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ABSTRACT
This paper considers the challenge of enabling agents to
learn with as little domain-specific knowledge as possible.
The main contribution is HyperNEAT-GGP, a HyperNEAT-
based General Game Playing approach to Atari games. By
leveraging the geometric regularities present in the Atari
game screen, HyperNEAT effectively evolves policies for play-
ing two different Atari games, Asterix and Freeway. Results
show that HyperNEAT-GGP outperforms existing bench-
marks on these games. HyperNEAT-GGP represents a step
towards the ambitious goal of creating an agent capable of
learning and seamlessly transitioning between many differ-
ent tasks.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning, Intelligent Agents

General Terms
Algorithms, Experimentation, Performance

Keywords
HyperNEAT, General Game Playing, Atari, Learning Agents,
Neuroevolution

1. INTRODUCTION
A major challenge for AI is to develop agents that can

learn and perform many different tasks. To this end, this
paper aims at developing a learning agent capable of play-
ing a large number of games with as little domain specific
knowledge as possible. Famous game playing AI systems
such as Deep Blue for chess [1], Watson for Jeopardy [6],
and TD-Gammon for backgammon [17] all demonstrate that
with enough manpower and ingenuity it is possible to tackle
AI challenges that may have previously seemed insurmount-
able. Unlike these game intelligences which were created and
tuned specifically for a single task, the game playing agent
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Figure 1: Freeway and Asterix, two of the many games
available for the Atari 2600.

described herein must be general enough to tackle many dif-
ferent Atari 2600 games. This requires general intelligence
to be built into the agent itself rather than just imparted
by the programmer of the agent in the form of clever single-
purpose algorithms.

This work focuses on learning to play Atari 2600 games,
a middle ground between classic board games and newer,
graphically intensive video games. The Atari 2600 includes
many different games, including complex ones such as chess
and checkers, yet lacks the complex 3-D graphics of newer
video games. Like traditional board games, the Atari pro-
vides opportunities for agents to benefit from a solid under-
standing of the game’s dynamics and allows for careful plan-
ning while at the same time incorporating simple visual rep-
resentations that can be processed and interpreted. Dynam-
ics of Atari games vary wildly from Checkers to Space In-
vaders, necessitating the use of general learning algorithms.

Despite the variability of game dynamics, all Atari games
share a standard interface designed for humans to inter-
act with and enjoy. Game state is conveyed to the player
through a 2D game screen, and in response, the player con-
trols game elements by manipulating a joystick and pressing
a single button. This standard interface, combined with the
large number of available games, makes Atari a convenient
platform for AI researchers.

This paper presents HyperNEAT-GGP, an agent which
uses an evolutionary algorithm called Hypercube-based Neu-
roEvolution of Augmenting Topologies (HyperNEAT) [7].
Unlike most other approaches, HyperNEAT is capable of
exploiting geometric regularities present in the 2D game
screen in order to evolve highly effective game playing poli-
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cies. This paper applies HyperNEAT-GGP to the two Atari
games shown in Figure 1, Freeway and Asterix.
The next section contains related work. Section 3 dis-

cusses the merits of the Atari 2600 console as a research
platform and describes the two games used in this paper.
Section 4 covers the basics of HyperNEAT and how it is
able to take advantage of game geometry. Next, Section 5
presents our visual processing architecture and parallel com-
puting framework. Experiments are presented in Section 6,
followed by future work and conclusions.

2. RELATED WORK
The study of general intelligence through the development

of general game playing agents is not unique to this paper.
Organizers in the field of General Game Playing (GGP) hold
annual competitions for general game playing agents [8].
These agents are typically given a declarative description
of an arbitrary game including a complete description of the
game dynamics. They have no prior knowledge of this de-
scription and must formulate strategies to play this game on
the fly. Unlike specialized game players, general game play-
ing agents cannot rely on algorithms designed in advance
for specific games. Successful agents typically incorporate
artificial intelligence technologies such as knowledge repre-
sentation, reasoning, learning, rational decision making and
automatic theorem proving.
While motivations are similar, the work reported in this

