that V π∗

(s) ≥ V π(s) for every s.

4 Daniel Urieli and Peter Stone

While V π∗

(s) is induced by the policy π∗, it also induces π∗. It can be shown that

π∗(s) = argmaxa∈A

∑

s′∈S R(s, a) + P (s, a, s′) · V π∗

(s′). Therefore, given V π∗

(s)
(andR, P), an agent can act optimally using a one-step look-ahead from any given state.

This is the premise of value function based RL. For a finite S, there are algorithms that

provably find V π∗

(s) and therefore the optimal policy. When S is infinite, in general

we can only compute an approximation V̂ π∗

(s) of the optimal value function, and the

best methodology to do so is still an open research problem. As RL does not need to

know the system dynamics (model) in advance, it is an appropriate approach to control

problems when the system dynamics are either unknown or partially known, and when

a system is controlled in an uncertain environment to which it needs to adapt.

2.2 The Challenge of Function Approximation

The choice of function approximator can be crucial to determining an RL algorithm’s

performance in control problems of the type we consider. We start by defining a suf-

ficient condition for a function approximator to induce the optimal policy. Denote

E[s′|sa][V
π∗

(s′)] :=
∑

s′∈S P (s, a, s′)·V π∗

(s′). In a given state s, let ǫs be the smallest

absolute difference between the expected values of states resulting from two different

actions taken from s, where one action is optimal and the other is sub-optimal:

ǫs := min
a∗,a∈A

a∗=π∗(s) is optimal
a is sub-optimal

{|E[s′|sa∗][V
π∗

(s′)] − E[s′|sa][V
π∗

(s′)]|} (1)

Suppose that the system is in state s0 and an action needs to be chosen.2 In general, if

the function approximator is able to approximate V π∗

(s) to within
ǫs0

2 , meaning

max
s∈S

|V̂ π∗

(s) − V π∗

(s)| <
ǫs0

2
(2)

then greedy action selection based on V̂ π∗

(s) is guaranteed to induce the optimal ac-

tion from s0, since:
3 E[s′|sa∗][V̂

π∗

(s′)]−E[s′|sa][V̂
π∗

(s′)] > E[s′|sa∗][V
π∗

(s′)−
ǫs0

2]−

E[s′|sa][V
π∗

(s′) +
ǫs0

2] ≥ ǫs0
−

ǫs0

2 −
ǫs0

2 = 0. When condition 2 holds for every state

s0 ∈ S, the function approximator induces the optimal action in every state, and there-

fore the optimal policy. When it does not hold in every state, the function approximator

may not induce the optimal policy.

Clearly, the smaller ǫs is, the harder it is to achieve the desired ǫs

2 function approx-

imation accuracy. Unfortunately, for the type of problems this paper is concerned with,

namely real-world, discrete-time continuous control problems, ǫs can in fact be small

for many states. This happens when the following two properties hold (for S := Rn):

– Actions have “small” effect: there exists some (relatively small) δ such that for

every s′, s′′ ∈ S that can result from taking actions at some state s ∈ S, it holds

2 Note that we assume the existence of a sub-optimal action, since otherwise there is no decision

of any consequence to be made, as all actions are optimal. Therefore ǫs > 0.
3 For simplicity of presentation, we neglect the 1-step reward, which could be incorporated into

Equation (1) in a straightforward way.

Model-Selection for Non-Parametric Function Approximation: A Case Study 5

that ||s′ − s′′|| < δ. This can happen, for instance, when the cycle time between

subsequent control actions is short compared to the problem’s horizon.

– The optimal value function is Lipschitz continuous: there exists some K > 0 such

that ∀s1, s2 ∈ S : ||V (s1)−V (s2)|| < K||s1−s2||. This holds, for instance, when
the reward and the transition functions are Lipschitz continuous.

Combining the two conditions, we get that ∀s ∈ S : ǫs < ||E[V (s′)]−E[V (s′′)]|| ≤
E[||V (s′)−V (s′′)||] < E[K||s′−s′′||] < Kδ, so that the smaller the action effect δ, the

smaller ǫs is for any state s, and so the harder it is to achieve the desired approximation

accuracy. In the results section we demonstrate how this results in repeated suboptimal

actions, degrading performance on our thermostat control task.

