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1. INTRODUCTION
Robotic learning promises to eventually provide great so-

cietal benefits. In contrast to pure trial-and-error learning,
human instruction has at least two benefits: (1) Human
teaching can lead to much faster learning. For instance, hu-
mans can model the delayed outcome of a behavior and give
feedback immediately, unambiguously informing the robot
of the quality of its recent action. (2) Human instruction
can serve to define a task objective, empowering end-users
that lack programming skills to customize behavior.

The tamer framework [3, 2] was developed to provide a
learning mechanism for a specific, psychologically grounded
[1] form of teaching—through signals of reward and pun-
ishment. tamer breaks the process of interactively learning
behaviors from live human reward into three modules: credit
assignment, where delayed human reward is applied appro-
priately to recent events; regression on experienced events
and their consequential credited reward to create a predic-
tive model for future reward; and action selection using the
model of human reward.
tamer differs from traditional reinforcement learning (RL)

algorithms—generally powerful algorithms that are intuitive
but ultimately ill-suited for learning from human reward—in
multiple ways. For instance, human reward is stochastically
delayed from the event that prompted it, and tamer ac-
knowledges this delay, absent in traditional reinforcement
learning, and adjusts for it. And importantly, human train-
ers consider the long-term effects of actions, making each
reward a complete judgment on the quality of recent ac-
tions; therefore, predictions of near-term human reward are
analogous to estimates of expected long-term reward in rein-
forcement learning, simplifying action selection to choosing
the action with the highest expected human reward.

On multiple tasks, tamer agents have been shown to
learn more quickly—sometimes dramatically so—than coun-
terparts that learn from a predefined evaluation function in-
stead of human interaction. Further, the tamer framework
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gives primacy to the desires of human trainers—learning
only from these trainers—many of whom had no program-
ming skills. Thus, tamer is especially well suited for fitting
robotic behaviors to an individual’s unique demands, em-
powering those without programming skills to specify cor-
rect behavior.

Until now, tamer has only been implemented on simu-
lated tasks. The first contribution of this paper is an imple-
mentation of tamer on the robot Nexi to teach interactive
navigational behaviors, with proof-of-concept results.

Additionally, humans that have been instructed to give
feedback sometimes do so for actions that have not yet oc-
curred. Thomaz et al. [4] observed this tendency, as we have
during informal testing of tamer. These observations sug-
gest that people may be inferring a robot’s intention and
giving feedback on the intended behavior. For further il-
lustration, imagine your vocal reaction to a child walking
towards a dangerous street or a dog staring at and inching
towards a piece of steak within its reach. If your imagined
reaction is similar to ours, your voice would carry strong
negative affect. However, the hypothetical actors—the child
and the dog—have done nothing wrong or harmful yet. In-
deed, it is only their inferred intention that draws strong,
negative feedback. The second contribution of this paper
is to redesign tamer to incorporate feedback both for past
and intended actions. Allowing what we term “intentional
feedback” both fits the learning system to natural human
tendencies and introduces a crucial warning system: a robot
need not experience a catastrophic event to learn to avoid
it. Intending the event is sufficient.

2. TEACHING A ROBOT INTERACTIVE
NAVIGATIONAL BEHAVIORS

We implemented tamer to teach interactive navigational
tasks on Nexi (Figure 1), a humanoid robot capable of so-
cial expression. Nexi moves with a two-wheel base and, in
this task domain, senses its environment through a Vicon
Motion Capture system that determines the 3-dimensional
locations and orientations of the robot and the trainer. In
our development and testing, we use both the physical robot
and a simulation running on jMonkeyEngine.

In the task domain, the robot has 5 navigational actions:
move forward, move backward, turn left, turn right, or stay.
From the Vicon sensor data, the robot creates a number of
features that describe it, the trainer, and their relation in
the environmental space. A subset of these features are cho-
sen to create the robot’s state, the context that determines



what task behavior is correct. Trainer-based features make
interactive behaviors possible.

Figure 1: Nexi.

