
In Proceedings of the International Conference on Electronic Commerce (ICEC 06),
Fredericton, Canada, August 2006.

Adaptive Mechanism Design: A Metalearning Approach

David Pardoe Peter Stone
Department of Computer Sciences
The University of Texas at Austin

{dpardoe, pstone}@cs.utexas.edu

Maytal SaarTsechansky Kerem Tomak
McCombs School of Business

The University of Texas at Austin

{Maytal.SaarTsechansky,
Kerem.Tomak}@mccombs.utexas.edu

ABSTRACT

Auction mechanism design has traditionally been a largely ana-

lytic process, relying on assumptions such as fully rational bid-

ders. In practice, however, bidders often exhibit unknown and

variable behavior, making them difficult to model and complicat-

ing the design process. To address this challenge, we explore the

use of an adaptive auction mechanism: one that learns to ad-

just its parameters in response to past empirical bidder behavior

so as to maximize an objective function such as auctioneer rev-

enue. In this paper, we give an overview of our general approach

and then present an instantiation in a specific auction scenario.

In addition, we show how predictions of possible bidder behav-

ior can be incorporated into the adaptive mechanism through a

metalearning process. The approach is fully implemented and

tested. Results indicate that the adaptive mechanism is able to

outperform any single fixed mechanism, and that the addition of

metalearning improves performance substantially.

Categories and Subject Descriptors

I.2.6 [Computing Methods]: Artificial Intelligence—Learning

General Terms

Algorithms, Economics
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1. INTRODUCTION
Recent years have seen the emergence of numerous auction

platforms that cater to a variety of markets such as business
to business procurement and consumer to consumer transac-
tions. Many different types of auction mechanisms defining
the rules of exchange may be used for such purposes. Vary-
ing parameters of the auction mechanism, such as auction-
eer fees, minimum bid increments, and reserve prices, can
lead to widely differing results depending on factors such as
bidder strategies and product types. This paper considers
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learning auction parameters so as to maximize an objec-
tive function, such as auctioneer revenue, as a function of
empirical bidder behavior.

Mechanism design has traditionally been largely an ana-
lytic process. Assumptions such as full rationality are made
about bidders, and the resulting properties of the mechanism
are analyzed in this context [12]. Even in large-scale real-
world auction settings such as the FCC Spectrum auctions,
game theorists have convened prior to the auction to deter-
mine the best mechanism to satisfy a set of objectives. His-
torically, this process has been incremental, requiring several
live iterations to iron out wrinkles, and the results have been
mixed [6, 20]. An important component of this incremental
design process involves reevaluating the assumptions made
about bidders in light of auction outcomes. In particular,
these assumptions pertain to bidders’ intrinsic properties
and to the manner by which these properties are manifested
in bidding strategies. For example, it is known that the
expected revenue of first-price and second-price sealed-bid
auctions are the same, assuming risk-neutral, fully rational
bidders. In general, assumptions are often made about

• Bidders’ motivating factors such as valuation distribu-
tions and risk aversion;

• Information that is available to the bidders; and

• Bidder rationality.

Even when the assumptions about bidders can be suc-
cessfully revised based on their past behavior, the process
requires human input and is time consuming, undermining
the efficiency with which changes can be made to the mech-
anism. In the case of the FCC spectrum auctions, months
or years elapse between each iteration, leaving time for the
experts to reconvene and update the mechanism. But in e-
commerce settings in which a large number of auctions for
similar goods may be held within a short time frame, such
as auctions on eBay or Google keyword auctions, this ineffi-
ciency is a serious drawback. Perhaps the biggest challenge
results from the fact that, in practice, bidders are not able
to attain full rationality in complex, real-world settings [9].
Rather, they employ heuristic strategies that are in general
opaque to the seller, certainly a priori, and often even after
the auction.

One method of addressing these challenges that has re-
ceived recent attention is the use of machine learning algo-
rithms to revise auction parameters in response to observed
bidder behavior. For instance, [2] and [3] consider the prob-
lem of maximizing seller revenue in online auctions through



the use of online learning algorithms for combining “expert”
advice. Such approaches differ significantly from the tradi-
tional approach to mechanism design in that few or no as-
sumptions are made about bidders, and auction mechanisms
are evaluated based on worst-case performance.

In this paper, we present somewhat of an intermediate
approach. As with the methods described in the previous
paragraph, we consider an adaptive mechanism that changes
in response to observed bidder behavior through the use of
a learning algorithm. However, we assume that reasonable
predictions about a range of possible bidder behaviors can
be made, and we choose the learning algorithm in such a
way that expected performance is optimized with respect to
these predictions.

In particular, we present an adaptive mechanism in which
a continuous parameter defining the mechanism is dynam-
ically adjusted over time, thus enabling a parameter opti-
mization approach. In this context, we propose a metalearn-

ing process by which the method of parameter optimization
is itself parameterized and optimized based on experiences
with different populations of bidders.

The main contribution of this paper is the specification,
implementation, and empirical testing of an adaptive mech-
anism designed to maximize auctioneer revenue in the face
of an unknown population of bidders with varying degrees of
loss-aversion, a particular form of bidder irrationality that
has been observed in empirical studies. We describe our ap-
proach to designing adaptive mechanisms at a high level in
the next section. Section 3 describes an auction scenario
involving loss averse bidders, and we present an illustrative
application of our adaptive approach to this scenario in Sec-
tion 4. Experimental results are presented in Section 5 for
this scenario, along with results for modified scenarios de-
signed to illustrate the robustness of our method. We discuss
how our approach compares to related work in Section 6, and
Section 7 concludes.

2. ADAPTIVE MECHANISM DESIGN
To motivate the problem under consideration, we begin

with an illustrative example that we will refer to throughout
this section. Consider the challenge faced by a seller auction-
ing off items through an auction service such as eBay. For
each auction, the seller must set various parameters defining
the particular auction mechanism to be used. (In the case
of eBay auctions, these parameters include the start time
and duration, start price and reserve price, and possibly a
buy-it-now price.) The behavior of bidders depends heavily
on the type of item being sold; for instance, buyers of rare
coins and buyers of video games are likely distinct popula-
tions with very different approaches to bidding. As a result,
the mechanism that works best for one type of item may not
be appropriate for a different item.