paper differs from GGP in that Atari games are not formal-
ized in such an abstract representation. Atari games con-
vey state through a visual representation, and the dynamics
of the game must first be learned before strategies can be
formulated. Additionally, HyperNEAT-GGP currently only
considers single player games as opposed to GGP players
who compete against each other.
Another class of game playing agents is found at the an-

nual Ms. Pac-Man competition. Like HyperNEAT-GGP,
Ms. Pac-Man agents utilize actual screen representations [9]
and must deal with non-determinism introduced by delays
in processing the game screen. Successful entries in this
competition have now far exceeded novice human players
[10]. HyperNEAT-GGP uses an approach similar to the Ms.
Pac-Man agents in that both agents extract objects from the
game screen. However, the object detection and game play-
ing machinery used by HyperNEAT-GGP must be generally
applicable enough to handle multiple games rather than spe-
cialized toward a single game such as Ms. Pac-Man.
In 3D environments, backpropagation and Lamarckian

neuroevolution were used to train a neural network visual
controller for agents in the Quake II environment [12]. In
order to process the 3D game screen, the agents used an ar-
tificial retina consisting of 28 grayscale blocks arranged into
a grid spanning the width of the game screen. Like the hu-
man retina, more blocks were clustered near the center of
the visual field to allow the agent to better recognize if the
target was directly ahead. The resulting agent was able to
navigate a room with a large central pillar, seek out an en-
emy, and shoot it. However, how these techniques could be
used to implement general game playing was not addressed.
To the best of the authors’ knowledge, the first work on

Atari game playing was an R-Max learning agent which em-
ployed an Object-oriented MDP representation [4]. Objects
were detected in the game screen of the popular Atari game,
Pitfall. The agent was able to make it past the first screen.

Subsequent work on learning in Atari games includes that
of Naddaf [11]. Naddaf modified the popular Atari 2600 em-
ulator, Stella, in order to allow it to be easily controlled by
computer programs such as learning agents. Naddaf quan-
tified the performance of several reinforcement learning and
search agents over 50 different Atari games. Reinforcement
learning agents included a gradient descent Sarsa(λ) agent
with linear function approximation, capable of learning from
feature vectors generated from either the game screen or the
console RAM. Search tree agents include full tree search and
UCT-based agents. Also motivated by the desire to create
general game playing agents, Naddaf compiled experimental
results of RL and search tree agents in over 50 Atari games.
More than just a experimental benchmark, this work served
as the inspiration for much of the visual processing described
in Section 5.

Learning to play games based on overhead representations
has been previously attempted by Verbancsics and Stan-
ley [18] who focused on the RoboCup Keepaway Soccer do-
main [14]. In this domain a number of keeper agents must
maneuver and pass a soccer ball so that it is not captured
by one of the taker agents. Verbancsics and Stanley en-
code the state of the game using an overhead representation
of the objects on the playing field – namely the keepers,
takers, and the ball. HyperNEAT is used to exploit the geo-
metric regularities present in this overhead representation of
the field. The learned policy is competitive with top learn-
ing algorithms for this task [15]. Additionally, the learned
policy can be effectively transferred with no further learn-
ing to the same task at a higher resolution or a different
number of players on the field. This successful transfer is a
result of the indirect encoding of HyperNEAT. HyperNEAT
has also been successfully applied to other domains such as
checkers [7], multi-agent predator prey [3], and quadruped
locomotion [2].

While HyperNEAT-GGP is quite similar to Verbancsics
and Stanley’s approach, in many ways Atari games represent
a more challenging learning target than RoboCup Keepaway.
In Keepaway there are a fixed number of object classes such
as takers, keepers, and the ball. On the other hand, Atari
games may contain an arbitrary number of object classes
that interact with each other in unexpected ways, requiring
HyperNEAT-GGP to be more general. Additionally, the
dynamics in any given Atari game are highly variable, rang-
ing from simple games in which the agent must reach the
goal while avoiding cars to highly complex games in which
the agent must shoot fish while attempting to rescue five
swimmers, all before the oxygen in the player’s submarine is
depleted. Though this paper only demonstrates results on
two of the many Atari games, the successful results represent
an important step towards the long-term goal of testing the
approach on, and refining it to generalize to, the full range
of Atari games.

