
Bin-Based Estimation of the Amount
of Effort for Embedded Software
Development Projects with Support
Vector Machines

Kazunori Iwata, Elad Liebman, Peter Stone, Toyoshiro Nakashima,
Yoshiyuki Anan and Naohiro Ishii

Abstract In this paper we study a bin-based estimation method of the amount of
effort associated with code development. We investigate the following 3 variants to
define the bins: (1) the same amount of data in a bin (SVM same #), (2) the same
range for each bin (SVM same range) and (3) the bins made byWard’s method (SVM
Ward).We carry out evaluation experiments to compare the accuracy of the proposed
SVM models with that of the ε-SVR using Welch’s t-test and effect sizes. These
results indicate that the methods SVM same # (1) and SVM Ward (3) can improve
the accuracy of estimating the amount of effort in terms of the mean percentage of
predictions that fall within 25% of the actual value.
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1 Introduction

Growth and expansion of the information-based society has resulted in increased use
of a wide variety of information products using embedded software systems. The
functionality of such products is becoming ever more complex [8, 14], and because
of the focus on reliability, guaranteeing product quality is particularly important.
Such software represents an important fraction of the budget of businesses and gov-
ernment. It is, therefore, increasingly important for embedded software development
companies to realize efficient development methods while guaranteeing delivery
time and product quality, and maintaining low development costs [3, 13, 15, 16, 22,
23, 25]. Estimating the amount of effort (man-days cost) requirements for new soft-
ware projects and guaranteeing product quality are especially important because the
amount of effort is directly related to cost, while product quality affects the reputation
of the corporation. Considerable attention has been given to various development,
management, testing, and reuse techniques, as well as real-time operating systems,
tools, and other elements in the embedded software field. However, there has been
little research on the relationship between the scale of the development, the amount
of effort, and the number of errors using data accumulated from past projects [12, 17,
18]. Thus far, to study the task of effort prediction, the well-known NASA software
project data-set has been used [2, 18].

In our formulation of the problem, rather than treat the task of predicting effort
as a regression task and predicting a continuous value of effort for code samples, we
instead identify blocks of effort, which we refer to as bins, and treat these as labels,
which we try to predict, thus treating the problem as a classification task (predicting
the correct effort bin for a code sample). In previous work, we investigated the
estimation of total effort and errors using artificial neural networks (ANN), and
showed that ANN models are superior to regression analysis models for predicting
effort and errors in new projects [9, 10]. We also proposed a method to estimate
intervals of the number of errors using a support vector machine (SVM) and ANNs
[11].

However, these models used a naive method to create bins, which have the same
range. In this paper, we propose a novel bin-based estimation method for the amount
of effort for embedded software development projects with SVMs, and investigate
3 methods for bin identification. This is crucial to our general framework, since in
order to predict an appropriate interval of the amount of effort in a project, it is
important to correctly define the intervals (i.e. prediction labels).

In addition, the effectiveness of the SVM (and SVR) using the function depends
on selection of the kernel parameter (γ ) and soft margin parameter (C) [5]. ε is
important for ε-SVR to estimate values effectively. We use three dimensional grid
search to select the best combination of them.

We perform extensive evaluations to compare the accuracy of the proposed SVM
models with that of the ε-SVR [17] using 10-fold cross-validation as well as by
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means of Welch’s t-test [21, 26] and effect sizes [4, 7]. Our results show that the
proposed models can improve the accuracy of estimating the amount of effort in
terms of the mean percentage of predictions that fall within 25% of the actual value.

2 Related Work

2.1 Support Vector Regression

One of the prominent algorithms that has been employed to predict development
effort associated with software projects is ε-Support Vector Regression (SVR) [17].
The Support Vector Regression algorithm (SVR) uses the same principles as the
canonical Support Vector Machine for classification with a few minor differences
[19]. One prominent variant, ε-Support Vector Regression (ε-SVR), uses an ε-
insensitive loss function to solve the regression problem and find a closest fitting
curve [20].

ε-SVR tries to find a continuous function such that the maximum number of data
points lie within the ε-wide insensitivity tube. While previous work did use this
approach, it did not probe the optimization of parameters which are crucial to the
performance of ε-SVR and similar algorithms, as we do in this paper in Sect. 3.4.

The proposedmethod to optimize parameters improves themeanmagnitude of rel-
ative error (MMRE: Eq. (3)) from0.165 [5] to 0.149by leave-one-out cross-validation
(LOOCV) [18]. On the other hand, our proposed SVM models in this paper for the
data indicate 0.226 as MMRE, because of a small number of data points and inde-
pendent variables. The number of data points is 18 and that of independent variables
is 2.

