
A Platform for Evaluating Autonomous Intersection Management Policies

Chien-Liang Fok, Maykel Hanna, Seth Gee, Tsz-Chiu Au,
Peter Stone, Christine Julien, and Sriram Vishwanath

University of Texas at Austin
{liangfok,michael.jean,seth.gee,c.julien,theory}@mail.utexas.edu, {chiu, pstone}@cs.utexas.edu

Abstract—There is a significant push towards greater vehic-
ular autonomy on roads to increase convenience and improve
overall driver experience. To enable this autonomy, it is imper-
ative that cyber-physical infrastructure be deployed to enable
efficient control and communication. An essential component
of such road instrumentation is intersection management.
This paper develops an intersection management platform
that provides the sensing and communication infrastructure
needed to enable efficient intersection management policies.
The testbed, located in a indoor laboratory, consists of an
intersection and multiple robotic vehicles that can sense and
communicate. Whereas traditional approaches to intersection
management rely on simulations, this testbed enables the first
realistic evaluation of several intersection management policies.
Six simple but practical centralized and distributed policies
are evaluated and compared against the current state of the
art, i.e., traffic signals and stop signs. Through extensive
experimentation, this paper concludes that, in the scenario
tested, even a simple coordinated management policy can halve
vehicular delay, while improving the aggregate traversal time
of the intersection by 169%.

Keywords-Autonomous vehicles, Intersection management

I. INTRODUCTION

Imagine driving down a deserted street and approaching
a traffic signal at a four-way intersection. Suppose there are
no obstructions preventing you from seeing cross-traffic. As
you approach the light turns red, forcing you to stop despite
no conflicting traffic. Throughout the entire red cycle the
vehicle is idling — wasting time and energy.

The above scenario, while simplistic, illustrates a fun-
damental problem with our current vehicular transportation
system. In particular, the delays and waits at intersections
can be extremely frustrating and inefficient. Increasing the
degree of autonomy in how vehicles are scheduled to cross
intersections can lead to shorter drive-times and enhanced
overall driving experience. Although vehicle autonomy is
desirable at all times and not just at intersections, complete
autonomy is a highly complex problem that requires consid-
erable effort and thorough testing before it becomes a reality.
Indeed, there is a vast and growing body of work on enabling
full vehicular autonomy [1], [2]. In this paper, we focus
on a critical component in the goal of fully autonomous
vehicles—the ability to autonomously and safely navigate
intersections.

A majority of existing research on autonomous vehicles
focuses on enabling vehicles to operate on current roads,

which are designed for human-operated vehicles. These
include techniques from machine learning and artificial
intelligence to enable vehicles to recognize road markings,
road signs, traffic signals, other vehicles and pedestrians,
and, in general, the laws of the road. While this is essential
for a gradual transition from human-controlled vehicles to
autonomous ones, it limits the efficiency gains that can be
afforded by the switch since all of these constructs are
tailored to the relatively sluggish response times and low
communication expressiveness of human drivers (i.e., we
honk, “nudge forward”, flash the lights, etc.). Going back
to the scenario, an autonomous vehicle at an empty stop-
light would still be left idling, wasting time and energy,
despite the ability to safely cross. Thus, research on vehic-
ular autonomy should be combined with a re-thinking of
conventional vehicular-management systems. For example,
replacing traffic signals with an intersection manager could
enhance intersection throughput. Developing an understand-
ing of whether this throughput increase is indeed possible
in a safe and reliable manner is the main goal of this paper.

We reiterate that autonomous intersection management
does not require that all vehicles be fully autonomous at
all times. It only requires that intersections and vehicles be
instrumented such that vehicular management at intersec-
tions can be conducted autonomously. Once the intersection
is safely navigated, the vehicle can be returned to human-
control to perform other complex tasks (such as merging,
lane changes etc.). In this way, autonomous intersection
management can be restricted to select (critical) intersec-
tions that are particularly accident-prone and/or are traffic
bottlenecks.

We investigate mechanisms by which road intersections
can be improved by instrumenting the intersection with ad-
vanced management schemes and the vehicle with the ability
to sense properties of the intersection and communicate with
a scheduler and/or other vehicles over a wireless network.
Instead of forcing every vehicle to stop, as is the case of
stop signs, or to cycle among non-conflicting paths through
the intersection at predetermined intervals, as is the case
with traffic signals, new forms of intersection management
entail a system that dynamically reacts to and communicates
with traffic, enabling vehicles to cross the intersection with
lower delay. We refer to such a system as an autonomous
intersection.

Underlying our investigation is the requirement that vehi-
cles detect that they are approaching, entering, and exiting an
intersection. Vehicles must coordinate with each other and/or
the intersection itself to ensure safe and efficient passage, po-
tentially without stopping or even slowing down. Such ideas
have previously been investigated using simulations [3], or
mixed reality simulations involving a single vehicle [4]. Our
work differs from these in the following ways:

• It is a multi-vehicle robotic testbed located in an in-
strumented laboratory; our results are based on system
measurements and not (simplistic) simulated models for
vehicular motion and communication.

• We devise simplified intersection management policies
that account for the limits and nuances of a real cyber-
physical system. These policies are low in complexity
and found to be robust in practice.

By evaluating an actual cyber-physical system, we account
for scalability, robustness, safety, and overall performance of
these policies in terms of the physical characteristics of the
vehicle and surrounding environment, all of which are near-
impossible to accurately replicate in a simulator.

This paper is organized as follows. The next section
discusses related work. Section III provides the problem
definition. It is followed by our approach (Section IV)
which also details the intersection management policies we
evaluate. Section V presents our implementation, followed
by an evaluation and experimental results in Section VI. The
paper ends with conclusions and future work in Section VII.