3. ATARI FOR RESEARCH
The Atari 2600 video game console was released in Octo-

ber 1977. It was the first console to create game cartridges
that decoupled game code from console hardware (previous
devices all contained dedicated hardware with games already
built in). Selling over 30 million consoles [5], Atari was con-
sidered wildly successful as an entertainment device. Today,
while Atari is no longer at the forefront of entertainment,
the console has good research potential for three reasons:



First, the Atari console has a large collection of games.
These games vary greatly from board games such as chess
to action-exploration games like Pitfall to shooting games
such as Asteroids and Space Invaders. Many games have
support for a second player, opening the possibility of multi-
agent learning. Having such a large number of games allows
AI researchers to develop a single learning agent and then
quickly and easily apply it to a large set of domains, facili-
tating the development of general game playing agents.
Second, a number of open-source Atari emulators exist, in-

cluding projects such as Atari Learning Environment (ALE)1

that are designed specifically to accommodate learning agents.
Furthermore, since the Atari 2600 CPU ran at 1.19 mega-
hertz, modern emulators can run at high speeds of up to
2000 frames per second, expediting the evaluation of agents
and algorithms.
Third, the Atari state and action interface is simple enough

for learning agents, but complex enough to control many dif-
ferent games. The state of an Atari game can be described
relatively simply by its 2D graphics (containing between 8
and 256 colors depending on the color mode and a native
resolution of 160 × 210), elementary sound effects, and 128
bytes of console RAM. The discrete action space for Atari
consists of eight directions of movement for the joystick (up,
down, left, right, up&left, up&right, etc) as well as a single
button. This button can be pressed alone or simultaneously
with any of the joystick movements. Including NO-OP (no
action), this yields a total of 18 possible actions.
This work evaluates two Atari 2600 games – Freeway and

Asterix. The objectives and controls of these games are as
follows: In Freeway the player controls a chicken as it crosses
a ten lane highway filled with traffic in an effort to “get to
the other side.” The chicken is allowed to move only up,
down, or remain in place. Colliding with a car results in the
chicken being thrown a distance towards the bottom of the
screen. Each time a chicken reaches the top of the screen, the
player is rewarded a point and the chicken respawns at the
bottom of the screen. Gameplay continues for two minutes
and sixteen seconds.
In Asterix the player controls a unit called Asterix in his

quest to collect as many objects as possible while avoiding
deadly lyres. Asterix can move in any of the four cardinal
directions and receives 50 score whenever he collects a magic
potion. Asterix loses a life when he touches a lyre and when
Asterix has exhausted his supply of lives the game ends.
Lyres and collectible objects spawn along the edges of the
screen and move horizontally. Objects gain speed as the
game progresses, necessitating quick reflexes and decisions.
Freeway and Asterix were selected as representative Atari

2600 games because their game dynamics were sufficiently
different from each other, and both have been studied in the
past [11].
Having motivated the Atari as a suitable research platform

for the development of general game playing agents, the next
challenge is developing a capable HyperNEAT-based learn-
ing agent.

4. HYPERNEAT
This section reviews the fundamentals of the HyperNEAT

learning algorithm. HyperNEAT is an extension of the Neuro
Evolution of Augmenting Topologies (NEAT) algorithm [13].

1http://yavar.naddaf.name/ale/

NEAT evolves the topology and weights of an Artificial Neu-
ral Network (ANN) that is applied directly to the problem
of interest. In contrast, HyperNEAT, introduced by Gauci
and Stanley [7], evolves an indirect encoding called a Com-
positional Pattern Producing Network (CPPN). The CPPN
is then used to define the weights of an ANN that produces
a solution for the problem. Furthermore, because the CPPN
is aware of domain geometry, the ANN it encodes implicitly
contains knowledge about geometric relationships present in
a given domain. In comparison to standard NEAT, Hyper-
NEAT’s encoding allows it to take advantage of geometric
regularities present in many board and 2D games, such as
those in Atari 2600.