The goal of the seller is to identify the auction param-
eters that will result in the highest revenue for each item
sold. When extensive historical data on past auctions of
identical items is available (as is the case with eBay), it may
be possible for the seller to estimate the optimal parame-
ters by analyzing this data (e.g. [16]). This approach is not
always possible, however. If the seller is introducing a new
item to the market, no such data will be available. Alter-
natively, if there is a sudden change in demand for an item,
past data may not accurately reflect the behavior of current
bidders. In such cases, the seller must guess which auction

parameters will work best. If the seller has multiple identical
items to sell, however, then it may be possible for the seller
to learn from its own experience about the effectiveness of
various parameter settings.

This situation illustrates the general problem considered
in this paper. While the effectiveness of an auction mecha-
nism can vary drastically as a function of the behavior of bid-
ders, this behavior is often difficult to predict when choosing
the mechanism. In settings in which a large number of sim-
ilar auctions are held, it may be reasonable to assume that
although bidders’ behaviors may change, they remain some-
what consistent for a period of time, suggesting the possi-
bility of learning about bidder behavior through experience.
For example, the bidders on a particular Google keyword
may remain the same for some time, and identical items on
eBay will likely attract similar buyers. For such settings, we
suggest the use of what we call adaptive mechanism design,
an online empirical process whereby the mechanism adapts
to maximize a given objective function based on observed
outcomes. Because we allow for situations in which bid-
der behavior cannot be predicted beforehand, this process
must be performed online during interactions with real bid-
ders. (In this paper, the term “online” refers to the fact that
adaptation takes place during the course of actual auctions,
and not the fact that auctions take place electronically –
although that may also be the case.)

Our view of adaptive mechanism design is illustrated in
Figure 1. A parameterized mechanism is defined such that
the seller can use an adaptive algorithm to revise parameters
in response to observed results of previous auctions, choos-
ing the most promising parameters to be used in future auc-
tions. Upon execution, the parameterized mechanism clears
one or more auctions involving a population of bidders with
various, generally unknown, bidding strategies. The results
of the auction are then taken as input to the adaptive algo-
rithm as it revises the mechanism parameters in an effort to
maximize an objective function such as seller revenue. Any
number of continuous or discrete auction parameters may be
considered, such as reserve prices, auctioneer fees, minimum
bid increments, and whether the close is hard or soft. (For
an extensive parameterization of the auction design space,
see [21].)

The adaptive algorithm is essentially an online machine
learning algorithm aiming to characterize the function from
mechanism parameters to expected revenue (or any other
objective function). Because the seller can select its own
training examples (by choosing which set of auction param-
eters to try next), and because the target output is, in gen-
eral, continuous, the problem is an active learning [15] re-
gression problem. A key characteristic is that the learning is
all done online, so that excessive exploration can be costly.

The bidders in Figure 1 may use a variety of different bid-
ding strategies, including heuristic, analytic, and learning-
based approaches. For the latter to make sense, the same
bidders must interact repeatedly with the mechanism, lead-
ing to a potential co-evolutionary scenario in which the bid-
ders and mechanism continue to adapt in response to each
other [13]. However, our approach does not depend on re-
peated interactions with the same bidders. The only re-
quired assumption about the bidders is that their behavior
is somewhat consistent (e.g. bidders associated with a par-
ticular industry tend to bid similarly) for a sufficient period
of time to allow for prediction of auction results as a function
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Figure 1: A high-level illustration of the concept of
adaptive mechanisms. From the point of view of the
seller, the bidder behaviors are unknown aspects of
the environment.

of the mechanism, at least in expectation.
The use of an adaptive mechanism provides the possibility

of identifying effective auction parameters even without ex-
plicitly modeling the bidders. However, if predictions can be
made about the types of behavior to be expected, it makes
sense to choose the adaptive algorithm in a way such that
the adaptive mechanism performs well when bidder behavior
conforms to these predictions.

To illustrate, suppose that the seller from our previous
example has a large number of copies of a newly published
book to be sold through a series of auctions1. As the books
are new, there are no previous auction results available to
guide the choice of auction parameters. The seller is not
completely in the dark, however, because auction results for
books by similar authors or on similar topics are available,
and these books likely attract bidder populations with char-
acteristics similar to those of potential bidders on the new
book. If the seller wanted to choose a single set of auction
parameters, a reasonable choice might be the parameters
that were best for the most similar book, or an average of
the best parameters for several similar books. If instead the
seller wishes to use an adaptive mechanism and needs to
choose the adaptive algorithm for it, it makes similar sense
for the seller to choose an adaptive algorithm that would

have worked well for these similar books. To determine how
well an adaptive algorithm would have worked for a partic-
ular book, the seller could attempt to simulate the behavior
of the population of bidders for that book using the past
auction data, and apply the adaptive algorithm to these
simulated bidders.

Alternatively, suppose that the seller receives marketing
information suggesting valuations that buyers might have
for the book, along with information suggesting bidding
strategies that bidders tend to use in such auctions. Again,
if the seller wishes to use an adaptive mechanism, it makes
sense to choose an adaptive algorithm that would work well

1This scenario suggests the possibility of selling multiple
items simultaneously, a topic explored in previous work on
adaptive mechanisms [11]. In this paper, however, we re-
strict our attention to sequential, single item auctions, which
may be most appropriate or even required in some settings.

if this information is correct. The seller could again evalu-
ate an adaptive algorithm by simulating a number of bidder
populations that are plausible given the information avail-
able and applying the algorithm to each population.

In both cases, we have a seller that wishes to choose an
adaptive algorithm in order to implement an adaptive auc-
tion mechanism, and the seller is able to make predictions
concerning possible bidder behavior that allow it to simu-
late a number of possible bidder populations. The goal of
the seller is to choose an adaptive algorithm that performs
well with the actual bidder population it encounters, but as
this population is unknown in advance, the seller attempts
to identify an adaptive algorithm that performs well under
simulation but maintains the ability to adapt in the case of
unexpected bidder behavior. (For clarity, we will use the
term encountered population in the following text whenever
referring to the actual encountered population, and not a
simulated population.)

In this paper, we explore a metalearning [19] approach to
choosing the adaptive algorithm. Specifically, we choose an
adaptive algorithm that is itself parameterized, and then
search for the parameters that result in the best perfor-
mance under expected bidder behavior as implemented in
simulation. In metalearning, the goal is to improve the per-
formance of a learning system for a particular task through
experience with a family of related tasks. In our case, the
learning system is the adaptive algorithm, and the family
of related tasks is the set of different bidder populations
generated during simulation.

The steps in the metalearning process of choosing an adap-
tive auction mechanism to maximize a particular objective
function are thus as follows:

1. Choose the parameterization of the auction.

2. Make predictions about possible bidder behavior that
allow for simulation. Sources for these predictions may
include analytically derived equilibrium strategies, em-
pirical data from past auctions in a similar setting, and
learned behaviors.

