
This version of the paper is modified slightly from the
version that appeared in the official ICML proceed-
ings. The only substantive change is due to the fact
that, based on subsequent discussions with peers, we
identified a technical flaw in the ways that our MLeS
and CMLeS algorithms were guaranteeing safety.

Specifically, it was possible that MLeS (and also CM-
LeS) may converge to modeling an arbitrary opponent
with a memory size less than or equal to Kmax, and
achieve a return less than its security value. In this
version, that flaw is rectified by requiring that the algo-
rithms check whether their average return is less than
their security value, periodically at chosen intervals,
and if so, requiring that they play their maximin strat-
egy sufficiently many times to bring the return back
up to being close to the safety value.

This change is manifest in the text after Theorem 3.2,
Step 21 of the main CMLeS algorithm, and the expla-
nation of Step 21 on page 7.

The only other differences from the published version
are small textual changes required to make the paper
still fit within 8 pages, and fix a few typos.

For any questions of a technical nature, please contact
the authors.

Convergence, Targeted Optimality, and Safety in Multiagent
Learning

Doran Chakraborty chakrado@cs.utexas.edu

Peter Stone pstone@cs.utexas.edu

Department of Computer Science, University of Texas, 1 University Station C0500, Austin, Texas 78712, USA

Abstract

This paper introduces a novel multiagent
learning algorithm, Convergence with Model
Learning and Safety (or CMLeS in short),
which achieves convergence, targeted opti-
mality against memory-bounded adversaries,
and safety, in arbitrary repeated games. The
most novel aspect of CMLeS is the manner in
which it guarantees (in a PAC sense) targeted
optimality against memory-bounded adver-
saries, via efficient exploration and exploita-
tion. CMLeS is fully implemented and we
present empirical results demonstrating its
effectiveness.

1. Introduction

In recent years, great strides have been made towards
creating autonomous agents that can learn via interac-
tion with their environment. When considering just an
individual agent, it is often appropriate to model the
world as being stationary, meaning that the same ac-
tion from the same state will always yield the same
(possibly stochastic) effects. However, in the pres-
ence of other independent agents, the environment
is not stationary: an action’s effects may depend on
the actions of the other agents. This non-stationarity
poses the primary challenge of multiagent learning

(MAL) (Buşoniu et al., 2008) and comprises the main
reason that it is best considered distinctly from single
agent learning.

The simplest, and most often studied, MAL scenario
is the stateless scenario in which agents repeatedly in-
teract in the stylized setting of a matrix game (a.k.a.
normal form game). In the multiagent literature, var-
ious criteria have been proposed to evaluate MAL al-

Appearing in Proceedings of the 27 th International Confer-
ence on Machine Learning, Haifa, Israel, 2010. Copyright
2010 by the author(s)/owner(s).

gorithms, emphasizing what behavior they will con-
verge to against various types of opponents,1 in such
settings. The contribution of this paper is that it
proposes a novel MAL algorithm, CMLeS, that for a
multi-player multi-action (arbitrary) repeated game,
achieves the following three goals:

1. Convergence : converges to playing a Nash equi-
librium in self-play (other agents are also CMLeS);
2. Targeted Optimality : achieves close to the
best response with a high probability, against a set
of memory-bounded, or adaptive,2 opponents whose
memory size is upper bounded by a known valueKmax.
The same guarantee also holds for opponents which
eventually become memory-bounded;
3. Safety : achieves very close to at least its security
value against other arbitrary opponents, with a high
probability;

1.1. Related work

Bowling et al. (Bowling & Veloso, 2001) were the first
to put forth a set of criterion for evaluating multia-
gent learning algorithms. In games with two players
and two actions per player, their algorithm WoLF-IGA
converges to playing best response against stationary,
or memoryless, opponents (rationality), and converges
to playing the Nash equilibrium in self-play (conver-
gence). Subsequent approaches extended the rational-
ity and convergence criteria to arbitrary (multi-player,
multi-action) repeated games (Banerjee & Peng, 2004;
Conitzer & Sandholm, 2006). Amongst them, Awe-

some (Conitzer & Sandholm, 2006) achieves conver-
gence and rationality in arbitrary repeated games
without requiring agents to observe each others’ mixed
strategies. However, none of the above algorithms
have any guarantee about the payoffs achieved when

1Although we refer to other agents as opponents, we
mean any agent (cooperative, adversarial, or neither)

2Consistent with the literature (Powers et al., 2005), we
call memory-bounded opponents as adaptive opponents.