Specifically, HyperNEAT works in four stages:

1. The weights and topology of the CPPN are evolved.
Internally a CPPN consists of functions such as Gaus-
sians and sinusoids connected in a weighted topology
(see Figure 2).

2. The CPPN is used to determine the weights for every
pair of (input,output) nodes in a fully connected ANN.

3. With fully specified weights, the ANN is applied to
the problem of interest. The performance of the ANN
determines the fitness of the CPPN that generates it.

4. Based on fitness scores, the population of CPPNs is
maintained, evaluated, and evolved via NEAT.

Figure 2: HyperNEAT evolves the weights and topology of
a CPPN (right). This CPPN is subsequently used to deter-
mine all of the weights between substrate nodes in the ANN
(left). Finally, the ANN is used to compute the solution to
the desired problem. CPPNs are said to be geometrically
aware because when they compute the weights of the associ-
ated ANN, they are given as input the x,y location of both
the input and output node in the ANN. Figure duplicated
from [18].

The ANN’s input representation will be discussed further
in Section 5.3. For more information on HyperNEAT, refer
to [7].

5. APPROACH
This section describes the components of HyperNEAT-

GGP. The main points are the manner in which the raw
Atari game screen is processed, the self-agent is identified,
and HyperNEAT is interfaced with the detected objects.



Figure 3: Visual Processing Architecture applied to the game Freeway. Raw pixels from the game screen are displayed on
the left. Next, contiguous pixels of the same color are merged into blobs. Objects are then extracted by merging adjacent
blobs which exhibit constant velocity over the last two frames. Next, objects are clustered into object classes based on a pixel
similarity score. Three main object classes are found – cars facing left, cars facing right, and the chicken. This approach is
similar to that of Naddaf [11]. Finally, self detection successfully identifies the chicken blob as the agent and colors it gray
(circled in a red dashed line in rightmost screen).

5.1 Visual Processing
For nearly any machine learning problem, the question

of how to encode the state space is of great importance.
Similar to Verbancsics and Stanley’s example, HyperNEAT-
GGP uses an overhead object representation of the current
game screen. Since the Atari provides only the raw pixels
of the screen as input, a visual processing stack identifies
objects and game entities without a priori knowledge of a
specific game [11]. A graphical depiction of this stack is
shown in Figure 3. While it is likely possible to learn from
the raw screen’s pixels, object detection requires little work
and reduces the complexity of the learning task by eliminat-
ing pixels not directly relevant to playing the game.
Visual processing begins at the raw pixels of the game

screen. Image segmentation groups adjacent raw pixels with
similar colors into blobs. Next, blob merging occurs, out-
putting a set of current objects on screen. This process
examines all of the recently discovered blobs and compares
them with equivalent blobs in the last frame in order to com-
pute a velocity for each blob. Blobs are matched between
screens using pixel similarity. Velocity is computed by mea-
suring the displacement of blob centroids. Once each blob is
assigned a velocity, adjacent blobs with the same non-zero
velocity are merged into objects. Objects that are too small
or become stationary are thrown out. This check helps re-
duce the number of false positives in the object-detection
process.
Finally, objects are clustered into object classes or pro-

totypes. Specifically, the shape of each pair of objects is
compared and if found to exceed a similarity threshold (97%
pixel match in these experiments), the objects are grouped
into the same class. Pixel similarity between two objects
is computed by comparing the presence of pixels relative to
each object’s bounding box. As Figure 3 indicates, differ-
ent object classes are discovered for the cars at the bottom
half of the screen, cars at the top half of the screen, and the
chicken.

To reduce the number of spurious prototypes, prototypes
are passed to the next stage of the approach only when a
number of instances of that prototype are seen within suc-
cessive frames. In the example in Figure 3, this check helps
remove prototypes for objects created when the cars are at
the edges of the screen. Prototypes failing this check are
removed while those which pass are assigned a unique real
number (see Section 5.3 for more details).