3. Choose the adaptive algorithm and its parameters.

4. Search the space of parameters of the adaptive algo-
rithm to find those that best achieve the objective in
simulation.

In the following sections, we present an illustrative appli-
cation of this approach to a particular auction scenario.

3. AN AUCTION SCENARIO
In this section we provide a concrete auction scenario in

which adaptive mechanism design can be put to good use.
In particular, we consider bidder populations with a specific
form of irrationality that has been observed empirically: loss
aversion. First we introduce the concept of loss averse bid-
ders, then we describe the auction scenario and provide a
means of simulating bidder behavior under this scenario.

3.1 Loss averse bidders
We consider an English (ascending, open-cry) auction in

which the bidders have independent, private (i.e., unknown
to other bidders) values for the goods being sold. Bidders
submit ascending bids until no incremental bids are made



above the winning bid. We assume that the seller may set
a reserve price indicating the minimum acceptable bid. In
the absence of any bid higher than the reserve price, no
transaction occurs. It has been shown that when bidders are
rational, the optimal reserve price should be higher than the
seller’s valuation of the item [10]; however, a reserve price
of 0 is often seen in practice.

Dodonova and Khoroshilov explain this phenomenon by
bidders’ loss aversion [8]. Loss aversion violates the ratio-
nality assumption because the utility from a gain is lower
than the disutility from a loss of the same magnitude. Specif-
ically, if the marginal utility from winning an auction is x,
then the marginal disutility from losing the same object is
αx, where α > 1. A bidder considers that it is “losing” an
item if it was the high bidder at some point in the auction,
but then does not win the item. Thus, in practice, a loss-
averse bidder bids more aggressively after having had the
highest bid at any point during the auction.

We assume that the bidders are, to varying degrees, loss
averse. Note that if α = 1 we arrive at the traditional loss
neutral bidders as a degenerate case. Under these assump-
tions and model setup, Dodonova and Khoroshilov derive
the equilibrium as follows. Assuming two loss averse bid-
ders, a first mover submits a bid in the beginning of the
auction if his valuation is higher than the reserve price. The
second bidder responds by submitting an increment above
the current winning bid only if by doing so the bidder can
guarantee a positive expected utility. In particular, this will
be the case only if

Z v2

r

(v2 − αv1)f(v1)dv1 > 0

where r is the reserve price, v2 is the second bidder’s valua-
tion, and f is the (known) probability distribution function
over valuations. Intuitively, the second bidder recognizes
that loss aversion may lead him to pay more than his valua-
tion if the first bidder’s valuation is sufficiently high, making
him more reluctant to enter the auction. With only one ac-
tive bidder, the auctioneer’s revenue is decreased.

If all bidders participate, the auction continues as a stan-
dard ascending price English auction until a bidder’s marginal
utility from losing the object is less than the (potential) win-
ning bid, i.e, the losing bidder will bid up to α times his
valuation and then drop out. This equilibrium can cause
the seller’s optimal reserve price to be 0 under certain con-
ditions. For instance, if f is a uniform distribution, a reserve
of 0 will maximize the seller’s revenue for values of α above
1.3. The equilibrium can also result in a non-convex revenue
as a function of reserve price, with one maximum close to
zero and another at a much higher reserve price, as shown
in Figure 2. Thus the auctioneer has potential incentives
to set both a low reserve price and a high reserve price, a
conflict that must be taken into account when choosing a
method of searching for the optimal reserve price.

3.2 Scenario description
We consider a scenario in which a seller interacts repeat-

edly with bidders drawn from a fixed population (character-
ized by distributions over valuations and α).

The seller has n identical items that are sold one at a time
to bidders from the population through a series of n English
auctions. To allow the use of the equilibrium strategy as
presented in the previous section, we assume that exactly

two bidders participate in each auction, and that these bid-
ders participate in no other auctions.2 The seller sets a
reserve price for each auction, thus restricting the possible
bids available to the bidders and indirectly affecting the auc-
tion’s outcome. The seller’s goal is to set the reserve price
for each auction so that the total revenue obtained from all
the auctions is maximized. If a complete model of the be-
havior of the population of bidders were available, the seller
could determine the optimal reserve price analytically by
solving for the reserve price maximizing expected revenue
under this model. However, we assume that the seller does
not have such a complete model, for instance because it is
a new item, or even just a new set of bidders. Thus, the
seller must identify the optimal reserve price through online
experimentation guided by an adaptive mechanism.

A bidder is characterized by i) an independent, private
value v for the sold item, and ii) a degree of loss-aversion
α. The seller knows that bidders have independent, private
values, and are likely loss averse. The seller is also able
to estimate the ranges of values for bidders’ valuations and
degrees of loss aversion ([vmin, vmax] and [αmin, αmax]),
but does not know the actual distributions from which these
values are drawn, or the strategies bidders will employ.

We assume that a given bidder assigns the same value to
any one of the items sold. In addition, the population of
bidders (characterized in this case by distributions over val-
uations and α) does not change over time (unless otherwise
stated). Thus, the behavior exhibited by bidders are the
same for each auction in expectation, allowing the seller to
draw inferences from past auction results.

3.3 Bidder simulation
As described in Section 2, although the seller does not

have a complete model of the behavior of the encountered
bidder population, it is still possible to take advantage of
the partial knowledge that is available to guide the selection
of the adaptive algorithm. In order to do so, the seller needs
a method of generating plausible bidder behavior to allow
evaluation of the adaptive mechanism in simulation. We
now describe the method of generating bidder behavior that
will be used by the seller in the experiments of this paper.
First, however, we emphasize that while the seller may make
a number of simplifying assumptions about bidders, such
assumptions have no direct impact on the implementation
of the learning approach that will be described in the next
section. From the standpoint of the learning approach, the
seller’s simulation of bidders simply represents a black box
used to produce auction results, and the bidders simulated
may be arbitrarily complex.