We have successfully trained
Nexi to exhibit several high-
level behaviors. Two simple be-
haviors have been taught both
in simulation and on the phys-
ical robot: facing the trainer
and maintaining distance from
the trainer in one dimension.
For features, these behaviors
respectively use the angle to
the trainer and the distance to
the trainer. A video of the final
distance-maintenance behavior
can be seen at cs.utexas.edu/
~bradknox/nexi. In simulation
only, two more complex behav-
iors were taught: follow the hu-
man (i.e., stay below a max-
imum distance) and avoid the
human (i.e., stay above a minimum distance). For features,
both behaviors use the distance and angle to the trainer
from the robot. At the same URL, one can view a video of
the follow behavior being trained from start to finish over
less than five minutes. Note that when Nexi chooses a bad
action, considerable time is lost in returning to the state
before that action was taken; undesired actions have costs
that go beyond their duration. This observation motivates
the inclusion of intentional feedback, which can stop bad
behavior before it occurs.

3. TAMER WITH INTENTIONAL
BEHAVIOR

To make tamer learn from intentional feedback, we make
two major changes. First, in addition to regular task be-
havior, the robot exhibits intentional behavior that commu-
nicates its planned task behavior. Second, we adapt the
learning algorithm to receive feedback on such intentional
behavior.

In the current prototype version, the robot’s intentional
behaviors are announcements of its planned next task ac-
tion. The name of the next planned action—“right”, “left”,
etc.—is spoken while the current action is performed. For
simplicity, we separate intentional behavior from task be-
havior, though in nature these behaviors often overlap. For
instance, a stalking cat often freezes low to the ground before
pouncing on its target; this behavior both communicates its
intention to an observer and helps its hunting task by keep-
ing the cat hidden.

The feedback interface we used for tamer consisted of two
push-buttons: one for positive and one for negative feedback
on task behavior. We add two more buttons for positive and
negative intentional feedback.

Learning from feedback on intentional behavior uses the
same mechanisms as tamer uses for task behavior. To learn
a model of human reward, tamer creates labeled state-
action pairs on which a regression algorithm trains. These
labels are determined through a credit assignment technique
that maintains a window of recent task behavior and spreads
credit from any reward received over the state-action pairs
in this window [2]. For intentional behavior, we create a
parallel window that likewise produces samples using the

same credit assignment technique. A sample from inten-
tional feedback consists of the predicted next state, the ac-
tion that is planned for that state and exhibited through
intentional behavior, and the credited intentional reward
for that intended state-action pair. Thus, just as the robot
is exhibiting one task action at any time, it also exhibits
one intentional action; the human trainer delivers stochasti-
cally delayed reward to either type of action, and reward is
credited through identical, parallel credit assignment mech-
anisms. The labeled state-action pairs from both task and
intentional behavior are added to a single body of training
data for the model of human reward.

Only displaying the next action as intended behavior may
not describe the full range of intentional behaviors—intentions
can range over different time scales—but it nonetheless pro-
vides a powerful improvement (as we expect our comparative
experiments to show) over the tamer algorithm that we use
as a starting point. Further, we believe it would not be dif-
ficult to extend this algorithm to more complex intentions;
if more than one state-action pair creates a single intention
behavior, they can all be stored in the credit assignment win-
dow and the weight of each pair’s resultant sample would be
adjusted by the proportion of impact it had in determining
the intention behavior.

4. CONCLUSION
In this paper, we present the first implementation of tamer

on a robot and a reformulation of tamer to allow trainers
to influence intended behavior, powerfully giving them the
ability to give feedback on bad behavior before it occurs,
yielding the benefits but removing the cost of potentially
catastrophic learning experiences.

To complete this project, we will create more natural in-
tention behaviors—movements of the eyes, head, and torso
to indicate planned directions of movement—and conduct
experimental evaluations of training with and without in-
tentional feedback. In future work, we will unify the in-
put interface for reward on past and intended actions, using
prosody—vocal acoustic characteristics such as pitch and
volume—to determine whether feedback utterances are fo-
cused on intention or past action.
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