Objects are assigned to the same class if their shape is
relatively similar without taking color into consideration.
This assumption has a potential drawback in certain games
if different objects have similar shapes but different colors.

5.2 Self-Identification
The self identification step is meant to identify the loca-

tion of an on-screen entity that is being controlled by the
agent. In the vast majority of Atari games, the player’s
actions affect the movement of some on-screen entity, here
termed the self. Knowledge of the location of the self is cru-
cial to selecting an action, as described below. HyperNEAT-
GGP uses an approach based on information gain to identify
a blob most likely to correspond to the self. Pseudocode is
given in Algorithm 1.

At the high level, this approach makes certain assump-
tions about the self entity. First, it is assumed that the self
blob will move similarly whenever the same action is per-
formed. That is, whenever an action, say Joystick Up, is
taken, the resulting velocity of the self blob should have a
similar value (e.g. blob.y velocity = -1).

As input, in lines 1-3, the algorithm has access to the
set of possible joystick and button actions applicable to the
current game (this is typically a subset of the 18 possible
actions present on the Atari console), a list of blobs de-
tected in the current frame, and a history of the actions
taken by the agent. Additionally, line 5 assumes access
to the (x, y) velocity history vHist of every blob. Next,
Algorithm 1 computes the entropy of blob b’s velocity his-



Algorithm 1 Identify Self

1: actions← set of actions applicable to this game
2: current blobs← set of blobs in the current game frame
3: ActionHist← Set of actions at time 0...n
4: for blob b ∈ current blobs do
5: vHistb ← Set of velocities of blob b at time 0...n
6: Hb ← H(vHistb)
7: for action a ∈ actions do
8: vHist(b|a) ← [vHistb[t] ∀t : ActionHist[t−1] == a]
9: H(b|a) ← H(vHist(b|a))
10: end for
11: InfoGainb ← Hb − suma∈actions(pa ∗H(b|a))
12: end for
13: return arg maxb∈current blobs(InfoGainb)

tory. Entropy is calculated using the standard formulation:
H(X) = −

∑n
i=1 p(xi) ∗ ln(p(xi)). Taking entropy over a ve-

locity history involves computing the distribution over blob
b’s velocity values. This computation is done using the em-
pirically observed frequencies of each observed (x, y) veloc-
ity value in b’s velocity history. A blob with highly random
movement will exhibit a high information entropy over its
full velocity history while a blob with highly regular move-
ment will yield low entropy.
Having computed the information entropy over b’s full ve-

locity history, Algorithm 1 next examines each action indi-
vidually and, in line 8, create b’s selective velocity history
vHist(b|a). The selective velocity history simply filters the
full velocity history by including only velocities that were
observed in frames after which action a was taken. For ex-
ample, if a = joystick left, then vHist(b|a) would only con-
tain resultant velocities for frames in which a was the action
selected. In line 9, entropy is computed over b’s selective
velocity history. This selective entropy H(b|a) should be low
if a given action reliably causes the blob to move in a certain
direction.
Finally, information gain is computed in line 11 by sub-

tracting a frequency weighted sum of a blob’s selective ve-
locity entropies from the blob’s full velocity entropy. If each
of the selective entropies is low, as should be the case for
the self blob, a high information gain results. In line 13, the
algorithm concludes by returning the blob with maximum
information gain.
While Algorithm 1 is generally successful in identifying

the self blob, sometimes game dynamics break the assump-
tion that actions result in similar velocities. For example, in
the Freeway game, after colliding with a car, control is taken
from the player and the chicken inadvertently is moved down
for several frames regardless of which actions the agent is ex-
ecuting. This temporary lack of control results in irregular
selective velocity histories and temporarily poorer identifi-
cation of the self. However, in some sense the algorithm is
correct in losing confidence in an object over which it no
longer has control. In practice, since the chicken is still the
most controlled blob, it remains the self.