II. RELATED WORK
Research on vehicular autonomy has made significant

progress in recent years. This was in part due to a series
of robotic car competitions like the DARPA Grand Chal-
lenges [5]. These competitions accelerated the development
of autonomous vehicles to the point where the technical
problem of open-road autonomous driving is considered by
some to be essentially solved [3]. The non-technical barrier
for the adaptation of autonomous vehicles are largely traffic
laws and regulations, though this is also being overcome [6].

The vast majority of research on autonomous vehicles
focuses on how to ensure they run on existing road infras-
tructure; there is limited literature on understanding changes
to road infrastructure that can facilitate vehicular autonomy.
One such project on jointly optimizing autonomous vehicles
and road infrastructure is the PATH program, which relies
on magnetic markers in the roadway for measuring steering
angle and vehicle movements [7]. The Autonomous Intersec-
tion Management (AIM) protocol [3], [4], [8] is a vehicle-
to-infrastructure (V2I) mechanism in which vehicles request
space-time in the intersection for their trajectories prior to
arriving at the intersection; a server at the intersection han-
dles these requests, granting or rejecting reservations using
a grid-based collision detection scheme. This protocol is
enhanced to reduce network traffic and increase safety using

spatial-temporal buffers surrounding the vehicles [8]. While
AIM is feature rich, it was evaluated either purely through
simulations [3] or mixed reality simulations involving one
vehicle [4]. AIM is one of the many intersection manage-
ment schemes that can be evaluated using our testbed. In
this paper, we implement several intersection management
schemes that have lower computational complexity than (and
are sometimes simplified versions of) AIM and demonstrate
that such policies increase intersection efficiency over tradi-
tional traffic-signal-based schemes.

Vehicle-to-Vehicle (V2V) forms of autonomous intersec-
tion management have also been investigated [9], [10]. In
this form, no centralized server is required (i.e., there is no
single point of failure) and vehicles coordinate in a peer-
to-peer fashion when crossing the intersection. Naumann et
al. investigated a distributed policy that uses virtual “tokens”
that a vehicle must possess to cross certain contested areas of
the intersection [9] and formally evaluated it using petri-nets.
VanMiddlesworth et al. developed a protocol that enables
vehicles to “call ahead” to reserve space-time in the inter-
section [10]. Their protocol outperformed the traditional stop
sign in light traffic. We implemented a slightly simplified
version of the protocol in [10] that does not use estimated
time of arrival and demonstrated that it also outperforms a
stop sign in light traffic.

Other researchers have investigated autonomous intersec-
tions using real systems involving multiple mobile vehicles.
For example, Kolodko and Vlacic used golf-cart-like Imara
vehicles in evaluating an autonomous intersection [11]. In
their study, all vehicles must come to a complete stop at
the intersection irrespective of traffic conditions. This is
analogous to the stop sign policy in this paper. Our work
differs in being a framework for evaluating many different
intersection management policies.

Finally, many other mobile wireless network testbeds
exist [12], [13]. Our work differs in it focus on autonomous
intersections and not purely on wireless communication.

III. PROBLEM DEFINITION
In this section, we describe the key challenges addressed,

our assumptions, and desiderata of our testbed.

A. Challenges
The first challenge is how to design and implement a

testbed and software infrastructure for evaluating a wide
range of intersection management policies. The framework
must be flexible to account for V2I and V2V policies that
require different context information at different times.

The second challenge relates to using the testbed to
evaluate actual management policies, thereby demonstrating
our framework’s efficacy. This is challenging because it
requires actual system deployment. The goal in doing this is
to gain insight into the potential real-world efficiency gains
alternative intersection management policies can provide
relative to existing traffic signal and stop sign-based policies.

B. Assumptions

We assume all vehicles crossing the intersection are
autonomous, will actively participate in the employed man-
agement policy, and travel straight through the intersection
without turning or switching lanes. Handling occasional
non-autonomous vehicles, pedestrians, and cyclists, turning,
lane switches, and hardening the system against faults and
adversaries are essential. However, they are left as future
work to reduce the complexity of our initial implementation,
and enable us to focus on the aforementioned primary
challenges. Solutions for handling many of these challenges
exist, though they have only been evaluated in simulation.

In addition, a few more assumptions are made. First,
we require the autonomous vehicles to communicate with
each other and the surrounding infrastructure over wireless
network links. Second, we require the autonomous vehicles
to be equipped with sensors that can precisely detect when
the vehicle is approaching, entering, and exiting the inter-
section. For example, overhead markers may be installed
that can be detected by the vehicles as they pass underneath
(similar to existing toll collection points on our highways).
For now, the detection of these points need to be absolutely
reliable, though this may be relaxed in the future as more
advanced fault-tolerant intersection management policies are
developed. Note that depending on the management policy
employed, the vehicle may not need to know additional
details of the intersection like its size, location, and ori-
entation, though the testbed should support the delivery
of such information. Finally, we assume that the vehicles
have sufficiently powerful brakes or that the lanes have a
sufficiently-wide buffer zone on either side (i.e., a shoulder),
to enable a vehicle traveling at the speed limit to stop upon
detecting the entrance of the intersection, and not end up
blocking any of the cross traffic lanes. In our current system,
the vehicles have a stopping distance of about 21cm when
traveling at 0.5m/s, and a buffer of 69cm is used to ensure
safety when vehicles stop at the intersection’s entrance.

Finally, we assume that the employed policy remains
constant. Investigating how the policy can be dynamically
changed on-line based on context like amount of traffic, time
of day, and the weather is an area of future work.

C. Desiderata

Real system. The key components of the testbed, which
include the vehicles, the intersection, and the infrastructure
for managing the intersection, should all be real and not
virtual entities in a simulator. All of the sensing necessary for
the vehicles to participate in the intersection should be done
using real sensors. This includes sensors that detect the key
points of the intersection (i.e., the points of approach, entry,
and exit), and the sensors that enable the vehicles to follow
lanes that traverse the intersection. All of the computation
and communication necessary to coordinate safe traversal of
the intersection should be done live and not a prori in an

off-line manner. The goal is to keep the testbed as realistic
as possible to capture the highly complex interactions that
occur between the cyber and physical elements in a real
autonomous intersection.