3 Approximating the Value Function

RL algorithms that are based on value function approximation can roughly be divided

intomodel-free algorithms, which are usually more computationally efficient, andmodel-

based algorithms, which are usually more data efficient. As we are motivated by real-

world problems, where gathering experience is often an expensive operation, we focus

here on model-based RL. In model-based RL, an RL agent first explores the environ-

ment and learns an approximate model of it (namely P and R). Using this model, the

agent simulates experiences and computes V̂ π∗

(s). Since in this paper we focus on

value-function approximation, we assume that an approximate model is either given, or

was already learned by the agent. For instance, in the results section, our RL agent first

learns an approximate model, and then uses it to compute V̂ π∗

(s).

3.1 Approximate Dynamic Programming

For computing V̂ π∗

(s), we start by using sampling-based Fitted Value Iteration (FVI) [6]

(a detailed overview of its roots can be found at [12]). FVI is an approximate dynamic

programming algorithm that computes V̂ π∗

(s) by repeatedly scanning a finite sample

of states SFV I := s(1), s(2), . . . , s(m), applying the following two steps:

∀i ∈ 1, . . . ,m (3)

y(i) := maxa

(

R(s(i), a) + γE[s′|s(i)a][V̂
π∗

(s′)]
)

V̂ π∗

(s) := SL
(

{〈s(i), y(i)〉|i ∈ 1, . . . ,m}
)

(4)

where V̂ π∗

(s(i)) is initialized arbitrarily; the expectation over the resulting state is ap-

proximated byMonte-Carlo sampling; and after each update scan, a supervised learning

algorithm SL is used as a function approximator that approximates the value function

over the complete state-space, based on the “labeled” examples 〈s(i), y(i)〉. While FVI

is not guaranteed to converge to V π∗

(s), it often performs well in practice, and is theo-

retically well-behaved [12]. In addition, FVI is an off-policy algorithm, which means it

can approximate an optimal policy before ever executing it.

6 Daniel Urieli and Peter Stone

3.2 Function Approximator

Inside FVI, the function approximator we use as SL is Locally Weighted Linear Re-

gression (LWR). LWR is a non-parametric, smooth function approximator that uses

only minimal representation assumptions, and that has been used successfully to model

complex real-world dynamics [13]. Given a set of m labeled examples (x(i), y(i)) and
a query point x for which we want to predict a value, our version of LWR does the

following:

1. w(i) := exp
(

− (x(i)−x)2

2τ

)

for i = 1, . . . ,m [compute a weight for each training example]

2. Fit θ that minimizes
∑m

i=1 w
(i)(y(i) − θTx(i))2 [use weights for weighted regression]

3. Output θTx

Here τ is a “bandwidth” parameter that determines how quickly the weights decay.

Small weights are typically truncated for computational efficiency reasons. Since the

weights w(i) depend on the specific query point, LWR builds a local model around the

query for every prediction it makes. Note that when used with FVI, x(i) := s(i), where

s(i) ∈ SFV I . In general, LWR results in smoother function approximation than sim-

pler non-parametric methods such as nearest-neighbors, which is a desirable property

for continuous control tasks. However, in general, LWR can extrapolate, and this can

prevent FVI from converging [6], so to ensure convergence we trim LWR’s predicted

value to be within the range defined by its neighbors values.

4 Efficient Model Selection

Like most learning algorithms, LWR usually needs to be tuned to work well for a par-

ticular problem. LWR is typically tuned by adjusting the values of the bandwidth pa-

rameter τ and of distance-metric-related parameters c1, . . . , cn, where ci is a scalar that

scales si, the i’th state attribute in a state s. Adjusting the values of c1, . . . , cn effec-

tively changes the distance metric based on the relative importance of state attributes.

While it is possible to make ci a general function ci : S → R rather than a scalar, we

take an approach of global tuning [2], in which ci is a scalar. This keeps the number

of LWR parameters at a total of n+ 1, so that tuning is more computationally efficient

and less susceptible to overfitting. A given set of parameter values is said to define a

model to be used by the LWR function approximator, and the process of tuning these

parameters is a form of model selection.4 The goal of our model-selection process is

to find a set of parameters, that when used by LWR inside FVI, results in a function

approximation that is close to the optimal value function.

When model-selection is done in a supervised learning setup, each candidate model

is typically evaluated using cross-validation. In our setup, using cross-validation by

holding out subsets of SFV I is problematic since (1) we don’t have the actual values

of states s ∈ SFV I as we have in supervised learning, but only the values that FVI

converges to, and (2) as SFV I is typically sparse (to keep the run-time of FVI accept-

able), having a good cross-validation accuracy on SFV I does not necessarily imply

4 Note that LWR’s model is different than, and should not be confused with, the MDP model.

Model-Selection for Non-Parametric Function Approximation: A Case Study 7

good prediction accuracy over the rest of the state space S \ SFV I . Therefore, we seek

an alternative model evaluation measure. The ideal way of evaluating a model is by

measuring the agent’s performance when acting based on a value function that uses this

model. However, evaluating the agent in the real-world with different models is often

prohibitively time-consuming and expensive. Therefore, we only use it as an empirical

upper-bound in our simulated domain.

