
In IEEE 7th International Conference on Development and Learning (ICDL 08),
Monterey, California, USA,, August 2008.

TAMER: Training an Agent Manually via
Evaluative Reinforcement

W. Bradley Knox and Peter Stone
Department of Computer Sciences

University of Texas at Austin
Austin, Texas 78712–0233

{bradknox,pstone}@cs.utexas.edu

Abstract—Though computers have surpassed humans at many
tasks, especially computationally intensive ones, there are many
tasks for which human expertise remains necessary and/or useful.
For such tasks, it is desirable for a human to be able to transmit
knowledge to a learning agent as quickly and effortlessly as
possible, and, ideally, without any knowledge of the details of
the agent’s learning process. This paper proposes a general
framework called Training an Agent Manually via Evaluative
Reinforcement (TAMER) that allows a human to train a learning
agent to perform a common class of complex tasks simply by
giving scalar reward signals in response to the agent’s observed
actions. Specifically, in sequential decision making tasks, an agent
models the human’s reward function and chooses actions that it
predicts will receive the most reward. Our novel algorithm is
fully implemented and tested on the game Tetris. Leveraging the
human trainers’ feedback, the agent learns to clear an average
of more than 50 lines by its third game, an order of magnitude
faster than the best autonomous learning agents.

I. INTRODUCTION

Reinforcement learning has recently made great strides in
terms of applicability to complex sequential decision making
tasks [1], [2], [3]. Nonetheless, there remain many real world
applications in which tabula rasa learning either is intractable
or takes too long for practical purposes. For instance, when
learning on physical robots, extensive learning can subject
the robot to physical wear [4]; or when learning in “high
stakes” environments, suboptimal performance during learning
can lead to significant financial losses. In some cases, there
may be no alternative to learning from scratch. But in domains
in which humans have some intuition or expertise, it can be
necessary and/or useful to transfer knowledge about the task
at hand to learning agents so as to reduce learning time.

Currently, the vast majority of knowledge transfer from
humans to learning agents occurs through a programming
language interface. This method, unfortunately, is slow and
can only be harnessed by a small, technically trained subset
of the population. Work has been done to create systems that
allow humans to give advice to agents [5] or to demonstrate
the task for the agent [2]. But because of the complexity
of these two valuable methods, implementing them in a way
that is accessible to a user without technical training is still
challenging. Additionally, these methods respectively require
that the human be able to articulate advice about the task or
to perform the task herself.

In this paper, we develop a method by which the human
trainer can merely give positive and negative reinforcement
signals (called “reward” in the learning agent community) to
the agent. It only requires that a person can observe the agent’s
behavior, judge its quality, and send a feedback signal that can

be mapped to a scalar value (e.g. by button press or verbal
feedback of “good” and “bad”). We assert that the minimal
level of human expertise needed to train within our system
is less than the level required to give advice or demonstrate
correct behavior to the agent.

We extend early work [6] in which agents exploit human-
given reward signals to aid task learning. We propose a general
agent-trainer framework, called Training an Agent Manually
via Evaluative Reinforcement or simply TAMER, that makes
use of established supervised learning techniques to model a
human’s reward function and uses the learned model to choose
actions that are projected to receive the most reward. Further-
more, we describe a specific, fully implemented algorithm that
fits within the human training framework. We apply the novel
algorithm to the game of Tetris under the guidance of human
trainers. The agent learns a decent policy within 3 games, more
than an order of magnitude faster than the best autonomous
learning agents.

II. THE GENERAL TAMER FRAMEWORK

Sequential decision making tasks are commonly modeled
as Markov decision processes (MDPs). Though MDPs are
often addressed with reinforcement learning algorithms [7],
in this paper we focus on learning the reward function (R)
via supervised learning. A finite MDP is specified by the
tuple (S, A, T , γ, D, R). S and A are, respectively, the
sets of possible states and actions. T is a transition function,
T : S ×A×S → R, which gives the probability, given a state
and an action, of transitioning to another state on the next time
step. γ, the discount factor, exponentially decreases the value
of a future reward. D is the distribution of start states. R is
a reward function, R : S × S → R, where the reward is a
function of states st and st+1. Figure 1 shows a diagram of
traditional agent-environment interaction in an MDP.