To define the scenario, we choose the following values and
make them available to the seller: n = 1000, vmin = 0,
vmax = 1, αmin = 1, and αmax = 2.5. The distributions
from which v and α are drawn, and the strategies that take
these values as inputs, are unknown. In order to simulate
a set of n auctions, which we will refer to as an episode,
these unknowns must be specified, which the seller does as

2In principle, our learning approach should extend naturally
to auctions with more than two bidders and bidders that
participate in multiple auctions. However, doing so would
require a much more complicated bidder model. Since it is
the learning approach that is the focus of the paper, and
not the bidding strategies, we restrict the bidding scenario
for the sake of simplicity. Evaluating our methods in more
complex scenarios is an area of ongoing work.



follows. For each episode the seller wishes to simulate, it
first randomly generates an “arbitrary” distribution for val-
uations by taking a Gaussian with a mean chosen uniformly
from [0, 1] and a variance of 10x with x chosen uniformly
from [-2, 1], and then normalizes the distribution so that the
portion over the range [0, 1] represents a PDF. The seller
then generates a distribution for α in the same way, choos-
ing variance as before and using a range of [1, 2.5] for both
the mean and the entire distribution.

The seller simulates bidder behavior by having bidders fol-
low the equilibrium strategy given in Section 3.1 under the
assumption that the other bidder has the same α (because
this is the situation to which the equilibrium solution ap-
plies). Thus for each auction in an episode, the seller draws
two values from the valuation distribution, draws a single α
from the α distribution, randomly assigns one bidder to be
the initial bidder, and then has both bidders bid as specified
in the equilibrium strategy.

This approach to simulating bidder behavior could be
viewed as specifying a probability distribution over bidder
populations, and drawing a population from this distribution
for each episode to be simulated. Essentially, the seller is ad-
dressing its uncertainty about bidder behavior by training
the mechanism to adapt to a variety of bidder populations.
It is important to note that the seller’s belief in the distri-
bution over populations need not be accurate. Furthermore,
this distribution need not be expressed explicitly as a func-
tion – it may be any algorithm that can generate bidder
behavior, such as a learning algorithm. All that matters
is that the seller be able to to generate experience with a
variety of different representative bidder populations.

Figure 2 helps illustrate the task faced by the seller. The
left side shows the average revenue as a function of reserve
price for three different populations. (The mean of v, vari-
ance of v, mean of α, and variance of α are 0.8, 0.01, 1, and
0.1 respectively for population A; 0.3, 1, 1.75, and 1 for pop-
ulation B; and 0.4, 0.1, 1.5, and 0.01 for population C.) In
each case, the function has a different shape and a different
maximum. On the right side of Figure 2, average results are
shown for 10,000 bidder populations, generated as described
above. The solid line represents the average revenue for each
choice of reserve. A reserve price of 0.54 yields the highest
average revenue, 0.367. If we were required to select a sin-
gle reserve price for the seller to use, we would choose this
price. However, we know that for each individual bidder
population there is a distinct choice of reserve that yields
the highest average revenue. In particular, the dotted line
shows the number of times that each reserve (tested at inter-
vals of 0.01 between 0 and 1) was optimal. Two important
observations can be made: i) despite the variety in bidder
populations, the optimal reserve price is frequently in one of
two small regions (including near zero, as is expected with
loss averse bidders); ii) nevertheless, most choices of reserve
are optimal for some population. The second observation
motivates our use of an adaptive mechanism, while our goal
in learning the parameters of the adaptive algorithm is to
take advantage of the first observation. Specifically, we aim
to use the knowledge represented by the first observation
to focus the mechanism’s exploration, biasing it towards re-
serve prices that are more likely to be best.

4. ADAPTIVE MECHANISM IMPLEMEN
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Figure 2: The graph on the left shows the aver-
age revenue for each reserve price for three different
populations. The graph on the right shows average
results for 10,000 populations. The solid line rep-
resents the average revenue for each reserve price,
while the dotted line represents the number of times
each price was optimal.

As specified at the end of Section 2, for the auction sce-
nario with the specific goal of maximizing revenue over n
auctions, we have now 1) chosen the auction parameteriza-
tion (the reserve price represents a single, continuous param-
eter), and 2) described a means of generating bidder behav-
ior. In this section, we complete the remaining tasks of 3)
specifying our adaptive method and its parameters, and 4)
presenting a means of identifying the parameters that result
in optimal performance.

4.1 Adaptive algorithm
The goal of using an adaptive mechanism is to identify

the reserve price that maximizes revenue for the encoun-
tered bidder population. Recall that the adaptive algorithm
attempts to estimate the expected revenue as a function of
reserve price over the range of possible reserve prices, similar
to one of the functions depicted on the left side of Figure 2.
In this section, we describe how the adaptive algorithm ob-
tains this estimate and how the estimate is used to select
the reserve price for each auction in an episode.

For clarity, we begin by describing a somewhat simplified
version of the adaptive algorithm we will implement. In this
approach, we discretize the problem by restricting the seller
to choosing one of k choices for the reserve price at each step,
where the ith choice is a price of (i−1)/(k−1). The resulting
problem can be viewed as an instance of the k-armed bandit
problem, a classic reinforcement learning problem [18]. In k-
armed bandit problems, the expected value of each choice is
assumed to be independent, and the goal of maximizing the
reward obtained presents a tradeoff between exploring the
choices, in order to increase the knowledge of each choice’s
result, and exploiting the choice currently believed to be
best.

The approach to solving k-armed bandit problems that
we use is sample averaging with softmax action selection
using the Boltzmann distribution. In this approach, the
average revenue for each choice of reserve price, avgi, is
recorded, and at each step the probability of choosing i is
(eavgi/τ )/(

Pk
j=1

eavgj/τ ), where τ represents a temperature

determining the extent to which exploitation trumps explo-
ration. The temperature is often lowered over time to favor
increasing exploitation due to the fact that estimates of the
result of each choice improve in accuracy with experience.

Softmax action selection has parameters controlling the



temperature and controlling the initial weight of each choice.
We vary the temperature throughout an episode by choos-
ing starting and ending temperatures, τstart and τend, and
interpolating linearly. To maintain a record of the aver-
age revenue for each reserve price, for each price we must
track both the average revenue so far, avgi, and the number
of times that price has been tried, counti. Although the
straightforward approach would be to initialize the averages
and counts to zero, one common technique, known as op-

timistic initialization [18] is to set all initial averages to a
value higher than the predicted value of the largest possible
revenue. Each choice is therefore likely to be explored at
least once near the beginning of the episode. We employ a
variation on this technique in which we choose values for the
averages and counts that encourage heavy initial exploration
of those choices believed most likely to be optimal given the
predictions of bidder behavior. For instance, if the revenue
from a particular choice of reserve price is expected to be
high on average but have a high variance, assigning a high
initial count and average to that choice would ensure that
it is explored sufficiently: several trials resulting in low rev-
enue would be needed to significantly lower the computed
average. This approach amounts to starting out with what
we will call prior experience (so named because it serves a
role similar to a Bayesian prior). The choice of prior expe-
rience and temperatures are made by the search procedure
we will describe shortly. Thus for a given choice of k, this
will be a search over 2k + 2 parameters (one for each initial
avgi and counti, plus τstart and τend). These parameters
can be observed in Figure 3.