Instead, we use a theoretically-founded model evaluation measure that is efficiently

computed in practice: the value-function’s empirical max Bellman error. In a given state

s, the absolute Bellman (optimality) error of a function V̂ : S → R is defined as:

BE
V̂

(s) := |V̂ (s) −maxa(R(s, a) + γE[s′|sa][V̂ (s′)])|

Next, for a function V̂ : S → R the following holds:

V̂ ≡ V π∗

⇐⇒ ∀s ∈ S : BE
V̂ (s) = 0 (5)

Furthermore, [21] (resp. [12]) establishes that for a full (resp. sample) Bellman backup:

|V π∗

(s) − V̂ (s)| ∝ BE
V̂

(s) (6)

Equations (5), (6) imply that ideally the Bellman error would be 0, or as close as possi-

ble to 0, for every state. Note that while the convergence of FVI means that ∀s ∈ SFV I :
BE

V̂ (s) ≈ 0, the Bellman error might still be large for states s ∈ S \SFV I . In order to

address that, we create a random sample of test states T := {t(1), ..., t(m
′)}, and define

a vector of Bellman errors (overloading notation):

BE
V̂

(T) := (BE
V̂

(t(1)), . . . , BE
V̂
t(m

′)) (7)

Motivated by Equations (5) (6), we use the max Bellman error ||BE
V̂

(T)||∞ as a

model-evaluation measure when tuning LWR’s parameters. This model evaluation mea-

sure is computed solely based on a value function computed by FVI, without needing

more data or interactions with the environment. Our model selection process then be-

comes a continuous optimization problem of finding a set of LWR parameters ψ ∈
R

n+1 that minimizes ||BE
V̂

(T)||∞ where V̂ is the resulting value function after run-

ning FVI with LWR using ψ. Ideally, the max Bellman error should be computed over

all states in the state space, however since the state-space in non-enumerable, we take

a practical approach and set T to be a (as dense as computationally possible) random

sample of states. In the results section we show that (a) minimizing ||BE
V̂

(T)||∞ is

correlated with good actual performance, and that (b) minimizing it can be done effi-

ciently.

Putting all of these components together, the main general contribution of the paper

beyond the domain-specific results is the MSNP algorithm (Model Selection for Non-

Parametric function approximation). As summarized in Algorithm 1, it executes the

following steps. The algorithm’s input is a learned MDP model, and an iterative contin-

uous optimization algorithm, that finds a minimum of a function F : R
n+1 → R. Since

we generally do not have the gradient of the Bellman error as a function of the LWR

parameter set, we use gradient free optimization algorithms in our experiments. An in-

teresting future extension would be comparing them with subgradient methods. MSNP

8 Daniel Urieli and Peter Stone

starts by generating a sample S of states for FVI (step 1) and a sample of test states T
over which it would compute the max Bellman Error (step 2). It then initializes a vector

v of Bellman Errors (step 3) and a vector of LWR parameters ψ (step 5). In the main

loop, it repeatedly runs the following steps until the max Bellman Error converges: run

FVI (step 8), compute the resulting max Bellman Error (step 9-11), send it back to the

optimization algorithm as the evaluation of the current parameter set (step 15), and get

from the optimization algorithm a new set of LWR parameters to evaluate (steps 16-17).

Algorithm 1 MSNP(MDP-Model, OptimizationAlgorithm)

1: S ← {s(1), s(2), . . . , s(m)} the set of points used by FittedValueIteration

2: T ← {t(1), s(2), . . . , t(m
′)} test points sampled within the boundaries of S

3: v← {∞, . . . ,∞} ∈ Rm
′

4: PreviousError←∞
5: ψ ← OptimizationAlgorithm.initializeParameters()

6: done← False

7: while not done do

8: V̂ ← FittedV alueIteration(MDP-Model,S, ψ) // approximate value function

9: for i = 1→ m′ do

10: vi ← BE
V̂

(t(i)) // the Bellman error in t(i)

11: end for

12: MaxBellmanError← ||v||∞
13: if |MaxBellmanError - PreviousError| < ǫ then

14: done← True

15: else

16: OptimizationAlgorithm.observe(MaxBellmanError)