Fig. 1. Traditional scheme of interaction between
agent and environment in a Markov Decision Pro-
cess.

Typically an
agent learns
autonomously via
environmental
interaction [7].
In this work, we
allow a human
trainer to give
feedback as
shown in Figure
2. The agent’s
interaction with
the environment
differs from the

Fig. 2. Framework for Training an Agent Manually via Evaluative Rein-
forcement (TAMER).

usual framework because the reward R function has has been
removed from the task specification, creating an MDP\R.
Instead, reward comes from a human trainer who receives
information about the current state, most likely via a visual
representation. Based on his or her evaluation of the agent’s
recent performance, the trainer can choose to give reward in
any form of expression that can be mapped to a scalar value.

Given the current state description, the agent’s goal is to
choose the action that will receive the most reward from the
human. To do this, the agent models the human’s “reward
function” and greedily chooses actions that it expects to earn
the most reward. After learning an accurate model of the
human’s reward, the agent can continue to perform the task in
the absence of the human, choosing actions that are predicted to
maximize the received reward if the human were present. Note
that the agent tries to maximize immediate reward, not expected
return (i.e. a discounted sum of all future reward), under
the assumption that the human trainer is already taking each
action’s long-term implications into account when providing
feedback.

This problem naturally lends itself to a supervised learning
approach. We treat each action as a training sample. Specif-
ically, for an action chosen at time t, the two states st and
st+1 are considered the attributes of the sample and the human
trainer’s reward for that action is considered the label. In more
complex domains, state feature vectors −→

ft and −−→
ft+1, derivable

from st and st+1, can be used as attributes instead.
Inconveniently for such an approach, reinforcement learning

research [8] has found that humans do not have a consistent
reward function. In fact, in the animal learning literature,
training by reinforcement (i.e. shaping) is defined as rewarding
successive approximations of the goal behavior [9]. In other
words, as performance increases, the trainer’s standards for
what are “good” actions and increase as well. Thus, human
reward functions are a moving targets. Therefore, function
approximators (i.e. supervised learning algorithms) that are
recency-weighted and allow incremental updates are neeeded.

A primary difference between our algorithm and most re-
lated work (exceptions are noted in Section III-C) is that
the reward function comes only from the human, and can
change according to the human’s changing desires, perhaps as it
seeks to fine-tune the agent’s performance. The environment’s
specification carries no information that determines “correct”

behavior. Behavior is correct if and only if the human trainer
deems it correct.

In principle, the agent could learn autonomously as well,
using both the trainer’s feedback and the environmental re-
ward, by combining it with an existing RL algorithm. Though
we consider this extension in Section VI, learning only the
human’s reward function is a challenging and important sub-
problem of creating such an agent that is worth examining
in isolation (by having the agent act greedily in accordance
with the learned reward function). Additionally, there are times
when the environmental reward function cannot be easily
defined, such as when several goals are being sought at once
(e.g. driving while staying on the road, avoiding obstacles, and
with high speed). Furthermore, for agents that serve humans,
sometimes the correct policy depends on the specific human’s
preferences. In these cases as well, learning from a specified
environmental reward function could be problematic.

III. COMPARISON TO OTHER METHODS OF HUMAN
TRAINING

We are not the first to attempt to learn from human knowl-
edge through natural interaction. In this section, we compare
TAMER, our training framework, to others that allow humans
to impart task knowledge to a learning agent. In comparison,
our framework is among the easiest to implement. It also
places a relatively small cognitive load and low demand of
task expertise on the human trainer. We argue that the relative
strengths and weaknesses of our training system put it in
a unique space that is not currently occupied by any other
approach. Furthermore, we believe that many of the approaches
we review are complementary to ours, and that an ideal learning
agent would blend elements of several of them.