2.2 Artificial Neural Networks

In earlier papers, we showed that ANN models are superior to regression analysis
models for predicting effort and errors in new projects [9]. In addition, we proposed
a method for reducing this margin of error [10]. However, methods using ANNs
have reached the limit in their improvement, because these methods estimate an
appropriate value using what is known as point estimation in statistics. Therefore,
we propose in this paper a method for reducing prediction errors using bin-based
estimation provided by SVMs. The results of comparison using anANN are shown in
Sect. 4.3. We find out the number of optimal hidden node by 10-fold cross-validation
in the comparison. The results demonstrate that the proposed method can estimate
the amount of effort better than ANNs.
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2.3 Our Contribution

The algorithms proposed in previous work tend to estimate the amount of effort
accurately. However, we maintain that this is to some extent an illusion—the NASA
software project data set includes the small number of data points, and the dispersion
in depended and independent variables is not large. In a more sophisticated approach
like the one we propose, a small data set makes it difficult to create appropriate
bins: performing regression is easier than bin-based estimation in the case of low
dispersion. Our target data sets, however, are large, and manifest a high extent of
variability. Specifically, the amount of effort (the dependent variable) is within a
certain range, but the values of independent variables are highly variable. In this case,
it is difficult for a regression approach to estimate the amount of effort accurately.
Therefore, we propose an approach for creating some kind of bins for projects of
which the amount of effort is within a certain range to reduce the influence of such
dispersion in independent variables.

3 Bin-Based Estimation Models for the Amount of Effort

3.1 Original Data Sets

Using the following data from a large software company, we created bin-based esti-
mation models to estimate the amount of planning effort (Eff ).

Eff : “The amount of effort”, which indicates man-days cost in a review process for
software development projects.

Vnew: “Volume of newly added”, which denotes the number of steps in the newly
generated functions of the target project.

Vmodify: “Volume of modification” denoting the number of steps modified or added
to existing functions to use the target project.

Vsurvey: “Volume of original project”, which denotes the original number of steps in
the modified functions, and the number of steps deleted from the functions.

Vreuse: “Volume of reuse” denoting the number of steps in functions of which only
an external method has been confirmed and which are applied to the target project
design without confirming the internal contents.

3.2 Data Selection for Creating Models

To estimate an appropriate binning for the amount of effort in a project, it is important
to eliminate outliers. Figures1 and 2 show the distributions of the amount of effort
with bin intervals of 500 and 10, respectively. These distributions confirm that data
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Fig. 1 Distribution of the amount of effort (bins interval 500)

Fig. 2 Distribution of the amount of effort (bins interval 10)

points with less than 500 man-days of effort account for approximately 86.7% of the
total amount of effort. Considering the conditions outlined above, we use the data
points which have less than 500 man-days of effort. The distribution of the amount
of effort with a bin interval of 10 is shown in Fig. 2. The histogram in this figure
has 50 bins and 1057 projects, and our models estimate an appropriate bin for each
project.

kazunori@vega.aichi-u.ac.jp



162 K. Iwata et al.

3.3 General Architecture

SVMs [5, 6] are also supervised learning models. They construct a hyperplane or
set of hyperplanes in a high or infinite dimensional space for classification. A good
classification can be achieved by the hyperplanewith the largest distance to the closest
training data point of any class. It often happens, however, that the discrimination
sets are not linearly separable in a finite dimensional space. Hence, the SVM maps
the original finite dimensional space into a much higher dimensional space in which
separation is easier by defining them in terms of a kernel function selected to suit
the problem. We use a radial basis function as the kernel function, because this is a
popular kernel function for use in SVMs. The corresponding feature space using the
function is a Hilbert space of infinite dimensions. Moreover, the effectiveness of the
SVM using the function depends on selection of the kernel parameter (γ ) and soft
margin parameter (C) [5].

The reason why we use SVMs instead of SVRs is that a method to estimate
intervals of the number of errors using a support vector machine (SVM) and ANNs
showed the better results than these of ANNs for regression and regression analysis
[11].

3.3.1 Grouping into Bins for SVM

A representative value of a bin is used as the estimated amount of effort in a project.
Therefore, to estimate an appropriate bin of the amount of effort in a project, it is
important to define the clusters. We create the following 3 types of bins. A represen-
tative value of a cluster is the median of the bin.

• The same amount of data in a bin (SVM same #).
• The same range for each bin (SVM same range).
• The bins made by Ward’s method [24] (SVM Ward).

Figure3 shows the example of same # and same range bins. The target data to be
grouped is 15, 20, 30, 40, 50, 70, 80, 90 and 100. The amount of data in each bin
is three in the same #. The data belong to the first bin are 15, 20 and 30. The same

Fig. 3 Example of bins
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range adopt 29 as the range. The first bin is [11, 40] and includes 15, 20, 30, 40. If
a representative value is the median of each bin, these of the same # are 20, 50 and
90. Correspondingly, these of the same range are 35, 60 and 90.