17: ∆ψ ← OptimizationAlgorithm.step()

18: ψ ← ψ +∆ψ

19: PreviousError←MaxBellmanError

20: end if

21: end while

MSNP is an efficient algorithm for approximating the value function in continuous

state spaces, that uses our model-selection procedure for tuning a Fitted Value Iteration

with Locally Weighted Linear Regression, and which has the following properties:

1. General: It uses only minimal assumptions about a value function’s representation,

by using an non-parametric function approximator (LWR).
2. Practical: It tunes the representation of the LWR function approximator without

the need to evaluate the agent in the environment but rather based on an internal

property of the value function, namely the Max Bellman Error. In that sense, it is

data efficient.
3. Adaptive: It tunes online the function approximator’s representation to the environ-

ment it is deployed in.
4. Effectively use computation: Its model selection procedure achieves better perfor-

mance than when using the same amount of computation on a larger SFV I sample

without any model-selection.

Model-Selection for Non-Parametric Function Approximation: A Case Study 9

5 Results

In this section we investigate the application of MSNP to the task of controlling an

HVAC’s thermostat in a realistically simulated home.

5.1 Experimental Setup

Our experiments are run using GridLAB-D5, an open-source smart-grid simulator that

was developed for the U.S. Dept. of Energy. It models a residential home, including

heat gains and losses and the effects of thermal mass, as a function of weather (tem-

perature and solar radiation), occupant behavior (thermostat settings and internal heat

gains from appliances), and heating/cooling system efficiencies. It uses meteorological

data collected by the National Renewable Energy Laboratory6 in cities across the USA.

In our experiments, GridLAB-D simulates a residential home with a heat-pump based

HVAC system, which is widely used due to its high efficiency.

We assume that occupants are at home between 6pm and 7am of the next day, and

that the house is empty between 7am and 6pm (referred to as the don’t-care period). Our

goal is to (1) minimize the energy consumed by the HVAC system, while (2) keeping a

desired temperature range of 69-75◦(F) when the occupants are at home, and being in-

different to temperature otherwise (Figure 1). Due to uncertainty in future weather and

in the house’s environment, simple strategies fail to satisfy at least one of the require-

ments. For instance, turning the system off at 7am and turning it back on at a fixed time,

such as 6pm, or even earlier, can fail to satisfy both requirements in cold winter days,

since the temperature gets significantly out of range at 6pm and restoring it might take

several hours, during which comfort is violated. Moreover, while doing so, an energy

expensive auxiliary heater is used (since the heat-pump becomes inefficient), and the

resulting energy is higher than when just keeping the temperature between 69-75◦(F)
throughout the day. We model the problem as an episodic MDP7, as follows:

Fig. 1. Temperature Requirements Specification.

5 http://www.gridlabd.org
6 http://www.nrel.gov

http://www.gridlabd.org
http://www.nrel.gov

10 Daniel Urieli and Peter Stone

– S: {〈Tin, Tout, T ime〉| Tin and Tout are the indoor and outdoor air temperatures

(in Fahrenheit), and Time is a 24-hour clock time (in minutes).}
– A: {COOL, OFF, HEAT, AUX}. Namely, there are four possible actions for cooling,

off, (heat-pump-)heating and auxiliary heating, respectively.

– P: computed by the GridLAB-D simulator and is initially unknown to the agent.

– R: −(the energy consumed by the last action) −C6pm. Here, C6pm is a quadratic

cost applied when missing the temperature spec at 6pm.

– T: {s ∈ S|s.time == 23:59pm}

For testing the MSNP algorithm, we build a full RL agent that controls the ther-

mostat. Since our focus is on value function approximation, we leave the problem of

sample-efficient exploration and model-learning outside the scope of this work. In-

stead, to cover diverse weather conditions, the agent explores during don’t-care peri-

ods of one simulated year, where the OFF action is chosen with probability of (1 −
currentT ime−7am

6pm−7am
). Otherwise, cooling or heating is chosen, depending on whether the

indoor temperature high or low, respectively. If heating is chosen, then HEAT or AUX

are chosen with probabilities 0.9 and 0.1 respectively. While exploring, the agent col-

lects tuples of the form 〈s, a, r, s′〉, which are the current state, action, reward, and next
state. The agent uses these tuples as labeled examples 〈s, a〉 → r and 〈s, a〉 → s′ for fit-

ting the functions R and P with linear regression using state features and their squares,

where s is represented as 〈1, Tin, Tout, T ime, Tin
2, Tout

2, T ime2〉. This representation
was chosen based on a small amount of trial and error. Adding the squares was intu-

itively aimed at addressing non-linearity in the transition, to some extent. Using P and

R, the agent runs MSNP and acts greedily based on V̂ π∗

for an additional year.8 Inside

MSNP, FVI uses a state sample SFV I arranged as a grid inside the three-dimensional

state space, of size 20x10x20=4000. For running LWR inside FVI we use the 15-nearest

neighbors, and the grid structure allows us to find them in constant time.