A. Advice-taking agents
Advice, in the context of MDPs, is defined as suggesting an

action when a certain condition is true. Maclin and Shavlik
pioneered the approach of giving advice to reinforcement
learners[5].

Although the informational richness of advice is powerful, it
also places a larger burden, both attentional and temporal, on
the human than a simple expression of approval or disapproval.
Additionally, many current advice-taking systems [5], [10]
require that the human encode her advice into a scripting or
programming language, making it inaccessible to non-technical
users.

Giving advice via a natural language interface would reduce
the burden on a human. Though general natural language
recognition is yet unsolved, Kuhlmann et al. [11] created a
domain-specific natural language interface for giving advice
to a reinforcement learner. However, their natural language
unit requires manually labeled training samples, and work
still remains on embedding advice into established learning
algorithms.

In contrast, our system is relatively simple to implement.
Additionally, there will likely be times when the trainer knows
that the agent has performed well or poorly, but cannot deter-
mine exactly why. In these cases, advice will be much more
difficult to give than positive or negative feedback.

B. Learning by human example
Another approach is for a human to give the agent an

example of desired behavior, and then, from its observation,
the agent learns to copy the human’s example or even improve
on it. This promising approach goes by a number of names,
including imitation learning, learning by example, and learning
by demonstration. The human teacher can give a demonstration
either by performing the task with his or her own body [12]
or by controlling a device similarly to how the agent does [2]
(e.g. driving a robotic car). In a fully realized form, learning by
example will be a natural and effective means of transferring
knowledge from a human to a learning agent (or between
agents), allowing the agent to learn a competent policy before
taking a single action.

In Apprenticeship Learning [2], a subtype of learning by
example, the algorithm begins with an MDP\R (as does the
TAMER framework). A human temporarily controls the agent
(or something similar). From the human’s period of control, the
algorithm learns a reward function, and then the agent trains
on the MDP.

Both advice giving and learning by human example seem to
place a relatively high cognitive load on the human, decreasing
his or her ability to perform other tasks. This follows from the
inuitive assertion that evaluating a performance takes less cog-
nition than performing it oneself. Our interface only requires
such an evaluation and a feedback signal that can be mapped
to a scalar.

Additionally, considering the demonstration type in which
a human controls the machine as the agent would, there are
some tasks that are too difficult for a human trainer. This might
be because the agent has more actuators than can be put in a
simple interface (e.g. many robots) or because the task requires
that the human be an expert before being able to control the
agent (e.g. helicopter piloting in simulation). In these cases,
a demonstration is infeasible. But as long as the human can
judge the overall quality of the agent’s behavior, then he or she
should be able to provide feedback via our system, regardless
of the task’s difficulty.
C. Extracting Reward Signal from a Human

TAMER learns from a human’s reward signal. Another name
for training by human reward is clicker training. The name
comes from a form of animal training in which a audible
clicking device is previously associated with a reward and then
used as a reward itself to train the animal.

Most clicker training has involved teaching tricks to sim-
ulated or robot dogs. Kaplan et al. [13] and Blumberg et
al. [14] respectively implement clicker training on a robotic
and a simulated dog. Blumberg et al.’s system is especially
interesting, allowing the dog to learn multi-action sequences
and associate them with verbal cues. While interesting as
novel techniques of teaching pose sequences to their respective
platforms, neither is evaluated using an explicit performance
metric, and it remains unclear if and how these methods can
be generalized to other, possibly more complex MDP settings.

Thomaz and Breazeal [6] interfaced a human trainer with
a table-based, Q-learning agent in a relatively simple envi-
ronment. Their agent seeks to maximize its discounted total
reward, which for any time step is the sum of human reward

and environmental reward. This approach is a form of what is
called shaping in the reinforcement learning literature, which is
adding a supplementary reward function to the environmental
reward function. The TAMER framework, in contrast, does not
rely on shaping or temporal difference updates. Additionally,
while their system was in a simple environment, the TAMER
framework is designed with complex tasks (and thus function
approximation) specifically in mind.

