

MACTA: A Multi-agent Reinforcement Learning Approach for Cache Timing Attacks and Detection

Jiaxun Cui, Xiaomeng Yang*, Mulong Luo*, Geunbae Lee*, Peter Stone, Hsien-Hsin S. Lee,

Benjamin Lee, G. Edward Suh, Wenjie Xiong[^], Yuandong Tian[^]

* Equal second author contribution, ^ Equal supervising

00 Overview

Overview

- 1. A multi-agent environment, MA-AutoCAT
- 2. A training framework, MACTA
- **3.** A **generalizable** and **robust detector** that leverages **Transformer encoder** for **Cache Timing Attacks**

01 MOTIVATION

What is a Cache Timing Attack?

Reinforcement learning attackers can exploit the timing channel and steal information faster than human heuristic attacks[1].

[1] Luo, M., Xiong, W., Lee, G., Li, Y., Yang, X., Zhang, A., ... & Suh, G. E. (2023, February). Autocat: Reinforcement learning for automated exploration of cache-timing attacks. In 2023 IEEE International Symposium on High-Performance Computer Architecture (HPCA) (pp. 317-332).

Why should we take a multi-agent perspective?

- Existing Detectors are still potentially vulnerable to future attacks
 - Detectors rely on strong domain knowledge and discovered attacker tactics
 - Attackers can evade detection by modifying behaviors
- General-sum Markov Games
 - Enable automatic discovery of both attacker and defender policies
 - Have a pool of diverse opponent strategies to develop robust policies

02 ENVIRONMENT

ENVIRONMENT: MA-AutoCAT

Successful Attack: Attacker rewarded, Detector punished Unsuccessful Attacker: Attacker punished

If detector raises a flag: **Terminate the episode** Correct Detection: Detector rewarded + Attacker punished Incorrect Detection: Detector receives penalty Fixed episode length: Max Step=64

Detector (D)

To find out whether there is an attacker as soon as possible

Attacker (A)

To attack (guess victim's secret) as many times as it can before the detector finds out

Victim (V)

It has a multi-bit secret address, which is the target of the attacker

Benign Program (B)

It has action sequences sampled from normal programs in the SPEC-2017 dataset, and the actions are projected to the valid attacker action space of a specific cache configuration

03 METHOD

MACTA Key Concepts

Iterated Best Response training could result in Cyclic Policies

 $\Pi^i_{\tau+1} \leftarrow \Pi^i_\tau \cup \{\pi^i_*(\mathbb{U}(\Pi^{-i}_\tau))\}$

- 1. Transformer observation encoder
- 2. Maintain a policy **pool** for each agent and increase the pool size with policy checkpoints during training
- 3. Approximate Best Responses to a **uniform mixture** of opponents using (Dual-Clip) Proximal Policy Optimization (PPO) [2] [3]

[2] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347.
[3] Ye, D., Liu, Z., Sun, M., Shi, B., Zhao, P., Wu, H., ... & Huang, L. (2020, April). Mastering complex control in moba games with deep reinforcement learning. In *Proceedings of the AAAI Conference on Artificial Intelligence* (Vol. 34, No. 04, pp. 6672-6679).

Jiaxun Cui, The University of Texas at Austin

🔿 Meta

04 Results

Detector Evaluation

Average over 10000 episodes and 10 test datasets

Attackers

Benign Programs

🔿 Meta

MACTA detector is able to outperform baseline detectors and generalize to unseen

attackers while maintaining low false alarm rate for benign programs.

Detector Evaluation

Average over 10000 episodes and 10 test datasets

Attackers

MACTA terminates attackers early to prevent further information leakage

04 Results

Detector "Exploitability"

Load a pre-trained detector, train an "exploiter" attacker of it from scratch

- 1. Slow down future adaptive attackers' learning speed
- 2. Reduces the information leakage against adaptive attackers

Attacker Evaluation

Attack Success Rate (%)

Average over 10000 episodes

100 Heuristic Learning-based 99.9 100 100 100 Т 5.2 5.2 75 Attack Success Rate (%) 4.3 Attacks Per Episode 50 2 25 IBR-PPO Attacker Prime+Probe AutoCAT **IBR-PPO** MACTA Prime+Probe AutoCAT MACTA Attacker Attacker Attacker

Attacks Per Episode

- 1. All of the attackers are conducting effective attacks that are transferable to real hardwares.
- 2. MACTA attacker has the fewest attacks per episode among learning-based attackers.

Qualitative Evaluation

Attacker Evaluation

Average over 10000 episodes and 10 test datasets

Evasion Success Rate (%) against MACTA Detector

MACTA attacker can evade the strongest detector with highest success rates

MACTA: A Multi-agent Reinforcement Learning Approach for Cache Timing Attacks and Detection

Jiaxun Cui, Xiaomeng Yang*, Mulong Luo*, Geunbae Lee*, Peter Stone, Hsien-Hsin S. Lee, Benjamin Lee, G. Edward Suh, Wenjie Xiong^, Yuandong Tian^

🔿 Meta