Extensible and flexible. The testbed should be easily
extensible to support evaluating new intersection manage-
ment algorithms, types and numbers of vehicles, and types
of intersections. An important contribution of this testbed
is to provide a foundation on which different intersection
management policies can be evaluated and compared. The
testbed should support a wide variety of vehicles with dif-
ferent physical properties like width, height, weight, turning
radius, rate of acceleration, and stopping distance since
future autonomous vehicles will likely exhibit such diversity,
just as how our human-controlled vehicles do today. The
cost of each vehicle should be low enabling large scale
experiments involving many vehicles. Finally, the testbed
should enable testing different types of intersections, e.g.,
with different numbers of roads or different numbers of lanes
in each road.

Safety. Since we are working with a real system that
contains many dynamic components and parts, maintaining
absolute safety is critical. Ideally, intersection management
policies should prevent collisions, even in the face of
unpredictable system behavior like wireless disconnection.
However, in case they fail, the resulting collision should not
endanger anyone’s life. We achieve this in our testbed by
scaling down the system and using lighter-weight vehicles
that cause little permanent damage when they collide.

IV. APPROACH

We approach the problem of evaluating intersection man-
agement policies for autonomous vehicles from both a cyber
and physical perspective.

A. Cyber-Approach

From a cyber-perspective, we developed a software frame-
work that provides infrastructure for rapidly implementing
and evaluating a highly diverse set of intersection manage-
ment policies. The key cyber-components of this infrastruc-
ture are shown in Figure 1. They consist of an experiment
manager running on a central control station, an autonomous
intersection client running on each vehicle, and an optional
server located at the intersection; the latter is used by V2I
intersection management policies.

Since autonomous intersections are naturally distributed
systems and at a minimum consist of numerous mobile
vehicles, coordinating the start of an experiment is not
trivial. Our experiment manager communicates with each
of the participating vehicles prior to the start of the experi-
ment. It takes as input an experiment configuration file that
specifies the experiment name, type, and vehicles used. If
the experiment is evaluating a V2I policy, it also specifies
the address of the central server managing the intersection.

Experiment	
Manager	

Exp.	
Config.	
File	

Autonomous	 Intersec9on	
Server	 (op9onal)	

Autonomous	
Intersec9on	 Client	
Client	 Daemon	

Server	 Daemon	

Autonomous	
Intersec9on	 Client	
Client	 Daemon	

(o
p9

on
al
)	

(in
i9
al
iza

9o
n)
	

(op9onal)	

Figure 1. The cyber-elements of our autonomous intersection
testbed

Upon receiving the experiment configuration, the experiment
manager wirelessly connects to the autonomous intersection
clients running on each vehicle, informing them of the
experiment parameters. It then coordinates the start of the
experiment ensuring all vehicles begin moving at approxi-
mately the same time.

Prior to running the experiment manager, an autonomous
intersection client is started on each vehicle. This client is
a software process that executes the autonomous intersec-
tion management protocols to safely navigate across the
intersection. To keep this component generic and support
the evaluation of a diverse set of intersection management
policies, the client simply defines an abstract client dae-
mon and provides the supporting infrastructure needed by
specific instances of the daemon that implement the actual
intersection management protocols. Specifically, the client
provides the daemon a network interface for both single and
multi-cast communication, a vehicular kinematics interface
for controlling the speed and steering of the vehicle, an
event interface for informing the daemon when the vehicle
is at critical points around the intersection, and relative state
information like from which points the vehicle will enter and
exit the intersection. The client selects which client daemon
to instantiate and use based on the experiment configuration
message from the experiment manager.

To support V2I autonomous intersection management
schemes, we provide an autonomous intersection server,
which is a software process that runs on a machine at
the intersection. As the vehicles approach and cross the
intersection, they communicate with this server using a
protocol set by a specific intersection management policy.
Like the client, the server is designed to be generic. It
simply defines an abstract server daemon and provides the
infrastructure for supporting instances of the daemon. Each
instance of the server daemon implements the server-side of
a specific autonomous intersection management policy. The
server provides the daemon specifications of the intersection,

a network interface, and interfaces for accessing relevant
protocol-specific sensors. The selection of which server
daemon to use is done when the server is started, which must
occur prior to the beginning of the experiment. We for now
assume that the server runs the same protocol throughout its
lifetime. As mentioned previously, the ability to dynamically
change intersection management protocols based on context
is left as future work.

B. Physical Approach

The physical design of the autonomous intersection
testbed impacts how the vehicles move and detect the
intersection and the repeatability of experiments. To simplify
aspects of the system not directly related to the evaluation
of intersection management protocols, we create a “clean-
room” environment for the intersection. There are no obsta-
cles or unexpected debris in the road that need to be detected
by the vehicles. In addition, markers are installed at the
critical points along the intersection as shown in Figure 2.
They include the starting locations of the vehicles and the
points of approach, entry, and exit from the intersection.
These markers ensure the robots begin at the same location
across experiments (i.e., that the initial physical state of the
system is consistent across runs) and are easily detected by
the vehicle using simple sensors and do not require complex
computer vision object-recognition algorithms. In the real
world, a reasonable analog may be RFID tags mounted
above the lanes that can be read by vehicles as they pass
under it.

Approaching	
Boundary	

Entering/Exi5ng	
Boundary	

Start	

Approach	

Enter	

Exit	

Loca5on	 Markers:	

Figure 2. The physical markers placed around our autonomous
intersection testbed. A four-way two-lane intersection is shown here
as an example. Other intersection configurations are supported, but
the relevant markers remain the same.