In another example of mixing human reward with on-going
reinforcement learning, Isbell et al. [8] enable a social software
agent, Cobot, to learn to model human preferences in Lamb-
daMOO. Cobot “uses reinforcement learning to proactively
take action in this complex social environment, and adapts his
behavior based on multiple sources of human reward.” Like
Thomaz and Brazeal, the agent doesn’t explicitly learn to model
the human reward function, but rather uses the human reward
as a reward signal in a standard RL framework.

The TAMER system is distinguished from previous work
on human-delivered reward in that it is designed to work
in complex domains through function approximation. It also
uniquely forms a model of human reinforcement and uses that
for greedy action selection.

IV. IMPLEMENTED ALGORITHM

In this section we describe the learning algorithm. From a
high level, the algorithm uses supervised learning to model the
human’s reward function and then acts greedily according to
this model. It should not be seen as a reinforcement learning
(RL) algorithm as described by Sutton and Barto [7], though it
may be possible to use it in conjunction with RL algorithms.

As currently implemented, our algorithm relies on two
assumptions: 1) the task is deterministic, and 2) there is enough
time between actions for a human trainer to provide feedback.
We discuss how to relax them in Subsection V-C.

The learning algorithm consists of an overarching function
that loops once per time step, RunAgent() (shown in Algorithm
1), and the two functions that are called by RunAgent(),
UpdateRewardModel() and ChooseAction(). UpdateReward-
Model(), Algorithm 2, updates its model of the human’s reward
pattern based on feedback on a previous action. ChooseAc-
tion(), Algorithm 3, chooses an action based on the current
model of human reward. The core of the learning algorithm
is a linear function approximator (i.e. a perceptron), used in
line 6 of ChooseAction() and updated in line 6 of UpdateRe-
wardModel(). Unlike most other learning algorithms, only one
hand-tuned parameter is used, the update step-size parameter
α.

For line 3 of ChooseAction(), we assume that the transition
function is known. Agents that do not begin with such knowl-
edge of the transition function can model it using a number
of established techniques [7]. Since the model is only used to
look ahead a single step, we expect the algorithm to be tolerant
to small errors.

Like Abeel and Ng [2], who also work with MDP\Rs, in
our implemented algorithm we assume the reward function
can be reasonably modeled as a linear combination of state
feature values and learnable weights. However, our more
general algorithm, described in Section II, does not restrict
the representation of the reward function.

Algorithm 1 RunAgent()
Require: Input: α

1: t ← 0
2: −→w ← −→

0
3:

−−→
ft−2 ← −→

0
4:

−−→
ft−1 ← −→

0
5: a ← ChooseAction(st,−→w)
6: takeAction(a)
7: while true
8: t ← t + 1
9: if t ≥ 2

10: rt−2 ← getHumanFeedback()
11: if rt−2 %= 0
12: −→w ← UpdateRewModel(rt−2,

−−→
ft−1,

−−→
ft−2,−→w ,α)

13: a ← ChooseAction(st,−→w)
14: takeAction(a)
15: st ← getState()
16: ft−2 ← ft−1

17: ft−1 ← getFeatureV ec(st)

RunAgent() begins by initializing the time t, the weights
−→w for the reward model, and feature vectors −−→

ft−2 and −−→
ft−1.

It then calls ChooseAction() and takes its first action. At that
point, RunAgent() begins an endless loop that iterates once per
time step. Like many agents within MDPs, our agent receives
a full state description st and a reward signal rt−2 each time
step and chooses an action a. However, its reward signal comes
exclusively from a human trainer, not from the task enviroment.