5.3 Atari-HyperNEAT Interface
After extracting object classes as well as the location of

the self from the raw game screen, this information needs
to be sent to HyperNEAT. As discussed in Section 4, Hy-
perNEAT evolves a CPPN that encodes an ANN. This sec-
tion assumes access to a fully connected 2-layer ANN whose

weights have been specified by the CPPN. At a high level,
information from the game screen needs to be translated to
activations of nodes in the input layer of the ANN. Then,
after the network has been run in the standard feed-forward
fashion, the activation of nodes on the output layer must be
interpreted in order to select an action.

Figure 4 shows an example of how object classes are given
as input to the substrate layer of the ANN. Since the ANN
input nodes can only take real-valued activations, each class
of objects must be mapped to a real number. Thus a map-
ping from object classes to real values is maintained. Upon
discovery of new object classes, real values are incremen-
tally added to the map in a non-decreasing fashion. The
raw game screen of the Atari console displays a native res-
olution of 160 × 210, which is discretized by a factor of 10
in each dimension to produce a 16 × 21 grid of ANN input
nodes. Figure 4b shows an example discretization. Follow-
ing this step, each cell that contains an object is fed as input
to the ANN with a real valued activation corresponding to
the mapping of that object class. Cells devoid of objects
are given input activations of zero. The ANN is run in a
standard feed-forward manner, producing activations of the
nodes in the 16× 21 output layer (Figure 4d). Action selec-
tion involves locating the cell corresponding to the detected
self object (colored blue in Figure 4d). The activation of
this cell as well as the activations of the four adjacent cells
(shown with red arrows) are compared and the action cor-
responding to the arrow in the highest of these five cells is
returned (or no-op if the self square has the highest value).
This method of action selection supports up to five possi-
ble actions. Future work involves extending this framework
to support more complex actions such a button presses and
combinations of joystick and button-press actions.

6. EXPERIMENTAL SETUP
The experimental setup was the same for both Freeway

and Asterix: HyperNEAT-GGP was run for 250 generations,
with 100 individuals in each generation and a substrate res-
olution of 16 × 21. All individuals learn from scratch and
were evaluated on the Atari simulator using the same ran-
dom seed. Evaluations of the 100 individuals in each gener-
ation were performed in parallel on a Condor cluster, result-
ing in each generation taking several minutes of wall-clock
time to evaluate. Results are averaged across five runs of
HyperNEAT-GGP evolution and compared with previous
results obtained using gradient descent Sarsa(λ) with linear
function approximation[11].

Sarsa(λ) was implemented as follows. Due to the large size
of the state space, the Sarsa(λ) agent uses linear function ap-
proximation in which each state is represented by a vector of
n values, Φ(s), known as the feature vector, where n� |S|.
An additional vector of parameters θ is used to estimate the
value of a state as follows: Vt(s) =

∑n
i=1 θt(i)Φ(s)(i). Thus

the objective is to find values for θ such that, when combined
with the feature vector for any state, the estimated state
value is close to the actual state value. This is accomplished
by updating θ at each timestep as follows: θt+1 = θt + αδet
where α is the learning rate, δ is the temporal difference er-
ror, and et is the eligibility trace. More information about
Sarsa(λ) can be found in Sutton and Barto [16].

Three different variations of the Sarsa(λ) agent were in-
cluded, each using different feature vectors to represent the
state of the Atari game. First, Sarsa(λ)-BASS (Basic Ab-



(a) Object Classes (b) Grid Overlay (c) ANN Input (d) ANN Output

Figure 4: The interface between visual processing framework and the HyperNEAT ANN. Classes of objects are discretized
into a grid whose cells are fed to the input nodes of the ANN via a map from object classes to real numbers. After running
the ANN, activations of the output layer in cells adjacent to the detected self are used to select which action the agent should
take. In this case, the agent would move up since that adjacent cell has the highest activation.