Prior to conducting an experiment, the vehicles are phys-
ically placed in their starting locations, which are shown
by the green diamonds in Figure 2. They are oriented
to face towards the intersection. Note that a lane may
contain multiple vehicles. Lanes are demarcated by lines
on the ground that the robot can follow using a simple

vision sensor. When the client receives the start message
from the experiment manager, it moves the vehicle forward
while following the lane. Upon detecting the marker at
the approaching point, the client’s daemon initiates the
intersection management protocol that it implements. The
protocol should ideally grant the vehicle permission to cross
the intersection by the time it reaches the entry point. If it
fails to do this, the vehicle must stop and wait for permission.
Upon gaining permission to cross, the vehicle travels across
the intersection and eventually past the exit marker. This
illustrates our basic approach at establishing a cyber-physical
testbed for evaluating intersection management schemes for
autonomous vehicles. The next sub-section provides details
on the actual intersection management policies we devel-
oped. It is followed by a detailed discussion of the system’s
implementation.

C. Autonomous Intersection Management Policies

We developed eight different policies for managing au-
tonomous intersections to demonstrate the flexibility of our
testbed. They are failsafe against wireless communication
failure since the vehicles will not enter the intersection due
to the lack of a grant message. Being simple, these policies
are not flawless, but they demonstrate some naive and
intuitive approaches to autonomous intersection navigation
and illustrate the capabilities of our general purpose inter-
section testbed. In the future, more nuanced policies may
be developed, perhaps by extending one of the following
protocols, and evaluated using our testbed. The policies are
discussed below.

V2I-Sequential. In this policy, the intersection is man-
aged by a central server, which grants vehicles permission
to cross the intersection on an opportunistic basis. Initially,
the server is idle waiting for vehicles to approach. After
reaching the approaching point to the intersection, the ve-
hicle sends the server a RequestAccess message asking
for permission to cross. This message contains the ID of the
transmitting vehicle.1 The vehicle periodically retransmits
this message until it receives a GrantAccess message
from the server, at which point it can cross the intersection.
If the vehicle reaches the entrance to the intersection without
receiving a GrantAccess message, it stops at the entrance
until such a message is received. When the vehicle reaches
the exit marker, it sends an Exiting message to the server
telling it that it has exited the intersection.

The server is relatively simple. It maintains a single
value, grantedVehicle, which records which vehicle is
currently granted permission to cross the intersection. This
value is initialized to null. Each time a RequestAccess
message is received, if grantedVehicle is null, the
server changes the value to be the ID of the sender and

1The ID must be globally unique, e.g., it could be the vehicle’s VIN.

replies with a GrantAccess message. Otherwise, it ig-
nores the request. Ignoring the request is acceptable since
the vehicle will periodically retransmit the request until a
GrantAccess message is received.

Since wireless communication will not be 100% re-
liable in any real-world system, it is possible for the
GrantAccess message to be lost. This will result in
an inconsistent state where the server mistakenly thinks a
vehicle is in the intersection. To account for this, when a
RequestAccess message is received, the server checks
whether the ID contained within this message is equal to
grantedVehicle. If it is, the message is a duplicate and
the server replies with a GrantAccess message. Similarly,
to account for lost Exiting messages, the vehicle period-
ically transmits this message to the server until the server
replies with an acknowledgement. If the vehicle moves out
of range prior to the exiting message getting through, a
lengthy timeout can be set in the server that indicates the
vehicle is mostly likely out of the intersection.

V2I-Parallel. This policy is also managed by a central
server. It is the same as V2I-Sequential except it attempts to
increase the throughput of the intersection by allowing more
than one vehicle to cross the intersection at a time. To do
this, the RequestAccess message contains not only the
ID of the vehicle, but also specifications on where the vehicle
will enter and exit the intersection. Using this information,
the server can determine the path the vehicle will travel
through the intersection and whether it will conflict with
any vehicles already in the intersection. Thus, in this scheme,
the server maintains a list of vehicles that have been granted
permission to cross the intersection. Note that while the core
logic of the client on the vehicle is the same between V2I-S
and V2I-P, different client daemons must be used since they
need to transmit different RequestAccess messages.

V2I-Reservation. This is an enhanced version of V2I-
Parallel that allows vehicles to obtain reservations for future
times when they can enter the intersection. To do this,
the RequestAccess message is extended to include the
amount of time the sending vehicle thinks it will need
to cross the intersection. The server uses this information
to determine the earliest time the vehicle can cross and
responds with this “reservation time.” Upon receiving this,
the client adjusts the speed of the vehicle to arrive at the
entrance just-in-time. Ideally, this would allow the vehicle to
avoid coming to a complete stop. This policy is very similar
to AIM, except it does not perform fine-grain spatiotemporal
allocation of grid locations within the intersection.

V2V-Sequential. This scheme achieves the same seman-
tics as V2I-Sequential except without the use of a central
server. Requiring every intersection to have a server may not
be feasible in reality due to cost, and the server represents a
single point of failure. In addition, this approach highlights
our framework’s flexibility in evaluating both ad hoc and
centralized intersection management schemes. In the V2V-

Sequential management scheme, the vehicles communicate
amongst themselves to negotiate when they can each cross
the intersection.

Each vehicle maintains a neighbor list that records the
state of the other vehicles that want to cross the intersection
and the last time a message was received from each vehicle.
This list is initially empty but is populated as the vehicle
approaches the intersection based on wireless beacons it
receives. The potential states of neighbors include idle,
requesting, crossing, and exiting. All vehicles initially start
in the idle state.