The action chosen at time t − 2 is observed by the human
as it is enacted between time t − 2 and time t − 1, and then
the human can give feedback between time t − 1 and time t,
resulting in that action’s feedback only being processed two
turns later. Note that this one-step time delay can result in
a single repitition of an undesired move before the trainer
can negatively reinforce the first instance of the move. A
human reward signal of 0 is not considered feedback, since
the human could have left the agent to repeatedly perform
its learned policy. In the case of zero reward, the action is
considered an unlabeled sample and UpdateRewardModel() is
not called, as line 11 of Algorithm 1 shows. Before the loop
ends, ChooseAction() is called and the chosen action is taken.

A distinction of this algorithm is the it represents the action
in terms of how it will change the state. To represent an action
at time t, a vector of what we will call delta-features −−−−−→∆ft+1,t

are calculated by subtracting state feature vector −−→ft+1 from −→
ft .

These delta-features are the only action representation used.
Using the change in state as the features for each training
sample, the linear function approximator can richly capture the
effects of a continuous or discrete action, which, it might be
argued, are equivalent to the action itself.

UpdateRewardModel(), Algorithm 2, uses gradient descent
to adjust the weights of the linear funtion approximator. The
inputs are the human reward amount, rt−2, state feature vectors−−→
ft−2 and −−→

ft−1 (which represent the action as its effect on
the state from st−2 to st−1), the current weight vector −→w ,
and the step-size parameter αThe error is then calculated as
the difference between the projected reward (from inputting−−−−−−→∆ft−1,t−2 into the model) and the given reward for the action
chosen at time t − 2. For each delta-feature ∆ft−1,t−2,i, the

Algorithm 2 UpdateRewardModel()

Require: Input: rt−2,
−−→
ft−2,

−−→
ft−1,−→w ,α)

1: Set α as a parameter.
2:

−−−−−−→
∆ft−1,t−2 ← −−→

ft−1 −
−−→
ft−2

3: projectedRewt−2 ←
X

i

(wi × ∆ft−1,t−2,i)

4: error ← rt−2 − projectedRewt−2

5: for i in range(0, length(−→w))
6: wi ← wi + α× error × ∆ft−1,t−2,i)
7: return −→w

Algorithm 3 ChooseAction()
Require: Input: st,−→w

1:
−→
ft ← getFeatureV ec(st)

2: for each a ε getActions(st)
3: st+1,a ← T (st, a)
4:

−−−→
ft+1,a ← getFeatureV ec(st+1,a)

5:
−−−−−→
∆ft+1,t ←

−−−→
ft+1,a −−→

ft

6: projectedRewa ←
X

i

(wi × ∆ft+1,t,i)

7: return argmaxa(projectedRewa)

new weight is the product of the step-size parameter α, the
error, and the delta-feature. In other words, the weights are
moved towards those that would output the reward that the
human gave.

In the function ChooseAction(), the agent evaluates the
effects of each potential action and chooses the one it deems
most valuable. The inputs for a call of ChooseAction() at time
t are the state value st and the weights −→w . For each potential
action a in the set of legal actions, the agent looks ahead one
step, using the transition function T , and determines −−→

ft+1 for
the next state (at time t + 1). The delta-features −−−−−→∆ft+1,t are
calculated and input into the model to predict the reward that
each action would receive from the human trainer. The action
with the largest expected reward is chosen. If more than one
action maximizes the projected reward, one of the maximizing
actions is chosen randomly.

V. EXPERIMENTAL EVALUATION

In this section we describe Tetris, the domain in which we
have tested our algorithm, and the Tetris-specific aspects of
our algorithm. We then discuss how our results compare to
previous results.

A. The Experimental Domain: Tetris

Fig. 3. A screenshot
of RL-Library Tetris.

Tetris is a game played on a w×h grid
in which “tetrominoes,” different shapes
of four blocks, fall one at a time from the
top of the grid and stack upon the grid’s
base or any blocks below. If the blocks
fall such that there is a row completely
filled with blocks, then that line (i.e. row)
is “cleared” – all of the blocks in that row
disappear and all of the blocks in higher
rows shift down a row. When the blocks
stack up beyond the top of the grid, the
game ends. The goal of a Tetris player
is to maneuver the falling blocks in such a way as to clear as

TABLE I
RESULTS OF VARIOUS TETRIS AGENTS.