The approach just described, which we will call the ban-

dit approach, has one significant limitation: the assumption
that the expected revenue of each choice is independent. Be-
cause the choices we are considering represent points chosen
along a continuous range of reserve prices, it is likely that the
expected revenues of nearby choices will be similar, and thus
experience could be profitably shared between choices. To
address this issue, we now introduce an enhanced approach
we will call the regression approach. As the name suggests,
we perform regression over past auction results to derive a
function mapping the reserve price to the expected revenue.
In particular, we perform locally weighted quadratic regres-
sion (LWQR) [1], a form of instance-based regression. To
predict the expected revenue for a given reserve price, the
weight of each existing data point is determined by taking
its distance from the given price and applying a Gaussian
weighting function. Parameters are then found specifying
the quadratic that minimizes the weighted sum of squared
errors. This process is repeated for each price for which we
want an estimate of expected revenue.

Because we can now predict the expected revenue of any
reserve price, even if we have no experience at that price,
we are no longer restricted to considering a finite number of
choices as in the bandit approach. We continue to discretize
the range of prices for computational reasons — doing so
allows us to implement an incremental version of LWQR
and also to use softmax action selection without modifica-
tion. However, we are able to effectively use much finer
discretizations than before. In fact, we observed no benefit
from increasing beyond 100 choices, so we treat the degree
of discretization as a fixed parameter for the regression ap-
proach, and reinterpret k as described below.

The parameters for the regression approach are almost the

same as those of the bandit approach. We allow the temper-
ature to vary as before, and the concept of prior experience
remains similar. We still use k pairs of parameters avgi

and counti, with each pair now representing a data point
for reserve price (i − 1)/(k − 1) and revenue avgi that will
be used during regression as if it represented counti such
data points. It should be noted that in the regression ap-
proach, k is used only to specify the number of points used
as prior experience, and is independent of whatever degree
of discretization is used for selection of reserve prices. The
only additional parameter is the kernel width used in the
weighting function. We use a single kernel width, and ig-
nore for now the possibility of having the kernel width vary
as a function of the reserve price.

4.2 Parameter search
Now that we have chosen a parameterized adaptive algo-

rithm and have a means of generating bidder behavior, we
are ready to search for the set of parameters that results in
the best expected performance. (For reference, all parame-
ters are described in Table 1.) For any given set of parameter
values, we can obtain an estimate of the expected revenue
from an episode by generating a population of bidders as
described in Section 3.3 and running an episode using those
parameters. This estimate will be highly noisy, due to the
large number of random factors involved in the process, and
so we are faced with a stochastic optimization task.

To solve this task, we use Simultaneous Perturbation Sto-
chastic Approximation (SPSA) [17], a method of stochas-
tic optimization based on gradient approximation. At each
step, two estimates of the expected episode revenue are
taken for slight perturbations of the current parameters (the
same bidder population is used for each estimate), a gradi-
ent approximation is found, and the parameters are updated
in the direction of the gradient.

For initial parameters, we use a somewhat optimistic value
of 0.6 for each avgi and a value of 1 for each counti. τstart

and τend are set to 0.1 and 0.01, respectively, and a kernel
width of 0.1 is used. The search results appear stable in that
repeated runs result in parameters that are fairly similar
and provide nearly identical expected revenue per episode.
Modest changes to the initial parameters do not affect the
quality of the outcome.

Ideally, the parameter k would be part of the search pro-
cess as well, but as our search method requires a fixed num-
ber of parameters, we have chosen what appear to be the
best values after running searches for values of k between 5
and 20.

It should be noted that although this process of searching
for the optimal parameters can be time consuming (in our
experiments, a number of hours were required for the search
to converge), the process takes place in offline simulation
before the actual auctions begin. When the adaptive method
is applied during the actual auctions with the encountered
population using the resulting parameters, each choice of a
new reserve price takes only a small fraction of a second.

5. RESULTS
In this section we present the results of experiments with

our adaptive auction mechanism. We first show the results
of the parameter searches and discuss the performance of the
resulting adaptive mechanisms. Next, we give a comparison
between our approach and a Bayesian approach to adapting



Parameter Description

k number of discrete choices of reserve
counti weight of prior experience at choice i

avgi average initial revenue at choice i

τstart initial temperature
τend final temperature
kernel width kernel width for regression

Table 1: Parameters of the adaptive algorithm.

to the same auction scenario. We then explore how results
are impacted if the encountered bidder population does not
behave exactly as expected. Finally, we consider the situ-
ation in which the bidder population is allowed to change
over time.

5.1 Comparison of approaches
To evaluate our adaptive algorithms, we first searched for

the best possible set of parameters, including k, as described
above, for both the bandit and regression approaches. For
the bandit approach, a value of 13 was optimal for k, while
increasing k beyond 11 gave no apparent benefit in the re-
gression case. The learned parameters are presented in Fig-
ures 3 and 4. Prior experience is displayed visually by plot-
ting a circle for each avgi with area proportional to counti.
Both sets of prior experience appear reasonable given Fig-
ure 2. For the bandit approach, the values of avg are mostly
similar and fairly high, but the values of count are much
higher for the choices in the more promising regions. As a
result, it will take longer for the computed average revenue
of these choices to fall, and so these choices will be explored
more heavily in the beginning of an episode. For the regres-
sion approach, the values of count are similar in most cases,
but the values of avg are higher in the more promising re-
gions, again encouraging initial exploration. The reasons for
such small count values at 0.7 and 0.8 are not immediately
clear.