When a vehicle reaches the approaching point of the
intersection, it begins to periodically broadcast a beacon
indicating that it is in a requesting state. Simultaneously,
it receives beacons from other vehicles approaching the
intersection. Since in this management scheme only one
vehicle can be in the intersection at a time, if it detects
that other vehicles are requesting, it must decide whether
to yield to another vehicle. To determine which vehicle can
proceed and which must stop, the IDs of the vehicles are
compared. The vehicle with the highest ID is given priority
to cross the intersection first.2 If a vehicle decides to yield
the intersection to another vehicle, it stops at the entrance
to the intersection.

While waiting, the vehicle periodically checks its neighbor
list to determine whether it can potentially cross the inter-
section. It can potentially cross the intersection if there are
no other requesting vehicles, no vehicle in the intersection
(i.e., in the crossing state), or if it has the highest ID
among the requesting vehicles. After determining that it is
potentially safe to cross, the vehicle first waits a minimum
safe duration that is a multiple of the beaconing rate. This
is to gain higher confidence that it is indeed safe to cross.
The period may be adjusted to account for the necessary
level of safety. The longer the period, the more likely the
vehicle can safely cross the intersection; the trade-off is,
of course, unnecessarily delaying vehicles. After this period
expires, if the vehicle still concludes that it is safe to proceed,
it changes its beacons to indicate that it is crossing the
intersection and proceeds to cross. When it reaches the
exit point, it changes its beacon to indicate that it has
finished crossing the intersection. It continues to broadcast
this beacon for a pre-set period of time.

V2V-Parallel. This intersection management scheme is
similar to V2V-Sequential except it enables multiple nodes to
cross the intersection. It does this by including specifications
on where the vehicle is entering and exiting the intersection
in the beacons. Using this information, each node can
determine whether it will interfere with the crossing node.
If a waiting or requesting vehicle determines that it can

2To prevent starvation (i.e, a vehicle waiting at the entrance forever),
more advanced vehicle selection policies can be employed that, for example,
consider how long a vehicle has been waiting at the intersection when
deciding which can go first.

safely cross the intersection simultaneously with a vehicle
that is already crossing, it immediately changes it state to
crossing and begins to cross the intersection. The assumption
is that the vehicles are traveling along parallel lanes, though
not necessarily in the same direction. If vehicles can turn,
additional coordination steps are necessary to ensure the
vehicles that follow the one that is already crossing do not
collide.

V2V-Reservation. This extends V2V-Parallel to support
reservations. It works by having the vehicles broadcast
their self-selected entry time (if determined) and how long
they expect to take crossing the intersection. Using this
information along with the neighbor list and aforementioned
vehicle ID-based ordering, each vehicle computes when it
should enter the intersection and arrive just-in-time.

Stop Sign. This management scheme is designed to model
the behavior of the traditional stop sign. It is a centrally
managed scheme where the vehicles ignore the approaching
marker and only send a request upon reaching and stopping
at the entrance marker. In this scheme, the same server is
used as in the V2I-Parallel scheme.

Traffic Signal. As the name implies, this scheme mimics
the behavior of a traffic signal. The server runs in a cy-
cle periodically granting access to vehicles traveling along
nonintersecting lanes. When several vehicles approach the
intersection almost at the same time, they can be granted
access to enter the intersection (i.e., given green signals) if
their lanes are nonintersecting and no vehicles are occupying
their lanes the intersection; otherwise, only a subset of these
vehicles on nonintersecting lanes can enter the intersection
and the rest will have to wait until next cycle. Note that
in this scheme, the clients run the same daemon as in
V2I-Parallel, but the server runs a special daemon that
implements the semantics of a traffic signal.

Collectively, the stop sign and traffic signal policies pro-
vide a baseline performance against which the other more
flexible schemes can be compared.

V. IMPLEMENTATION

We implemented the autonomous intersection testbed in
Pharos [14], a general mobile computing platform consist-
ing of approximately thirty highly modular Proteus mo-
bile robots. These robots serve as the autonomous vehi-
cles in our system. For this work, we used the hardware
configuration shown in Fig. 3. It consists of a modified
Traxxas Stampede mobile chassis and a module containing
computational elements, a CMUCam2 vision sensor, and
a Sharp GP2Y0A02YK0F Short Range IR range finder.
The computational elements include a general-purpose x86
computer and a Freescale 9S12 microcontroller (MCU). The
x86 is a VIA EPIA Nano-ITX motherboard that contains a
32-bit 1GHz VIA C7 CPU, 1GB of DDR2 RAM, a 16GB
compact flash drive, and a CM9-GP IEEE 802.11g WiFi
mini-PCI module based on the Atheros AR5213A chipset.

Traxxas	 	
Chassis	

Via	 EPIA	 	
Nano	 x86	 	

9S12	 MCU	

802.11g	 WiFi	 CMUCam2	
Vision	 Sensor	

IR	 Range	
Sensor	

Figure 3. The Proteus Node.

Each Proteus runs Ubuntu Linux 11.04 server and Player
3.02 [15]. Custom Player drivers provide programming
abstractions for vehicle movement and sensing; it is through
these interfaces that we provide the resources needed by the
client daemons on the vehicles. The WiFi interfaces form
an ad hoc network among the robots and with the central
server should one be used.

While scaled down, the Proteus robots are real systems
that move with the same nonholonomic motion as most
real vehicles (i.e., the front wheels steer while the rear
wheels remain straight). In addition, their size (they weigh
6kg and have dimensions of 40x32x35cm) and low cost
(less than $2,500 USD each) prevent catastrophes in case
intersection management schemes fail and collisions occur.
Given the robots’ modularity, where the mobile chassis
and computational plane are decoupled, the Traxxas mobile
chassis can be easily swapped with something larger like a
golf cart. By exploiting this modularity, our testbed enables
users to first evaluate autonomous intersection management
policies using small scale vehicles and to move onto larger
vehicles after gaining confidence in the safety and correct-
ness of a particular policy. For this study, we limit our
experiments to the Traxxas mobile chassis due to limits in
our lab’s physical dimensions and the fact that we are testing
our implementations of various intersection management
policies for the first time.