straction of Screen Shots) discretizes the screen into a binary
vector vl of length 14x18x8 where 14 and 18 are the width
and height of the discretized screen and 8 is the number of
possible colors in SECAM mode. Next it creates another bi-
nary vector vq which contains the pairwise ANDs of all items
in vl. Thus the full feature vector Φa is a (|vl|+|vq|)×|A| bit
binary vector representing an abstraction of the raw game
screen.
Second, Sarsa(λ)-DISCO (Detecting Instances of Class

Objects) uses an object detection framework similar to the
one outlined in Section 5 to detect classes of objects present
in the current screen. To generate Φ it encodes the absolute
location of each object class on the screen as well as the tile-
coded relative position and velocity for each pair of object
classes. Since there may be multiple instances of each object
class present on a given screen and Φ is required to have a
fixed length, tile-coded positions and velocities are found for
each instance and summed.
Third, Sarsa(λ)-RAM uses a state representation based

on the 1024 bits of random access memory (RAM) available
to the Atari console. A binary vector vl is created which
contains each of the 1024 bits of memory. Next another
binary vector vq encodes the ANDs of all bits in vl. Φ is a
direct concatenation of vl and vq. For detailed descriptions
of these learning agents, see Chapter 2 of [11].

7. RESULTS
This section provides experimental results obtained from

applying HyperNEAT-GGP on two Atari games, Freeway
and Asterix. Table 1 presents the fitness values of the best
individual averaged across all the runs, as well as the overall
best individual found. Previously published performances of
BASS, DISCO, and RAM gradient descent Sarsa(λ) agents
are also presented as well as an agent taking random actions
each step [11].

7.1 Freeway
In Freeway the player controls a chicken as it attempts

to cross the road. Average fitness of the population and
the champion fitness throughout the learning process can
be seen in Fig. 5. The most striking observation from these
results is that the Sarsa(λ) agents are unable to find a solu-
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Figure 5: HyperNEAT-GGP learning performance on the
Freeway game. Average fitness of the population along with
the champion fitness for each generation are displayed. Er-
ror bars represent standard deviation. The fitness of an
individual corresponds exactly to its game score. As the
figure shows, effective Freeway policies are found in early
generations.

tion to the problem (evident in the zero scores in Table 1),
whereas even the first generation in HyperNEAT-GGP pro-
duces a champion with a very high fitness (starting average
champion fitness = 26.4). Sarsa(λ) agents exhibit zero score
due to the sparse reward on this domain. An agent would
have had to perform a large number of exploratory actions
before stumbling on the goal state at the top of the screen
and receiving a reward. On the other hand, all individuals in
HyperNEAT are produced by randomly initialized CPPNs.
Due to the nature of CPPNs, at least a few individuals have
the propensity to always take the Up action and obtain a
large fitness at the outset. Evolution helps individuals to
learn quickly to avoid cars over the next 50 generations,
which can be seen by the slight increase in champion and
average fitness.



Freeway Asterix
Sarsa(λ)-BASS 0 402
Sarsa(λ)-DISCO 0 301
Sarsa(λ)-RAM 0 545
Random 0 156
HyperNEAT-GGP (Average) 27.4 870
HyperNEAT-GGP (Best) 29 1000

Table 1: Game scores obtained in the Freeway and As-
terix games. HyperNEAT-GGP substantially outperforms
Sarsa(λ) on both Freeway and Asterix. The last two lines
report the average and best champion’s score at generation
250.

7.2 Asterix
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Figure 6: HyperNEAT-GGP learning performance on the
Asterix game. The average fitness of the population along
with the champion at each generation in the Asterix game.
Error bars represent standard deviation. Fitness of an in-
dividual corresponds exactly to their game score. As the
figure shows, policies are continually improved throughout
the course of the 250 generations.