We next found the average revenue per episode for both
approaches using both the initial (hand chosen) and the
learned parameters. For this experiment and all remain-
ing experiments in this paper, each approach was evaluated
on 10,000 bidder populations for one episode per popula-
tion. For each approach, the random number generator
used in generating all bidder parameters received the same
seed, ensuring identical bidder behavior. In this experiment,
we drew the populations for testing (the encountered pop-
ulations) from the same distribution used by the seller to
generate simulated populations, meaning that these results
describe the situation in which the seller has correctly pre-
dicted the types of populations that might be encountered
and their probabilities of occurring. The average revenues
per auction are shown in Table 2, while a plot of the av-
erage revenue for each auction over an entire episode is
shown in Figure 5. The average total revenue in each case is
higher than the revenue resulting from using the best fixed
reserve price, 0.54, indicating that the use of an adaptive
mechanism is indeed worthwhile in this scenario. In fact,
all but the bandit approach with initial parameters require
far fewer than 1000 auctions to be beneficial (i.e. obtain
a higher revenue sum than the fixed reserve). The differ-
ence observed between each pair of methods is statistically
significant at the 99% confidence level according to paired
t-tests comparing results for the same bidder population.
From Figure 5 we can see that while all methods approach
the same revenue by the last auction in an episode, using
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Figure 3: Learned parameters for the bandit ap-
proach. Circles represent prior experience. Each
circle’s height represents the initial value of avg at its
position, while the size represents the initial value
of count. τstart = .0423, τend = .0077
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Figure 4: Learned parameters for the regression ap-
proach. Circles represent prior experience. Each
circle’s height represents the initial value of avg at its
position, while the size represents the initial value
of count. τstart = .0081, τend = .0013, kernel width =
.138

Adaptive algorithm Avg. revenue

best fixed reserve price (0.54) 0.367
bandit, initial parameters 0.374
bandit, learned parameters 0.394
regression, initial parameters 0.385
regression, learned parameters 0.405

Table 2: Average revenue per auction for each adap-
tive algorithm over 10,000 populations. Differences
are statistically significant at the 99% confidence
level according to paired t-tests.

learned parameters leads to much higher revenues during
the early part of an episode, especially with the regression
approach. For instance, the average revenue reached on the
100th auction by the regression approach with learned pa-
rameters is not reached until after at least 500 auctions with
other approaches. Thus, the learned parameters are effec-
tive at focusing initial exploration, providing sufficient prior
experience to permit a higher initial degree of exploitation,
or both.

This experiment, representing the central result of this
paper, demonstrates a scenario in which an adaptive mech-
anism can outperform a fixed mechanism, and in which the
use of metalearning can produce an adaptive algorithm bet-
ter suited to the encountered population. We now present
supporting experiments to further explore the properties
and robustness of our approach.

5.2 A Bayesian alternative
As a result of the method described in Section 3.3 for sim-

ulating bidders, the behavior of a bidder population is spec-
ified completely by four parameters: the mean and variance



0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0 100 200 300 400 500 600 700 800 900 1000

A
v
e

ra
g

e
 r

e
v
e

n
u

e

Auction number

A

B

C

D

E

A: learned regression
B: learned bandit
C: initial regression
D: initial bandit
E: fixed reserve

Figure 5: Average revenue per auction over the
course of an episode for each method.

of the valuations, and the mean and variance of α values.
If these four parameters could be determined, it would be
possible to directly calculate the optimal reserve price for
any bidder population encountered. This fact suggests an
alternative means of adaptation: using Bayesian inference to
maintain a joint probability distribution over these parame-
ters, representing our current beliefs about those parameters
as a result of observed auction outcomes.

It should be emphasized that such an approach is appli-
cable only if a complete model of bidder behavior is avail-
able. Because a primary motivation for the use of adaptive
auction mechanisms is the fact that bidders often do not
behave as predicted by standard models, Bayesian inference
will not generally be a suitable method of adaptation for
adaptive mechanisms. We explore its use here in order to
provide a comparison with the adaptive method presented
in this paper, which attempts only to characterize the re-
lationship between auction parameters and outcomes, and
not to draw inferences directly about bidders. In theory, the
use of Bayesian inference should allow the maximum possi-
ble use of the information contained in auction outcomes,
providing a strong benchmark for comparison.

In order to perform Bayesian inference, we need to be
able to determine the probability of a particular auction
outcome for any setting of the four bidder population pa-
rameters. Due to the complexity of the bidder strategy de-
scribed in Section 3.1, instead of determining these proba-
bilities analytically, we precompute approximations to these
probabilities by discretizing the range of possible population
parameter settings, reserve prices, and outcomes, and use
simulation to determine expected outcomes. 10 uniformly
spaced values for each population parameter (for a total of
10, 000 possible populations) are used, along with 30 uni-
formly spaced values for both reserve prices and outcomes.
For each choice of population and reserve price, the proba-
bility that the resulting revenue is closest to each outcome
value is estimated through simulation of auctions. Increas-
ing the granularity of discretization beyond this level does
not appear to improve the results of applying these approx-
imate probabilities.

We represent our beliefs about the bidder population as
a probability distribution over all (10, 000) possible popu-
lations, initialized uniformly in keeping with the method of
generating a population described in Section 3.3 (thus rep-
resenting the prior). After each auction, the nearest of the
30 discrete reserve and outcome values are identified, the
current probability for each bidder population is multiplied
by the probability of observing that outcome given the re-

serve price, and then the distribution over populations is
normalized to bring the total weight to 1, all in accordance
with Bayes’ rule.

To allow for the most direct possible comparison between
Bayesian inference and the learning approach presented in
this paper, we choose the reserve price at each step as before,
by applying softmax action selection to the predicted rev-
enues. The expected revenue for each choice of reserve price
can be computed by summing the products of the probabil-
ity of each bidder population and the expected revenue for
that population and reserve price, also precomputed. The
same temperatures are used as with the regression approach
with learned parameters. Thus, the primary comparison
between the two approaches involves how quickly the pre-
dictions of revenue become accurate.

The Bayesian approach results in an average revenue per
auction of 0.407, slightly better than the 0.405 obtained
when using the regression approach with learned parame-
ters. (The difference is again statistically significant with
99% confidence according to paired t-tests.) Considering
that the Bayesian approach relies on much stronger assump-
tions about bidder behavior than our approach, we feel that
this small difference in performance is encouraging. Since
the use of the regression approach without learned parame-
ters results in an average revenue of 0.385, it appears that
by using metalearning we are able to take nearly full ad-
vantage of the information available to us concerning the
bidder population without explicitly attempting to model
the population.

5.3 Unexpected bidder behavior
Although we have proposed adaptive auction mechanisms

as a means of dealing with unknown bidder behavior, so far
in all experiments we have evaluated adaptive algorithms
on the same distribution of bidder populations assumed in
developing the algorithms. We now investigate the effects
when the encountered bidder population differs from these
assumed populations.

We first consider the case where the bidders’ strategy dif-
fers from the expected strategy. As an alternative to the
equilibrium bidding strategy described in Section 3.1, con-
sider a strategy in which a bidder simply chooses a value uni-
formly at random from the range [0, x] and bids this value
regardless of any other factors. This behavior is clearly dif-
ferent from that present in any of the possible bidder popula-
tions considered previously. If bidders using such a strategy
were to participate in auctions based on an adaptive mech-
anism developed in anticipation of the previously assumed
bidder population, the adaptive mechanism might not pro-
duce the results expected.