Using Pharos, we implemented one of the first real-world
managed autonomous intersections that involves multiple
vehicles. Figure 4 shows the testbed configured to evaluate
the performance of intersection management policies in a
four-way intersection of two 2-lane roads. White vinyl tape
denotes lanes. The ground is dark-green outdoor carpet,
which provides a smooth moderate friction surface for the
vehicles to accelerate without excessive tire slippage. The
high contrast between the white tape and dark-green carpet
is necessary for the vehicle’s CMUCam2 to reliably detect
it. The CMUCam2 is mounted on two medium torque HiTec

Figure 4. The Autonomous Intersection Testbed configured with a
4-way intersection of two 2-lane roads. The vehicles are positioned
at their starting points.

HS-322HD Deluxe Servos, which pan and tilt the camera to
ensure a vehicle can follow the lane around curves. As a
vehicle follows the line, it passes under overhead markers
that denote the critical points of approach, entrance, and
exit of the intersection. These markers are constructed of
1 inch PVC pipe and ABS plastic. They rise 66 cm above
the vehicles and span 51 cm across the lane. A 14 cm wide
sheet of ABS plastic facing down ensures the vehicle reliably
detects the marker. The markers are painted black to prevent
confusing the vision sensor, which is searching for a bright
white line that denotes the lane. The vehicle uses its short
range IR range finder to detect these overhead markers as
it follows the lane. Figure 3 shows how this IR sensor is
mounted facing up towards the front of the vehicle to ensure
rapid detection when the vehicle passes under the marker.
The vehicle’s 9S12 MCU samples this sensor at 25Hz, which
is sufficient for the vehicles to reliably detect the markers.
To reduce the chance of false positives, the client on the
vehicle monitors the Traxxas’ wheel encoder and ensure
that consecutive markers are at least 15cm apart (they are
separated by at least 36cm in our test configuration). While
this critical point detection system suffices for our testbed,
the development of alternative more reliable mechanisms is
future work.

In addition to detecting the critical points around the
intersection, it is also important to detect which lane the
vehicle is in. Our system supports several options to achieve
this. The first is to manually specify this in the experiment
configuration file passed to the experiment manager. This is
acceptable since we need to manually place the robots at
their starting locations anyway, meaning we know a priori
how the vehicle will travel through the intersection. The
second option is to use an active range sensor like Cricket
motes installed at the base of markers at the approaching
points of the intersection and on the vehicle. As a vehicle
drives past an approaching marker, the cricket mote on the
vehicle determines the distance to the cricket mote on the
marker and its ID. Together, this information can identify
the lane the vehicle is in. Specifically, if the distance is

less than a threshold, the vehicle assumes it is in the lane
corresponding to the ID of the cricket on the marker. Other
technologies like RFID may also be used. In the experiments
presented in this paper, we use the first approach since it is
the simplest.

The software framework that implements the cyber-
portion of our system is primarily written in Java. We use
Java sockets and multicast sockets for network communi-
cation. A Java client interfaces with the Player robotics
framework, enabling our framework to control the vehicle’s
speed and steering and to receive short range IR read-
ings and wheel encoder information for detecting markers.
Object-oriented programming provides a highly extensible
and efficient implementation. All client daemons extend a
master abstract ClientDaemon that implements the core
services including lane following, critical point detection,
and entry/exit point detection mechanisms. Likewise, all
server daemons extend an abstract ServerDaemon that
provides the basic network and sensing interfaces. The same
client daemon is used in the V2I-Parallel, V2I-Sequential,
and Traffic Signal management schemes. This is because the
client does not need to know whether the server is allowing
simultaneous traversals of the intersection, or even imple-
menting traffic-signal semantics. In addition, the Stop Sign
client daemon extends the V2I-Parallel client daemon by
simply ignoring the approaching marker (all other behavior
in the Stop Sign client matches that of the V2I-Parallel client
daemon). In all, by exploiting the object-oriented nature of
the Java programming language, we provide an extensible
framework for evaluating autonomous intersections with
significant code reuse.

VI. EVALUATION

We used our testbed to evaluate our eight different inter-
section management policies. Four vehicles are configured
to cross a four-way intersection between a two 2-lane roads.
The starting locations of the vehicles and the dimensions of
the intersection are shown in Figure 5. The dimensions are
only shown for one lane since the other four lanes are the
same. During the experiment, the speed limit is set to 0.5m/s.
Note that 0.5m/s is a moderate speed since the distance
between the entrance and exit is 199cm, meaning a vehicle
may cross in only 4 seconds. For the Traffic Signal policy,
a 2-phase traffic signal was emulated with a 30s cycle time,
meaning up to b 304 c = 7 vehicles may cross per enabled
lane per cycle. After each experiment, we manually reset
the system by physically moving the vehicles back to their
start states and terminating and restarting all vehicle and
intersection software processes.

Each intersection management scheme was executed until
it ran flawlessly ten times (i.e., all four vehicles successfully
crossed the intersection without any collision). The reasons
for failure vary, but are usually due to factors unrelated to the

Vehicle	 	
“Ziegen”	

53cm	 36cm	 69cm	 69cm	 61cm	

Vehicle	 	
“Czechvar”	

Vehicle	 	
“Shiner”	

Vehicle	 	
“Manny”	

Figure 5. The starting configuration of all experiments performed,
and the dimensions of the intersection used in the evaluations.

intersection management policy.3 For example, most failures
include loss of the start experiment message sent by the
experiment manager to a vehicle, loose wires connecting
the IR or wheel encoder sensors to the MCU, out-of-
focus CMUCam2 vision sensor causing the vehicle to loose
the lane, and the vehicle’s batteries running out of power.
Logical errors in the implementation of an intersection man-
agement policy would sometimes cause failure. However,
such errors could usually be identified and replicated using
our testbed, enabling quick resolution, demonstrating how
our testbed can assist in debugging intersection management
policies.