In Asterix, the player controls a unit called Asterix with
the objective of collecting magic potions and avoiding lyres.
Average fitness of the population and the champion fitness
throughout the learning process can be seen in Fig. 6. Re-
sults for Asterix were averaged across five runs of HyperNEAT-
GGP evolution. Table 1 contrasts our approach with pre-
vious results. The results for Asterix are qualitatively dif-
ferent from Freeway in a number of ways: First, random
exploration obtains non-zero reward in Asterix as Asterix in-
advertently collects magic potions. The Sarsa(λ) agents can
bootstrap from this information and learn to become statis-
tically better than random. Additionally, champions from
HyperNEAT evolution start at close to random performance
(starting average champion fitness = 80) and improve their
performance to the same level as Sarsa(λ) within 50 gener-
ations. Finally, the learning process steadily improves the
fitness through the entirety of 250 generations. This steady
improvement demonstrates the power of using CPPNs at
representing good policies for this game.
Results show excellent performance by HyperNEAT-GGP

on the Asterix and Freeway games. Informal comparisons
with agents controlled by the authors of this paper indicate
that HyperNEAT-GGP achieves scores on par with human
play. However, to extend HyperNEAT-GGP to play arbi-
trary games in the Atari simulator, some future work is re-
quired.

8. FUTURE WORK
The most pressing direction for future work is to extend

HyperNEAT-GGP to a larger set of games. There are three
main challenges: large numbers of possible actions, many
different object classes, and robust visual processing.

In Freeway and Asterix, like in Robocup Keepaway, there
are relatively few classes of objects that matter: cars and
the chicken for Freeway, potions and lyres for Asterix, and
takers and keepers for Keepaway. With a limited number of
object classes it is easy to map from objects to substrate acti-
vations. For example, in Keepaway, keepers can be assigned
values of 1 and takers values of -1. Having such few values
allows HyperNEAT to easily differentiate between classes of
objects and exhibit appropriate behaviors for each, such as
avoiding lyres and collecting potions.

It is more difficult to differentiate between object classes
as the number of classes increases and crowds the map of
object class to substrate values. Accordingly, HyperNEAT
becomes increasingly unable to distinguish between and for-
mulate appropriate strategies for dealing with each class.

The second area of future work involves developing a bet-
ter way to handle a large number of actions. In games like
Freeway in which there are only a few actions (up, down,
no-op), it is possible to choose which action to take by ex-
amining values of the output nodes adjacent to the self node
(as described in Section 5.3). This issue becomes more com-
plicated when other actions such as button presses are in-
volved. For example, which node’s value should be examined
to decide if the button press action should be taken?

Finally, the visual processing stack could be made more
robust. Specifically, objects are sometimes lost when they
change shape or rotate. Additionally unmoving objects such
as walls are not detected. This introduces difficulties in
games such as Pac-man where static objects are essential
to the game dynamics. Finally self-identification could also
be improved by incorporating additional information about
how long each object has been on-screen, with the assump-
tion that the self object remains on screen while other ob-
jects are transitory. Further changes are encountered with
self objects which retain velocity – such as the spaceship in
Asteroids.

Addressing these areas of future work will go a long way
towards making HyperNEAT-GGP more generally applica-
ble to Atari games.

9. CONCLUSION
This paper introduces HyperNEAT-GGP, a HyperNEAT-

based general Atari game playing agent. Many Atari games
contain geometric regularities in the two-dimensional space
of the game screen. This structure allows HyperNEAT to
quickly learn effective policies. To reduce the complexity
of learning from the raw game screen, HyperNEAT-GGP
employs a game-independent visual processing hierarchy de-
signed to identify classes of objects as well as the entity that
the player controls on the game screen. Identified objects are



provided as input to HyperNEAT. Due to the computational
overhead of visual processing applied to each game screen, a
parallel architecture is used to evaluate multiple individuals
simultaneously. Results were presented for two Atari games,
Freeway and Asterix. In both cases, HyperNEAT-GGP was
shown to outperform previous reinforcement learning bench-
marks [11]. While no single Atari game, if studied in isola-
tion and given extensive feature engineering, likely poses too
great a challenge for modern AI techniques, the full collec-
tion of over 900 Atari games presents a daunting task for a
single learning agent. HyperNEAT-GGP represents a first
step towards the ambitious goal of creating an agent capa-
ble of learning and seamlessly transitioning between many
different tasks.
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