Method Mean Lines Cleared Training Games
at Game 3 at Peak for Peak

TAMER 65.89 65.89 3
RRL-KBR [17] 5 50 120
Policy Iteration [15] 0 (random until game 100) 3183 1500
Genetic Algorithm [18] 0 (random until game 500) 586,103 3000
CE+RL, Decr. Noise [16] 0 (random until game 100) 348,895 5000

many lines as possible before the game ends. Since clearing
a line moves blocks down, away from the top, clearing lines
allows a player to play longer, likely clearing more lines. Thus
we measure success in Tetris by the number of lines per game.

Most Tetris implementations, including the one we use,
are Markov Decision Processes. The particular implementation
of Tetris used within this project is RL-Library Tetris1. In
the version played by humans, the player’s choices are to
move the tetromino right or left, to rotate it clockwise or
counterclockwise, or to not move it all. Also, the game forces
a downward movement at each time step that is performed
after the player’s action. After a tetromino is placed, a new
one is randomly drawn from an uniform distribution of the
seven possible tetromino types and begins to fall from the top
of the grid. Unlike human players, all known Tetris-learning
algorithms, including ours, instead choose from among legal
tetromino placements. In other words, the agent does not make
independent decisions to move the tetromino left, right, etc.,
but rather chooses its final location from a list given by a
subroutine.

Even with the aid of such a list, Tetris remains a complex
and interesting challenge. Tetris is highly stochastic – RL-
Library Tetris draws tetromino types randomly from a uniform
distribution. Tetris also has an immense state space. For a board
size of m = w × h, it is greater than 2m.

B. Tetris-Specific Aspects of the Algorithm
We use 22 features to describe the Tetris state space of a

10×20 board. Ten of these are the ten column heights. One is
the height of the tallest column. Nine are the absolute values
of the height differences between adjacent columns. One is
the number of holes, defined as empty grid cells with at least
one block above in the same column. These state features are
taken from [15], who also used them with a linear function
approximator. A linear combination of these features has been
used successfully by a number of other researchers since and
described in papers including [16] (results shown in Table I).

Recall that Algorithm 3, ChooseAction(), requires a deter-
ministic transition function. In Tetris, though, new tetrominoes
are determined stochastically. Therefore, in our Tetris-specific
algorithm, the transition function is replaced with a function
that returns the deterministic afterstate, which is the board
configuration once the tetromino has been placed and before
the next tetromino appears. It does not allow the agent to know
what the next tetromino will be.

C. Discussion of algorithm and results
Using learning rate as a metric for comparison, our learning

algorithm outperforms previous autonomous learners by more

1code.google.com/p/rl-library/

-50

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5 6 7 8 9 10

L
in

e
s
 C

le
a

re
d

Game Number

Average Group Trainer Results

All trainers
AI background

No technical background
Random (uses initial weights)

Fig. 4. The average amount of lines cleared per game by experimental
group: all subjects, subjects who have an AI background, subjects who have
no computer science background, and the untrained agent using its initial
weights, which cause it to choose randomly.

than an order of magnitude. Figure 4 shows results from a
group of 5 trainers who are well-versed in artificial intelligence,
4 trainers who have no computer science background, and the
complete group of 9 trainers. The trainers were given limited
instructions2 and were not told anything about the agent’s
features or learning method other what was required to use
the interface. Separating the trainers into two groups was done
merely to show that the training method is accessible to non-
technical users. An investigation of group differences is beyond
the scope of this paper and would probably require significantly
more data and formal controls on subjects’ background to yield
conclusive results.

By the third game, on average, performance reached an
approximate peak of 65.88 lines cleared per game. Compared
to autonomous agents, this is incredibly fast. Ramon et al. RRL
agent reached somewhat lower performance after 120 games.
Others trained for a hundred or more games (see Table I) before
even changing from their initial policy. We should note that
Ramon et. al. rejected a form of their algorithm that reached
about 42 lines cleared on the third game. They deemed it
unsatisfactory because it unlearned by the fifth game and never
improved again, eventually performing worse than randomly.
Ramon et al.’s agent is the only one we found that approaches
the performance of our system after 3 games.