For the V2I tests, the server was running on the same
machine as the experiment manager, an Apple Macbook Pro
laptop residing next to the testbed. The experiment manager
only runs prior to the start of the experiment and thus does
not consume any computational resources during the actual
experiment. In addition, both entities reside entirely within
the cyber-domain and thus are relatively agnostic to the
actual machine on which they run. The V2I client daemon
was configured to have a request timeout of two seconds,
meaning it would retransmit requests to the server at a rate
of 0.5Hz. Recall that in the current V2I schemes, the server
will simply ignore a request if it cannot be granted.

For the V2V tests, the broadcast period was randomly
selected between 100ms and 1s. This helps avoid repeated
collisions between synchronized beacon transmitters. The
maximum number of consecutive beacons that can be lost
before concluding that a node is disconnected is five. Thus,
if more than five seconds pass and no beacon is received
from a particular vehicle, the vehicle is removed from the
local vehicle’s neighbor list. The minimum safe duration
was set to 2.1s, meaning a node must wait 2.1s after
detecting a potential opportunity to cross the intersection

3For full details of all experiments including raw data and videos, see:
http://pharos.ece.utexas.edu/wiki/index.php/AutoInt#Experiments.

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

20	

Time	 in	 Intersec2on	 Grant	 Latency	 Wait	 Time	

Ti
m
e	
(s
)	

V2I-‐Sequen2al	 V2I-‐Parallel	 V2I-‐Reserva2on	 V2V-‐Sequen2al	

V2V-‐Parallel	 V2V-‐Reserva2on	 Traffic	 Signal	 Stop	 Sign	

Figure 6. The performance of the intersection management policies.

before concluding that it is safe. This period was selected to
enable all other competing vehicles to announce their state
at least twice during this period.

We used extensive logging to enable off-line analysis of
performance. In addition, all experiments were recorded by
an overhead camcorder enabling us to verify the experiment
physically worked (i.e., that all vehicles stopped where they
should and that there were no potential collisions).

The results are shown in Figure 6. They present the
average times over 10 successful executions of each type
of intersection management policy. The error bars denote
95% confidence intervals. We used three values to evaluate
the management policies: time in intersection, wait time,
and grant latency. Time in intersection is the time a node
spends between leaving the entrance and arriving at the
exit. In our scenario, the different intersection management
policies do not significantly impact this duration, which is
about 6s. Since the width of the intersection is 199cm, the
average speed was 199cm

6s = 0.33m/s, which is lower than
the 0.5m/s speed limit. The slower speed and longer time
in the intersection is due to some vehicles stopping at the
entrance and having to accelerate through the intersection.

The wait time is the duration a vehicle stops at the
entrance of the intersection prior to crossing. Among our
metrics, wait time is the most critical since it is a direct
cost in terms of increasing the time to cross the inter-
section; it is the source of the frustration in the example
scenario in Section I. The wait time was much smaller in
the V2I-Parallel and V2I-Reservation management policies
because two vehicles will have a wait time of near zero,
meaning they can immediately cross the intersection upon
arrival without slowing, and the other two vehicles will
only wait the amount of time it takes one vehicle to
cross the intersection since the other two are crossing in
parallel. The wait times are not zero in the reservation-
based policies because the vehicles could not decelerate
fast enough between the approaching and entering points
to the intersection. Clearly, separating these points more

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

Du
ra
%o

n	
(s
)	

Figure 7. Total duration of four vehicles crossing the intersection.

may further improve reservation-based policy performance.
Wait times are higher in the V2V policies than in the V2I
policies due to the overhead of distributed decision making,
specifically the 2.1s minimum safe duration a vehicle must
wait before it an be sure its decision is correct.

In V2I experiments, the grant latency is the time be-
tween when a vehicle first asks for permission to cross the
intersection and when it is granted permission. For V2V
experiments, it is the time between when a vehicle first wants
to gain access to the intersection and when it decides it has
access. The grant latency is clearly more variable across
schemes; it is significantly lower in the parallel schemes,
and the V2I-Reservation scheme is by far the best at only
0.23±0.03s since the server always grants a vehicle access,
though potentially at a future point in time.

Of particular interest is a comparison between the vari-
ous new management schemes relative to traditional traffic
signals and stop signs. In these experiments, traffic signals
have on average higher grant latencies and wait times than
stop signs since traffic signals essentially allow “batches” of
vehicles traveling along the same lane through, meaning our
use of four vehicles dispersed across all four lanes does not
play to this policy’s strength. Instead, such a traffic pattern
better fits a stop sign. More interestingly, V2V-Reservation
had a wait time nearly identical to that of Stop Sign (4.1 ±
0.7s versus 4.0 ± 1.2s). This implies that the amount of time
needed to perform V2V coordination equaled that of having
every node stop and query a central stop sign server for
directions. Finally, the results indicate that V2I-Reservation
is more than twice as efficient as a traditional stop sign in
terms of the wait time (1.7 ± 0.5s versus 4.0 ± 1.2s).

Finally, we estimate the aggregate traversal times of all
vehicles of the intersection by measuring the total duration
of intersection traversal, which is the time between the first
vehicle entering and the last vehicle exiting. The results
are shown in Figure 7. They indicate that among all of the
management policies, V2I-Reservation had the lowest (best)
duration of 10.0 ± 0.2s. This is lower than the stop sign,
which has a duration of 14.5 ± 0.4s. The V2V-Reservation

policy had a duration of 12.8 ± 0.2s, which also beats the
stop sign. When comparing the traditional traffic signal,
which has a duration of 26.9 ± 3.6s, to the newer V2I-
Reservation management policy, the aggregate traversal time
for four vehicles to cross the intersection is improved by
approximately 26.9−10.0

10.0 · 100 = 169% when using V2I-
Reservation.