5.2 Sensitivity to Errors in Function Approximation

Figure 2 demonstrates the difficulty of value function approximation in continuous do-

mains with short actions, using the thermostat control task. The x-axis is the 24-hour

time of day and the y-axis is the indoor temperature controlled by the actions of the

agent, who acts greedily based on an approximate value function. The agent turns the

system off during the don’t-care period, letting the temperature rise, and eventually

cools in advance to return the temperature back to range by 6pm. However before start-

ing to cool, there are several heating actions that are physically wrong, chosen due to

small approximation errors in the value function, in this case due to using LWR without

tuning its parameters. Each suboptimal 2-minute action increases the daily consumption

by only about 0.1%, but repeatedly taking them can increase consumption by 10% and

more. These suboptimalities and more severe ones happened when using discretized

7 An action is taken every 2 minutes, as the simulator models a realistic lockout of the system.
8 In practice, Gridlab-D only has one year of ”average” weather data. We therefore used 9 of

every 10 days during the training year, and the remaining days during the testing year so as

to have separate training and testing data. Our reported results reflect the average of repeating

this experiment 10 times with each different possible subset of ”held-out” days.

Model-Selection for Non-Parametric Function Approximation: A Case Study 11

representations as well as linear value-function representations with reasonable fea-

tures.

Fig. 2. Suboptimal policy due to func. approximation errors.

5.3 Using the Max Bellman Error for Model-Selection

Next, we investigate using the Bellman error as a criterion for model-selection of our

LWR function approximator. The plots in Figure 3 show the correlation between empir-

ical Bellman error in the approximate value function V̂ π∗

and the agent’s performance

when acting based on V̂ π∗

. The plots summarize 10,000 experiments, each represented

as a point. Each experiment tests a set of n+1 LWR parameters, which defines a model

used by LWR, as was discussed in Section 4. In the thermostat domain there are three

state attributes, and therefore four model parameters. We sweep the parameter space by

setting each parameter to one of 10 possible values, and this gives 10× 10× 10× 10 =
10,000 possible parameter sets. The empirical Bellman errors were measured as the L1,

L2 or L∞ norms of the vector of Bellman errors in V̂ π∗

over a uniformly random sam-

ple of |T | = 256, 000 states. It can be seen that when theL1 and L∞ errors are smallest,

performance is expected to be close to the best possible (lowest energy consumption).

The same does not hold for the L2 error, as minimizing the L2 error results in con-

suming 4% more energy than the best result. Note that in general these plots clearly

highlight the need for model-parameters tuning, as untuned parameters can consume

about 25% more energy than the best possible parameters.

5.4 Efficiently Optimizing the Bellman Error

The previous section tested the first of two steps for creating an efficient model-selection

algorithm. We saw that model-selection, or representation tuning, of the LWR function

approximator can be done without the need to evaluate an agent in the environment, but

12 Daniel Urieli and Peter Stone

10
4

10
6

10
8

10
10

0.9

1

1.1

1.2

1.3
x 10

7

L
1
 Bellman Error

E
n

e
rg

y
 (

k
W

h
)

10
2

10
4

10
6

10
8

0.9

1

1.1

1.2

1.3
x 10

7

L
2
 Bellman Error

E
n

e
rg

y
 (

k
W

h
)

10
0

10
2

10
4

10
6

0.9

1

1.1

1.2

1.3
x 10

7

L
∞

 Bellman Error

E
n

e
rg

y
 (

k
W

h
)

8.5 9 9.5 10

x 10
4

0.95

1

1.05

1.1
x 10

7

L
1
 Bellman Error

E
n

e
rg

y
 (

k
W

h
)

350 400 450 500
0.95

1

1.05

1.1
x 10

7

L
2
 Bellman Error

E
n

e
rg

y
 (

k
W

h
)

9 10 11 12
0.96

0.98

1

1.02

1.04
x 10

7

L
∞

 Bellman Error

E
n

e
rg

y
 (

k
W

h
)