Most trainers quit giving feedback by the end of the fifth
game, stating that they did not think they could train the agent
to play any better. Therefore most agents are operating with
a static policy by the sixth game. Score variations come from
the stochasticity inherit in Tetris, including the highest scoring
game of all trainers (809 lines cleared), which noticeably brings
the average score of game 9 above that of the other games.
Figure 5 shows, in rough terms, how much feedback was
given each game. Specifically, each data point is the sum
of the absolute value of reward given for the corresponding
game, averaged across all trainers. It shows that the amount of
feedback per game increases with the lengths of the games until
the third game. After this, the amount of feedback plummets,
despite the games lasting approximately as long.

2Exact instructions can be seen at www.cs.utexas.edu/∼bradknox/icdl08.html

!"

!#"

!$""

!$#"

!%""

!%#"

!&""

!&#"

!'""

!$!% !& !' !# !(!) !* !+ !$"

M
e
a
n
!A
1
s
o
lu
te
!7
a
lu
e
!o
f!
R
e
:
a
rd
!=
iv
e
n

=ame!Aum1er

Mean!A1solute!7alue!of!Re:ard!=iven!Per!=ame

Fig. 5. The average amount of reward given per
game (absolute values of feedback were used for
the calculation).

The peak
performance
of our Tetris
agent, however, is
significantly lower
than other top
learning agents.
Since it uses the
same function
approximator
as some of the
higher performing
algorithms, it
seems that it
should also perform equally well. From our informal analysis,
it seems that the low peak performance is likely a limitation
of applying incremental updates with a constant step size α
to the function approximator. Tetris has repeatedly frustrated
attempts to train a classical Q-learning or SARSA agent (e.g.
[15] and from our experience), which also use incremental
updates. It also might be that the features and linear function
approximator are expressive enough to describe a policy that
can clear hundreds of thousands of lines per game, but it is
not quite expressive enough to model a value function (as in
SARSA) or a reward function like we do.

Despite the low (but precedented) peak performance, the
agent’s learning speed represents a significant step forward.
For agents that incur a real cost (material wear, endangerment,
etc.) from time spent training or failures at the task, using
our algorithm is a vastly more appealing option than learning
autonomously.

As mentioned in Section IV, for our training algorithm to
work as implemented, the task environment must satisfy two
assumptions. For each assumption, we describe a straightfor-
ward extension that allows the assumption to be relaxed.

First, the algorithm assumes that the task is deterministic (or
in the Tetris case, that there are deterministic afterstates). For
a non-deterministic enviroment, the transition function would
return a set that holds the probabilities of transitioning to each
possible state. To extend our algorithm to handle this, when
ft+1 is calculated for any action, it is the weighted sum of the
features of all possible states.

Second, this algorithm also requires that there is enough time
between actions for a human to give feedback on the previous
action. Many common MDP tasks, including mountain car,
pole balancing, and acrobat, violate this assumption. For tasks
with more frequent actions, our algorithm could be generalized
by using eligibility traces [7], applying the feedback to all
previous actions under a factor that exponentially decays the
effect of the feedback as actions are farther back in time from
the feedback signal.

VI. CONCLUSION AND FUTURE WORK

We have presented a general framework, called Training an
Agent Manually via Evaluative Reinforcement (TAMER), and
a fully implemented algorithm that allows a human to train
a learning agent to perform a task via a scalar reward signal.
The algorithm was applied to the complex domain of Tetris, and

empirical results show that it is effective in the hands of people
with and without technical backgrounds, increasing learning
speed by more than an order of magnitude. The algorithm has
a simple interface and is relatively easy to implement, having
only one parameter (α).