VII. CONCLUSIONS AND FUTURE WORK

A rethink of the conventional infrastructure for our road-
ways is an essential counterpart to increasing autonomy
being incorporated into our vehicles. By instrumenting our
roads with cyber-physical infrastructure, the entire traveling
experience can be made safer, faster, more energy efficient
and more enjoyable. This paper represents a significant step
in this direction by focusing on instrumenting intersections,
which when combined with vehicular autonomy and coor-
dination, can enable faster intersection traversal times. In
particular, we construct a cyber-physical testbed for evaluat-
ing new intersection management policies. Our investigation
resulted in the design and implementation of one of the first
autonomous intersection testbeds with multiple real vehicles.
Unlike previous testbeds that are based partly or entirely
on simulation, our testbed can test the physical properties
and intersections of multiple physical vehicles entirely in
reality. An evaluation of numerous intersection protocols
illustrates the efficacy of our testbed and indicates that a V2I-
Reservation intersection management policy is superior to
both the traditional traffic signal and stop sign mechanisms
that we use today.

In the future, we intend to run larger experiments and
evaluate new intersection management policies using our
testbed. Past simulations indicate that more sophisticated
policies that perform advanced reservations and fine-grain
control of space-time within the intersection will result in
even greater efficiency [3], [8]. Additional investigation is
also needed to study the impact of 1) vehicles with vary-
ing speeds and dynamics, 2) traffic patterns with different
lane or intersection configurations, 3) pedestrians and non-
autonomous vehicles, 4) sensory inputs other than location.
To this end, we will extend our testbed to support turning,
switching lanes, swerving to avoid disabled vehicles, pri-
oritizing emergency vehicles, avoiding locations that may
contain non-autonomous entities, and experimenting with
additional sensors like laser range finders and cameras.
Ultimately we would like to scale up the testbed to use
life-size vehicles and mixed-reality simulations [4], and to
support multiple sequential autonomous intersections.

REFERENCES

[1] E. Guizzo, “How google’s self-driving car works,” http:
//spectrum.ieee.org/automaton/robotics/artificial-intelligence/
how-google-self-driving-car-works, October 2011.

[2] C. Squatriglia, “Audi’s robotic car drives better
than you do,” http://www.wired.com/autopia/2010/03/
audi-autonomous-tts-pikes-peak, March 2010.

[3] K. Dresner and P. Stone, “A multiagent approach to au-
tonomous intersection management,” Journal of Artificial
Intelligence Research, vol. 31, pp. 591–656, March 2008.

[4] M. Quinlan, T.-C. Au, J. Zhu, N. Stiurca, and P. Stone,
“Bringing simulation to life: A mixed reality autonomous
intersection,” in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2010.

[5] “DARPA grand challenge,” http://en.wikipedia.org/wiki/
DARPA Grand Challenge.

[6] R. Calo, “Nevada bill would pave the road to autonomous
cars,” http://cyberlaw.stanford.edu/node/6663, April 2011.

[7] S. Shladover, C. Desoer, J. Hedrick, M. Tomizuka, J. Walrand,
W.-B. Zhang, D. McMahon, H. Peng, S. Sheikholeslam, and
N. McKeown, “Automated vehicle control developments in
the path program,” IEEE Transactions on Vehicular Technol-
ogy, vol. 40, no. 1, pp. 114–130, 1991.

[8] D. Fajardo, T.-C. Au, T. Waller, P. Stone, and D. Yang, “Auto-
mated intersection control: Performance of a future innovation
versus current traffic signal control,” Transportation Research
Record (TRR), 2011.

[9] R. Naumann and R. Rasche, “Intersection collision avoidance
by means of decentralized security and communication man-
agement of autonomous vehicles.” in Proceedings of the 30th
ISATA - ATT/IST Conference, 1997.

[10] M. VanMiddlesworth, K. Dresner, and P. Stone, “Replacing
the stop sign: Unmanaged intersection control for autonomous
vehicles,” in AAMAS Workshop on Agents in Traffic and
Transportation, Estoril, Portugal, May 2008, pp. 94–101.

[11] J. Kolodko and L. Vlacic, “Cooperative autonomous driving at
the intelligent control systems laboratory,” Intelligent Systems,
IEEE, vol. 18, no. 4, pp. 8 – 11, jul-aug 2003.

[12] P. De, A. Raniwala, R. Krishnan, K. Tatavarthi, J. Modi,
N. A. Syed, S. Sharma, and T.-c. Chiueh, “Mint-m: an
autonomous mobile wireless experimentation platform,” in
Proceedings of the 4th international conference on Mobile
systems, applications and services, ser. MobiSys ’06. New
York, NY, USA: ACM, 2006, pp. 124–137. [Online].
Available: http://doi.acm.org/10.1145/1134680.1134694

[13] D. Johnson, T. Stack, R. Fish, D. M. Flickinger, L. Stoller,
R. Ricci, and J. Lepreau, “Mobile emulab: A robotic wireless
and sensor network testbed,” in INFOCOM 2006. 25th IEEE
International Conference on Computer Communications. Pro-
ceedings, april 2006, pp. 1 –12.

[14] C. Fok, A. Petz, D. Stovall, N. Paine, C. Julien, and
S. Vishwanath, “Pharos: A testbed for mobile cyber-physical
systems,” Univ. of Texas at Austin, Tech. Rep. TR-ARiSE-
2011-001, 2011.

[15] B. P. Gerkey, R. T. Vaughan, and A. Howard, “The
player/stage project: Tools for multi-robot and distributed
sensor systems,” in ICAR, 2003.