Fig. 3. Bellman errors (x-axes) vs. actual performance (y-axes, lower is better). Top row: full

plots. Bottom row: zoom into the bottom-left corner (best performance) of each top row plot.

rather based on an internal property of the value function, namely theL∞ orL1 Bellman

errors, so in that sense it is data efficient. Next, we show that tuning the model param-

eters based on the max Bellman error can be done computationally efficiently. Note

that once using the Bellman error for model evaluation, our model-selection problem

becomes minimizing an objective function that maps an LWR parameter set to the max

Bellman error in V̂ π∗

computed using this parameter set by FVI with LWR. We com-

pare several efficient local-search derivative-free algorithms for finding the minimum of

a continuous function.9 The algorithms we compare are Powell’s method, Nelder–Mead

method, also known as Amoeba, and a coordinate-descent algorithm in which we hold

all parameters fixed and optimize one parameter at a time using Brent’s method, using

implementations from [17]. Results are shown in Figure 4. The horizontal gray line in

the figure is the best max Bellman error that was achieved when using an offline, state-

of-the-art, parallel optimization algorithm CMA-ES [7], when running it with 10,000

function evaluations (100 generations with a population-size of 100). It can be seen that

after about 30 function evaluations all three methods get close to CMA-ES’s value, and

that the Brent’s method-based coordinate-descent reaches there after about 15 function

evaluations. Our FVI implementation converges in less than 2-minutes on a standard

desktop machine, so that 15-30 function evaluations takes 30-60 minutes.

How robust is running local optimization for finding a global minimum of the max

Bellman Error? To try to answer this question, we fixed the parameter values at c1 =
c2 = c3 = 0.5, τ = 0.0005, and then changed one parameter at a time across its range

(ci ∈ [0.05, 1], τ ∈ [0.00005, 0.0010]) measuring the max Bellman error as a function

of this parameter, where as usual, the max Bellman error was computed over the value

function computed using FVI with LWR. Results are in Figure 5, and show that while

the max Bellman error is not a convex function of representation parameters, it still has

a relatively large basin of convergence.

9 In general we do not have derivative information for the optimized function

Model-Selection for Non-Parametric Function Approximation: A Case Study 13

0 10 20 30 40
0

10

20

30

40

50

60

iteration #

M
a

x
 B

e
llm

a
n

 E
rr

o
r

Brent
Amoeba
Powell

Fig. 4. Comparing different optimization algorithms on the task of finding a parameter set that

minimizes the max Bellman error.

0 2 4 6 8 10 12 14 16 18 20
55

60

65

70

75

80

85

90

95

100

Tau scaling

M
a
x
 B

e
llm

a
n
 E

rr
o
r

0 2 4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

3000

3500

4000

Tin scaling

M
a
x
 B

e
llm

a
n
 E

rr
o
r

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

350

400

450

Tout scaling

M
a
x
 B

e
llm

a
n
 E

rr
o
r

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7
x 10

4

Time scaling

M
a
x
 B

e
llm

a
n
 E

rr
o
r

Fig. 5. Bellman Error basin of convergence: Bellman Error (y-axis) as a function of each LWR pa-

rameter, holding all the other parameters fixed. The x-axes from left to right: τ, cTin
, cTout

, cTime

5.5 Performance of MSNP

Finally, Table 1 demonstrates the advantage of using MSNP, by testing it on our ther-

mostat control problem. In these experiments, we use our RL agent, changing only the

way the value function is approximated. The table shows the energy consumed by the

HVAC system over one simulated year, in which the agent acts greedily based on each

of the different approximate value functions. Simulations were run using real weather

files from three different cities in the US. As a reference, the “Default” column shows

the results of using a default heat-pump thermostat strategy that is used in real-world

deployments, which just keeps the temperature between 69-75◦(F) throughout the day.
This strategy does not shut down the system during the don’t-care period, since do-

ing so without knowing how long in advance to turn the system back on can result

in violating either or both requirements (1) and (2), as discussed above. The “Large-

Sample” column was generated when using FVI with LWR to approximate the value

function, but instead of using the model-selection like MSNP does, the agent spends the

same amount of computation on just running FVI with LWR on a larger state sample

SFV I of 160x80x160=2048000 states without any model selection, and using default

values for the LWR parameters, similar to the values used in Section 5.4: ci = 0.5 for

i = 1, ..., n and τ = 0.0005.10 MSNP was run using a state sample SFV I of 20x10x20

states and used |T | = 256, 000 states for computing the Bellman error, so that its

10 The “LargeSample” results are actually slightly better than they should be because they did

not use the 9 days of 10 methodology referenced in footnote8. It was trained on the full year

of data.