The accuracy of the estimation depends on the number of bins. Hence, we select
the best number of bins with cross-validation and 3D grid-search shown in Sect. 3.4.

3.4 Parameter Selection Using Cross-Validation
and 3D Grid-Search

The performance of SVM depends on the choice of the regularization parameters
γ and C . The best combination of γ and C is often selected by a grid search with
exponentially increasing sequences thereof. In addition, we search for the best num-
ber of bins or the most appropriate ε. Hence, we have to define a three-dimensional
grid to adapt them using grid-search. The ε and the number of bins are selected with
linearly increasing sequences in the three-dimensional grid-search. Figure4 shows
an example of the three-dimensional grid-search. Firstly, the parameters are searched
for in the search space g1, g2, . . . , g7, g8 according to the sparse grid. The cuboid
g′
1, g

′
2, . . . , g

′
7, g

′
8 indicating the best combination is found. Next, the cuboid is used

as the new search space and partitioned into new grids. Typically, each distinct com-
bination of parameters is checked using cross-validation to avoid over-fitting. We
perform 10-fold cross-validation to find the best combination.

Fig. 4 Example of 3D grid-search

kazunori@vega.aichi-u.ac.jp



164 K. Iwata et al.

4 Evaluation Experiment

4.1 Evaluation Criteria

The following6 criteria are used as the performancemeasures for the effort estimation
models [18]. Equations (1) and (3) are, the smaller the value of each evaluation
criterion is, the higher is the accuracy. On the other hand, the larger the value of
MPRED(25) is, the higher is the relative accuracy. The value of X̂−X

X is regarded as
1, if X is equal to 0 in the calculation of MARE and SDRE. The accuracy value is
expressed as X , while the representative value in the estimated bin is expressed as
X̂ . A representative value is the median of the bin in this paper. Therefore, if a model
could estimate appropriate bins for all projects, MAE and MMRE would not be 0.
For example, if the accuracy value is 13 and the estimated bin is (11, 20], X̂ is 15.5
((11 + 20)/2) and MAE and MMRE are equal to 2.5 and 0.1613, respectively. The
amount of data is expressed as n.

1. Mean of absolute errors (MAE).
2. Standard deviation of absolute errors (SDAE).
3. Mean magnitude of relative errors (MMRE).
4. Standard deviation of relative errors (SDRE).
5. MPRED(25) is the mean percentage of predictions that fall within 25% of the

actual value.
6. SDPRED(25) is the standard deviation of predictions that fall within 25% of the

actual value.

MAE = 1
n

∑
|X̂ − X | (1)

SDAE =
√

1
n − 1

∑ (
|X̂ − X | − MAE

)2 (2)

MMRE = 1
n

∑ ∣∣∣∣
X̂ − X

X

∣∣∣∣ (3)

SDRE =
√

1
n − 1

∑ (∣∣∣∣
X̂ − X

X

∣∣∣∣ − MARE
)2

(4)

4.2 Data Used in Evaluation Experiment

We performed 10-fold cross validation on data from 1057 real projects in the eval-
uation experiment. The original data were randomly partitioned into 10 equal sized
subsamples (with each subsample having data from 105 or 106 projects). One of the
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subsamples was used as the validation data for testing the model, while the remain-
ing nine subsamples were used as training data. The cross-validation process was
repeated ten times with each of the ten subsamples used exactly once as validation
data.

4.3 Results and Discussion

For each model, the experimental results of the 10-fold cross validation are shown
in Tables1, 2 and 3.

We compared the accuracy of the proposed models with that of the ε-SVR using
Welch’s t-test [26] and effect sizes [4, 7]. A Student’s t-test [21] is used to test the null
hypothesis that the means of two normally distributed populations are equal.Welch’s
t-test is used when the variances of the two samples are assumed to be different to
test the null hypothesis that the means of two normally distributed populations are
equal if the two sample sizes are equal [1]. Given the t-value and degrees of freedom,
a p-value can be found using a table of values from the Student’s t-distribution. If
the p-value is smaller than or equal to the significance level, the null hypothesis is
rejected. The null hypothesis in our experiment is interpreted as “there is no difference
between themeans of the estimation errors (or themean percentage ) for the proposed
model and ε-SVR”. Effect size measures either the sizes of associations or the sizes
of differences. Cohen provided rules of thumb for interpreting these effect sizes,

Table 1 Experimental results (absolute errors) for estimating the amount of effort
MAE SDAE 95% Confidence

interval

SVM same # 37.546 38.437 [35.226, 39.866]

SVM same range 40.568 41.689 [38.052, 43.084]

SVM ward 38.311 40.384 [35.874, 40.748]

ε-SVR 36.669 39.403 [34.291, 39.047]

ANN model 84.169 60.449 [80.521, 87.817]