To explore the effect of unexpected bidder behavior, we
consider populations in which bidders follow this alternate
strategy with probability p, and follow the previous equi-
librium strategy with probability 1 − p. Three adaptive
approaches are used: the regression approach with initial
parameters, the regression approach with learned parame-
ters, and the Bayesian approach of the previous section. We
consider values of p ranging from 0 to 1 in order to measure
the effect of increasingly unexpected behavior.

Figure 6 shows the results when x, the maximum bid un-
der the alternate strategy, is set to 0.6, and Figure 7 shows
the results when x is set to 1.2. The results are similar in
both cases. (The differing slopes are due to the fact that



the alternate strategy results in increased revenue in one
case and decreased revenue in the other.) As the proba-
bility of bidders using the alternate strategy increases, the
performance of the regression approach using the initial pa-
rameters improves relative to the other two methods, and
the Bayesian approach is worst in many cases. This result
can be explained by the fact that the regression approach
with initial parameters makes use of no assumptions about
bidder behavior, while the Bayesian approach makes very
strong assumptions. With a high value of p, the Bayesian
approach is never able to identify the optimal reserve price
because it is unable to match the population’s behavior with
one of the populations it believes to be possible. The regres-
sion approach with learned parameters is eventually able to
identify the optimal reserve price, but often much later than
the learning approach with initial parameters, due to the
fact that it is concentrating its early exploration in areas
that are now less likely to contain the optimal value.

While the performance of the Bayesian approach falls be-
low that of the regression approach with initial parameters
around p = 0.3 for both choices of x, the performance of the
regression approach with learned parameters is more sen-
sitive to the value of x. The likely reason is contained in
Figure 2. For p = 1, when x = 0.6 the optimal reserve price
is 0.3, a value that is rarely optimal under the expected bid-
der populations, but when x = 1.2 the optimal reserve price
is 0.6, a commonly optimal value. The regression approach
with learned parameters should be expected to perform well
when the results of auctions are similar to those it expects,
even if the underlying bidder behavior that leads to those
results is different.

The lesson from this experiment is that there is a tradeoff
in attempting to use information available about potential
bidder behavior. If the behavior of the encountered bid-
der population is significantly different than expected, an
approach that makes use of such information, such as the
metalearning approach presented here, may actually cause
performance to suffer. Improving the ability of an adap-
tive auction mechanism to identify and handle unexpected
behavior is an important area for future work.

Next, we consider the case where the strategy used by the
bidders remains the same as before (the equilibrium strat-
egy), but the distributions from which we draw valuations
and α values are changed. Recall that these two bidder pa-
rameters were previously assumed to fall within the ranges
v ∈ [0, 1] and α ∈ [1, 2.5]. We now use the narrower ranges
of v ∈ [.3, .7] and α ∈ [1.5, 2] when generating an encoun-
tered population (but not the simulated populations used in
developing the adaptive algorithms). Distributions within
these ranges are generated as before (see Section 3.3). Such
a situation could arise if the seller was unsure of the ac-
tual ranges of v and α and intentionally used conservative
estimates of these ranges when developing the adaptive al-
gorithm.

Once again, we compare the regression approach with ini-
tial parameters, the regression approach with learned pa-
rameters, and the Bayesian approach. Table 3 shows the
results. In this case, the performance of the regression ap-
proach is better when learned parameters are used, suggest-
ing that the behavior of bidders remains sufficiently similar
to make metalearning useful in this scenario. The perfor-
mance of the Bayesian approach suffers even more than in
the previous experiment, however. Again, this approach is
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Figure 6: Results when some fraction of bidders
choose a bid randomly in [0, 0.6].
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often unable to match the encountered population’s behav-
ior with one of the populations it believes to be possible.
This problem appears to be particularly severe when the
optimal reserve price is near zero – in many such cases the
population’s behavior most closely resembles the behavior of
populations for which a much higher reserve price is optimal,
and so the Bayesian approach consistently tries a subopti-
mal reserve price.

5.4 Nonstationary bidder populations
In the scenarios considered previously, the behavior of the

bidder population remained constant over the series of auc-
tions. Such consistency is unlikely in the real world. Pos-
sible causes of shifts in bidder behavior include changes in
the preferences of bidders and changes in the strategies em-
ployed by bidders. Bidder preferences may change gradu-
ally, such as when valuations decrease over time for outdated
products, or they may change quickly, such as when a new
type of bidder suddenly enters the marketplace. Changes in
bidder strategies may be the result of the bidders themselves
adapting by learning from past experiences.

In this section we consider modifications to our adaptive
algorithm to cope with a gradually changing bidder popula-
tion. Dealing with more sudden changes would likely require
more extensive modifications, such as attempting to deter-
mine precisely when a change has occurred, and we leave
this to future work. Recall that the behavior of our sim-
ulated bidder population is controlled by four parameters:
the mean and variance of the valuations, and the mean and
variance of α values. We now allow each of these parameters



Adaptive method Avg. revenue

Bayesian approach 0.414
initial parameters 0.575
learned parameters 0.593

Table 3: Average revenue per auction for each adap-
tive method when bidder parameters are drawn
from modified distributions. Differences are statisti-
cally significant at the 99% confidence level accord-
ing to paired t-tests.

to vary according to a random walk: after each auction, each
parameter is either increased or decreased by one percent of
the total range for that parameter, within the bounds spec-
ified in Section 3.3. Bidder populations are initialized as
before.

Under this scenario, the probability of a particular set of
bidder parameter values occurring during an auction is es-
sentially the same as before, and therefore the optimal fixed
reserve remains 0.54, with an average revenue of 0.367. Us-
ing the regression-based learning approach with the param-
eters learned in Section 5.1 results in an average revenue of
0.379, still a significant improvement over the fixed reserve
but well below the 0.405 obtained previously.

One way of dealing with a changing bidder population is
to weight recent experience more heavily than older (and
possibly more inaccurate) experience. We implement this
modification by choosing a decay rate by which the weight of
all past experience (including the prior experience) is mul-
tiplied at each step. When regression is performed, these
reduced weights cause older data points to have less impact
on the resulting function. When using a decay rate of 0.99,
chosen manually after limited experimentation, the average
revenue per auction increases to 0.383, a modest improve-
ment over the previous 0.379.