14 Daniel Urieli and Peter Stone

computation time, dominated by the number of LWR predictions was no larger than

that of LargeSample’s. The “CMA-ES” column serves as an empirical upper-bound on

performance in our simulated domain. It was generated by running the state-of-the-art

CMA-ES optimization method to perform model selection on top of FVI with LWR,

using (1) 10,000 model evaluations (100 generations, each with a population size of

100), and (2) a clairvoyant model-evaluator that returns the agent’s actual future per-

formance using a given model, by running a one-year simulation using this model. It

can be seen that MSNP performs better than “LargeSample”, which demonstrates that

online model-selection has an advantage over just increasing the density of the sample

size. MSNP’s performance is close to that of CMA-ES’s, despite the fact that it uses only

40 function evaluations (instead of 10,000) and doesn’t have access to the “real” model

evaluation measure of the unknown future performance, that CMA-ES has. Note that

while the MSNP and CMA-ES agents satisfied the temperature comfort requirements,

the LargeSample agent frequently did not satisfy them. In Figure 6 we demonstrate

how the RL agent controls the temperature in mild and extreme winter/summer days.

Table 1. Performance of an agent using MSNP

City Default (kWh) LargeSample (kWh) MSNP (kWh) CMA-ES (kWh) % Energy-Savings

New York City 11084.8 10923.5 9859.3 9816.3 11.0%

Boston 12277.1 12480.7 11433.6 11052.8 6.9%

Chicago 15172.5 14778.2 14186 13778.4 6.5%

Fig. 6. Our agent controlling the temperature in a house in New York City area, in mild and hot

summer days (top-left and top right, respectively), and mild and extreme winter days (bottom-left

and bottom-right, respectively).

Model-Selection for Non-Parametric Function Approximation: A Case Study 15

6 Related Work

RL has been applied to realistic control tasks, however recent successes frequently used

policy search methods, rather than value-function-based methods(e.g. [13,9,3]). Value

function based RL has had success on some robotic tasks [15], but there the assumption

was that the value function can be represented as a predetermined set of basis functions,

an assumption that does not necessarily hold in the general case. Non-parametric value

function approximation methods have been suggested, e.g. in [4]. The idea of using the

Bellman error as a criterion for optimization has been used by algorithms implement-

ing generalized policy iteration, e.g. in [10,1]. The Bellman error has also been used for

tuning and generating basis functions adaptation in linear function approximation ar-

chitectures [11,8,14], while here we use it to tune a non-parametric representation. The

model selection proposed here is different then the model selection done by [13]. There,

the setup was offline, supervised learning for learning the transition function, while ours

is an online reinforcement learning setup, for approximating the value function, where

there are no labels over the data, but only the values to which FVI converge to, which

could be different then the real state values. A paper that is closely related to ours is [5],

which designs an abstract model-selection algorithm and proves theoretical guarantees

about it. Similarly to here, they consider batch RL, in which a data set D of sampled

transitions from the MDP is given, and is used for selecting a candidate value function

by minimizing a Bellman error. In their case they abstract the way value function can-

didates are generated and assume they are independent of D, while here we actually

useD to approximate the model and generate candidates using MSNP. Their theoretical

guarantees are proved under a slightly different setup, and it would be interesting to

explore whether they can be extended to our setup. The problem of thermostat control

was addressed in [20], but there the focus was on solving the complete RL problem,

including exploration, model learning and planning, and no value function approxima-

tion was used, while here the focus is on investigating the application of value-function

based RL to the continuous, realistic domain of HVAC thermostat control.

7 Conclusion

This paper presents the application of value-function-based RL to the real-world smart-

energy application of controlling an HVAC thermostat to minimize energy consumption

while satisfying temperature comfort requirements, along with detailed empirical re-

sults and analysis. In addition, the paper introduces MSNP, which is a general, practical

algorithm for approximating the value function for continuous control problems, using

an efficient model-selection procedure based on the Bellman error.

This paper opens up several interesting directions for future work. For example, it is

worth investigating the Bellman error’s basin of convergence as a function of the model-

parameters. Another interesting direction is exploring the use of subgradient methods

for minimizing the Bellman error, and comparing them with the gradient-free methods

we used. Finally, an important future direction is to expand MSNP’s empirical analy-

sis by including more domains and competing methods, and to evaluate it in higher-

dimensional state spaces.