Table 2 Experimental results (relative errors) for estimating the amount of effort
MMRE SDRE 95% Confidence

interval

SVM same # 0.65355 1.0157 [0.59225, 0.71485]

SVM same range 0.74389 1.3956 [0.65966, 0.82812]

SVM ward 0.68157 1.1862 [0.60998, 0.75316]

ε-SVR 0.71025 2.0037 [0.58932, 0.83118]

ANN model 0.96687 0.082109 [0.96191, 0.97183]
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Table 3 Experimental results (PRED(25)) for estimating the amount of effort
MPRED(25) SDPRED(25) 95% Confidence

interval

SVM same # 0.36558 0.05924 [0.32320, 0.40796]

SVM same range 0.31064 0.03924 [0.28257, 0.33871]

SVM Ward 0.35707 0.04098 [0.32775, 0.38639]

ε-SVR 0.30305 0.04505 [0.27082, 0.33528]

ANN model 0.0038005 0.000024074 [0.0037833,
0.0038177]

suggesting that Cohen’s d of |0.1| represents a ‘small’ effect size, |0.3| represents a
‘medium’ effect size and |0.5| represents a ‘large’ effect size.

The results of the t-test and Cohen’s d for MAE, MMRE and MPRED(25) in
estimating the amount of effort are given in Tables4, 5 and 6. The underlined p-
values in the tables indicates statistically significant differences between the type of
bin and ε-SVR. In addition, the underlined Cohen’s d values in the tables mean the
effect size is large.

Tables1 and 4 indicate that the method of SVM same range cannot improve
the accuracy to estimate the amount of effort than that of ε-SVR in MAE and the
others have the same estimating accuracy as ε-SVR. The Tables2 and 5 mean that
the proposed methods have the same estimating accuracy as ε-SVR in MMRE. The
results for MPRED(25) indicate that statistically significant differences between
SVM same # and ε-SVR, and SVM Ward and ε-SVR. In addition, SVM same #
and SVM ward improve about 6.252% (=

√
(0.059242 + 0.045052)/2 × 1.188)

and 5.400% (=
√
(0.040982 + 0.045052)/2 × 1.254) in terms of MPRED(25),

respectively.

Table 4 Results of t-test for MAE between each type of bin and ε-SVR
SVM same # SVM same range SVM ward

t-value 0.5180 2.210 0.9462

p-value 0.6045 0.02723 0.3422

Cohen’s d 0.02253 0.09612 0.04115

Table 5 Results of t-test for MMRE between each type of bin and ε-SVR
SVM same # SVM same range SVM ward

t-value 0.8206 0.4479 0.4004

p-value 0.4210 0.6543 0.6889

Cohen’s d 0.03569 0.01948 0.01741
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Table 6 Results of t-test for MPRED(25) between each type of bin and ε-SVR
SVM same # SVM same range SVM Ward

t-value 3.082 0.4017 2.805

p-value 0.006835 0.6927 0.01178
Cohen’s d 1.188 0.1797 1.254

It is evident from these results that the methods SVM same # and SVM Ward
can improve the accuracy of estimating the amount of effort in terms of the mean
percentage of predictions that fall within 25% of the actual value. However, the
methods and SVM same range cannot improve the mean of absolute errors and the
mean magnitude of relative errors. The cause of the results is several large errors for
estimating in proposed methods. Despite the usefulness of the mean to investigate
the accuracy of models, outliers have the biggest effect on the mean.

5 Conclusion

In this paperwehavediscussed a bin-based estimationmethod for the amount of effort
with SVMsand investigated the following three approaches for defining suitable bins:
(1) the same amount of data in a bin (SVM same #), (2) the same range for each bin
(SVM same range) and (3) the bins made by Ward’s method (SVMWard). We have
carried out evaluation experiments to compare the accuracy of the proposed SVM
model with that of the ε-SVR using 10-fold cross-validation as well as by means of
Welch’s t-test and effect sizes. The results in estimating the amount of effort have
indicated statistically significant differences between SVM same # and ε-SVR, and
SVMWard and ε-SVR in terms ofMPRED(25). In addition, SVM same # and SVM
ward have improved MPRED(25) about 6.252% and 5.400%, respectively. These
results have exhibited that the methods SVM same # and SVM Ward can improve
the accuracy of estimating the amount of effort in terms of the mean percentage of
predictions that fall within 25% of the actual value.

Our future research includes the following:

1. Having implemented amodel to estimate thefinal amount of effort in newprojects,
we plan to estimate the amount of effort at various stages in the project develop-
ment process (e.g. halfway).

2. We intend to employ a more complex method to improve the overall prediction
accuracy.

3. Since outliers can be detrimental to our model, more refined approaches to outlier
detection may be beneficial to our framework.

4. Overall, more data is needed to further support our work.
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