There are numerous directions to proceed from the work
reported in this paper. In future work we intend to apply
this to more varied tasks to test extensions including having
the agent learn the transition function, using a weighted sum
of next state features in a nondeterministic environment, and
using eligibility traces to apply feedback over more all previous
actions. We are also investigating how to combine the human
training framework with an autonomous learner to allow the
agent to learn both with the human’s feedback and in its
absense.

ACKNOWLEDGMENTS

This research is supported in part by NSF CAREER award
IIS-0237699 and the DARPA IPTO Bootstrap Learning pro-
gram.

REFERENCES

[1] G. Tesauro, “TD-Gammon, a self-teaching backgammon program,
achieves master-level play,” Neural Computation, vol. 6, no. 2, pp. 215–
219, 1994.

[2] P. Abbeel and A. Ng, “Apprenticeship learning via inverse reinforcement
learning,” ACM International Conference Proceeding Series, 2004.

[3] P. Stone, R. S. Sutton, and G. Kuhlmann, “Reinforcement learning for
RoboCup-soccer keepaway,” Adaptive Behavior, vol. 13, no. 3, pp. 165–
188, 2005.

[4] N. Kohl and P. Stone, “Machine learning for fast quadrupedal locomo-
tion,” in The Nineteenth National Conference on Artificial Intelligence,
July 2004, pp. 611–616.

[5] R. Maclin and J. W. Shavlik, “Creating advice-taking reinforcement
learners,” Machine Learning, vol. 22, pp. 251–282, 1996.

[6] A. Thomaz and C. Breazeal, “Reinforcement Learning with Human
Teachers: Evidence of Feedback and Guidance with Implications for
Learning Performance,” AAAI-2006.

[7] R. Sutton and A. Barto, Reinforcement Learning: An Introduction. MIT
Press, 1998.

[8] C. L. Isbell, Jr., M. Kearns, S. Singh, C. Shelton, P. Stone, and
D. Kormann, “Cobot in LambdaMOO: An adaptive social statistics
agent,” Autonomous Agents and Multiagent Systems, vol. 13, no. 3,
November 2006.

[9] M. Bouton, Learning and Behavior: A Contemporary Synthesis. Sinauer
Associates, 2007.

[10] D. Moreno, C. Regueiro, R. Iglesias, and S. Barro, “Using prior
knowledge to improve reinforcement learning in mobile robotics,” Proc.
Towards Autonomous Robotics Systems. Univ. of Essex, UK, 2004.

[11] G. Kuhlmann, P. Stone, R. Mooney, and J. Shavlik, “Guiding a re-
inforcement learner with natural language advice: Initial results in
RoboCup soccer,” in The AAAI-2004 Workshop on Supervisory Control
of Learning and Adaptive Systems, July 2004.

[12] S. Schaal, “Is imitation learning the route to humanoid robots?” Trends
in Cognitive Sciences, vol. 3, no. 6, 1999.

[13] F. Kaplan, P. Oudeyer, E. Kubinyi, and A. Miklósi, “Robotic clicker
training,” Robotics and Autonomous Systems, vol. 38, no. 3-4, 2002.

[14] B. Blumberg, M. Downie, Y. Ivanov, M. Berlin, M. Johnson, and
B. Tomlinson, “Integrated learning for interactive synthetic characters,”
Proc. of the 29th annual conference on Computer graphics and inter-
active techniques, 2002.

[15] D. Bertsekas and J. Tsitsiklis, Neuro-Dynamic Programming. Athena
Scientific, 1996.

[16] I. Szita and A. Lorincz, “Learning Tetris Using the Noisy Cross-Entropy
Method,” Neural Computation, vol. 18, no. 12, 2006.

[17] J. Ramon and K. Driessens, “On the numeric stability of gaussian
processes regression for relational reinforcement learning,” ICML-2004
Workshop on Relational Reinforcement Learning, pp. 10–14, 2004.

[18] N. Bohm, G. Kokai, and S. Mandl, “Evolving a heuristic function for
the game of Tetris,” Proc. Lernen, Wissensentdeckung und Adaptivitat
LWA, 2004.