16 Daniel Urieli and Peter Stone

References

1. Antos, A., Szepesvári, C., Munos, R.: Learning near-optimal policies with bellman-residual

minimization based fitted policy iteration and a single sample path. Mach. Learn. 71(1), 89–

129 (Apr 2008)

2. Atkeson, C.G., Moore, A.W., Schaal, S.: locally weighted learning (1997)

3. Deisenroth, M.P., Rasmussen, C.E.: PILCO: A Model-Based and Data-Efficient Approach

to Policy Search. In: Getoor, L., Scheffer, T. (eds.) Proceedings of the 28th International

Conference on Machine Learning. Bellevue, WA, USA (June 2011)

4. Engel, Y., Mannor, S., Meir, R.: Reinforcement learning with gaussian processes. In: In Proc.

of the 22nd International Conference on Machine Learning. pp. 201–208. ACM Press (2005)

5. Farahmand, A.M., Szepesvári, C.: Model selection in reinforcement learning. Mach. Learn.

85(3), 299–332 (Dec 2011)

6. Gordon, G.J.: Stable function approximation in dynamic programming. In: in Machine

Learning: Proceedings of the Twelfth International Conference. Morgan Kaufmann (1995)

7. Hansen, N.: The CMA Evolution Strategy: A Tutorial (January 2009)

8. Keller, P.W., Mannor, S., Precup, D.: Automatic basis function construction for approximate

dynamic programming and reinforcement learning. In: Proceedings of the 23rd international

conference onMachine learning. pp. 449–456. ICML ’06, ACM, NewYork, NY, USA (2006)

9. Kohl, N., Stone, P.: Machine learning for fast quadrupedal locomotion. In: The Nineteenth

National Conference on Artificial Intelligence. pp. 611–616 (July 2004)

10. Lagoudakis, M.G., Parr, R.: Least-squares policy iteration. J. Mach. Learn. Res. 4, 1107–

1149 (Dec 2003)

11. Menache, I., Mannor, S., Shimkin, N.: Basis function adaptation in temporal difference rein-

forcement learning. Annals of Operations Research 134, 215–238 (2005)

12. Munos, R., Szepesvári, C.: Finite time bounds for sampling based fitted value iteration. In:

ICML. pp. 881—886 (2005)

13. Ng, A.Y., Kim, H.J., Jordan, M.I., Sastry, S.: Autonomous helicopter flight via reinforce-

ment learning. In: Thrun, S., Saul, L., Schölkopf, B. (eds.) Advances in Neural Information

Processing Systems 16. MIT Press, Cambridge, MA (2004)

14. Parr, R., Painter-Wakefield, C., Li, L., Littman, M.: Analyzing feature generation for value-

function approximation. In: Proceedings of the 24th international conference on Machine

learning. pp. 737–744. ICML ’07, ACM, New York, NY, USA (2007)

15. Peters, J., Schaal, S.: Natural actor-critic. Neurocomputing 71(79), 1180 – 1190 (2008)

16. Powell, W.B.: Approximate Dynamic Programming: Solving the Curses of Dimensionality,

2nd Edition. Wiley (2011)

17. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes 3rd Edi-

tion: The Art of Scientific Computing. Cambridge University Press, New York, NY, USA, 3

edn. (2007)

18. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming.

John Wiley & Sons, Inc., New York, NY, USA, 1st edn. (1994)

19. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge,

MA (1998)

20. Urieli, D., Stone, P.: A learning agent for heat-pump thermostat control. In: Proceedings of

the 12th International Conference on Autonomous Agents and Multiagent Systems (AA-

MAS) (May 2013)

21. Williams, R.J., Baird, III, L.C.: Tight performance bounds on greedy policies based on imper-

fect value functions. In: Proceedings of the Tenth Yale Workshop on Adaptive and Learning

Systems (1994), available at http://leemon.com/papers/1994wb.pdf

http://leemon.com/papers/1994wb.pdf

	Model-Selection for Non-Parametric Function Approximation in Continuous Control Problems: A Case Study in a Smart Energy System
	Introduction
	Preliminaries
	Reinforcement Learning
	The Challenge of Function Approximation

	Approximating the Value Function
	Approximate Dynamic Programming
	Function Approximator

	Efficient Model Selection
	Results
	Experimental Setup
	Sensitivity to Errors in Function Approximation
	Using the Max Bellman Error for Model-Selection
	Efficiently Optimizing the Bellman Error
	Performance of MSNP

	Related Work
	Conclusion