Another possible means of improving performance with
a non-stationary population is to increase the temperature
τ used in selecting reserve prices for each auction. Recall
that τ controls the degree of exploration when using soft-
max action selection, and that in the previous experiments
τ was gradually decreased over time to encourage increased
exploitation once reasonable estimates of auction outcomes
had been learned. Because these estimates may become in-
accurate as the bidder population changes, maintaining a
higher degree of exploration by decreasing τ more slowly
might be a way to improve performance of the adaptive
mechanism. For this particular scenario, however, exper-
iments show that the average revenue remains almost un-
changed when τ is decreased more slowly (with or without
the decay of experience), suggesting that the gains from in-
creased exploration are offset by the losses from reduced
exploitation. (With the stationary bidder population con-
sidered previously, decreasing τ more slowly results in a sig-
nificant reduction in average revenue, so it is not simply the
case that τ is unimportant.)

If the seller is aware of the specific way in which the popu-
lation can change, then the seller can make use of this infor-
mation by performing the metalearning step using the non-
stationary population in simulation. Although the learned
parameters that result (prior experience, temperatures, ker-
nel width, and decay rate) are fairly similar to those used
previously – the most notable changes are a decrease in the
decay rate to 0.985 and an increase in kernel width to 0.154
– the average revenue increases to 0.389.

Adaptive method Avg. revenue

best fixed reserve price (0.54) 0.367
previous learning parameters 0.379
previous parameters, experience decay 0.383
new metalearned parameters, exp. decay 0.389
new parameters, no initial exp. decay 0.394

Table 4: Average revenue per auction for each adap-
tive method with a non-stationary population. Dif-
ferences are statistically significant at the 99% con-
fidence level according to paired t-tests.

The method of decaying past experience described above
includes the decay of the prior experience (the values stored
before actual experience is obtained). The prior experience
could instead be handled separately and have its weight re-
main unchanged. For reserve prices with little recent expe-
rience, the predicted revenue would then be based largely on
the initial values, potentially encouraging periodic re-explo-
ration of reserve prices previously determined to be subop-
timal. For a non-stationary population, such re-exploration
could possibly be beneficial. When using this approach and
applying metalearning with full knowledge of how the popu-
lation changes, the average revenue obtained reaches 0.394.

The results of this section, summarized in Table 4, demon-
strate that our adaptive method can be applied in situations
in which bidder populations vary over time, at least when
such change is gradual. When knowledge of how the popu-
lation might change is available, this knowledge can be use-
fully incorporated into the process of metalearning optimal
learning parameters.

6. RELATED WORK
In addition to the theoretical work described previously

([2] and [3]), a few recent articles have begun to explore
the subject of adapting auction mechanisms in response to
bidder behavior from an empirical standpoint using a variety
of learning approaches in simulation. In this section, we
briefly survey that work and relate it to our own.

Cliff [5] explores a continuous space of auction mecha-
nisms defined by a parameterized continuous double auc-
tion, where the parameter represents the probability that a
seller will make an offer during any time slice. The mecha-
nism parameter and the parameters of the simulated bidding
agents used are evolved simultaneously using a genetic algo-
rithm. For different underlying supply and demand sched-
ules, the system converges to different values of the auction
parameter. Phelps et al. [13] also address continuous double
auctions, using genetic programming to co-evolve buyer and
seller strategies and auction rules from scratch.

Byde [4] takes a similar approach in studying the space
of auction mechanisms between the first and second-price
sealed-bid auction. The winner’s payment is determined as
a weighted average of the two highest bids, with the weight-
ing determined by the auction parameter. For a given pop-
ulation of bidders, the revenue-maximizing parameter is ap-
proximated by considering a number of parameter choices
over the allowed range, using a genetic algorithm to learn
the parameters of the bidders’ strategies for each choice, and
observing the resulting average revenues. For different bid-
der populations (factors considered include variable bidder
counts, risk sensitivity, and correlation of signals), different
auction parameter values are found to maximize revenue.

The primary difference between these previous approaches



and the method advocated in this paper is that these ap-
proaches use simulation to produce fixed mechanisms, while
our aim is to develop mechanisms that are self-adapting in
an online setting. (The methods used to learn bidder strate-
gies, however, could possibly be applied in our approach to
generate the bidder behavior needed during the search for
optimal adaptive parameters.) Although the auction mech-
anisms developed by these approaches may work well under
the assumed conditions, when they are used in real-life set-
tings the same problem may arise as with analytical mech-
anism design: bidders’ goals, beliefs, and strategies may be
different from those assumed, leading to unexpected results.
While the adaptive measures used in these approaches could
be applied in an online setting, they would likely be found
unsuitable. For example, evolutionary methods frequently
explore highly suboptimal solutions that could be disastrous
if actually tried. Our goal is to design adaptive mechanisms
that are both safe to use and capable of quickly finding the
parameters best suited to the participating bidders, all while
making as few assumptions as necessary about the behavior
of these bidders.

Rogers et al. [14] provide an example of using Bayesian
inference to determine optimal auction parameters. As dis-
cussed previously, such an approach is suitable when it is
known that the behavior of bidders can be fully described
by a number of parameters. In this case, the auction pa-
rameters to be determined are the discrete bid levels in an
English auction, and the bidder parameters to be estimated
based on auction outcomes are the number of bidders par-
ticipating and their valuation distribution.

Dittrich et al. [7] present a different take on adaptation
involving loss averse bidders, analyzing the effect that loss
aversion has on the learning dynamics exhibited by bidders
adapting in response to experience.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented an approach to creat-

ing self-adapting mechanisms that adjust auction parame-
ters in response to past auction results. We have analyzed
and experimented with a specific auction scenario involving
loss averse bidders and varying seller reserve prices. The
key contribution of this paper is the presentation of a met-
alearning technique with which information about potential
bidder behavior can be used to guide the selection of the
method of adaptation and significantly improve auctioneer
revenue.

There are several directions in which this work could be
extended. Many auction parameters are available for tuning,
ranging from bidding rules to clearing policies. The problem
becomes more challenging in the face of multidimensional
parameterizations. The choice of learning algorithm itself is
a possible area for improvement. Instead of using softmax
action selection with revenue estimates, a more sophisticated
approach might involve estimating a distribution over possi-
ble outcomes and choosing parameters based on an estimate
of the value of the information to be obtained in improving
this estimate.

Our on-going research agenda also includes examining the
effects of including some adaptive bidders in the economies
that are treated by adaptive mechanisms.
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