Convergence, Targeted Optimality, and Safety in Multiagent Learning

they face arbitrary non-stationary opponents. More
recently, Powers et al. proposed a newer set of evalu-
ation criteria that emphasizes compatibility, targeted
optimality and safety (Powers & Shoham, 2005). Com-
patibility is a stricter criterion than convergence as it
requires the learner to converge within ǫ of the payoff
achieved by a Pareto optimal Nash equilibrium. Their
proposed algorithm, PCM(A) (Powers et al., 2007) is,
to the best of our knowledge, the only known MAL
algorithm to date that achieves compatibility, safety
and targeted optimality against adaptive opponents
in arbitrary repeated games.

1.2. Contributions

CMLeS improves on Awesome by guaranteeing both
safety and targeted optimality against adaptive oppo-
nents. It improves upon PCM(A) in five ways.

1. The only guarantees of optimality against adaptive
opponents that PCM(A) provides are against the ones
that are drawn from an initially chosen target set. In
contrast, CMLeS can model every adaptive opponent
whose memory is bounded by Kmax. Thus it does not
require a target set as input: its only input is Kmax.
2. Once convinced that the other agents are not
self-play agents, PCM(A) achieves targeted optimal-
ity against adaptive opponents by requiring all feasi-
ble joint histories of size Kmax to be visited a sufficient
number of times. Kmax for PCM(A) is the maximum
memory size of any opponent from its target set. CM-

LeS significantly improves this by requiring a sufficient
number of visits to only all feasible joint histories of
size K, the true opponent’s memory size.
3. Unlike PCM(A), CMLeS promises targeted op-
timality against opponents which eventually become
memory-bounded with K < Kmax.
4. PCM(A) can only guarantee convergence to a pay-
off within ǫ of the desired Nash equilibrium payoff with
a probability δ. In contrast, CMLeS guarantees con-
vergence in self-play with probability 1.
5. CMLeS is relatively simple in its design, in com-
parison to PCM(A).

The remainder of the paper is organized as follows.
Section 2 presents background and definitions, Sec-
tion 3 and 4 presents our algorithm, Section 5 presents
empirical results and Section 6 concludes.

2. Background and Concepts

This section reviews the definitions and concepts nec-
essary for fully specifying CMLeS.

A matrix game is defined as an interaction between
n agents. Without loss of generality, we assume that

the set of actions available to all the agents are same,
i.e., A1 = . . . = An = A. The payoff received by
agent i during each step of interaction is determined
by a utility function over the agents’ joint action,
ui : An 7→ ℜ. Without loss of generality, we assume
that the payoffs are bounded in the range [0,1]. A
repeated game is a setting in which the agents play
the same matrix game repeatedly and infinitely of-
ten. A single stage Nash equilibrium is a stationary
strategy profile {π∗

i , . . . , π
∗
n} such that for every agent

i and for every other possible stationary strategy πi,
the following inequality holds: E(π∗

1
,...,π∗

i
,...,π∗

n
)ui(·) ≥

E(π∗

1
,...,πi,...,π∗

n
)ui(·). It is a strategy profile in which no

agent has an incentive to unilaterally deviate from its
own share of the strategy. A maximin strategy for an
agent is a strategy which maximizes its own minimum
payoff. Playing it repeatedly, leads to an agent getting
its security value on every time step, in expectation.

An adaptive opponent strategy looks back at the most
recent K joint actions played in the current history

of play to determine its next stochastic action profile.
K is referred to as the memory size of the opponent
(minimum memory size that fully characterizes the op-
ponent strategy). The strategy of such an opponent is
then a mapping, π : AnK 7→ ∆A. If we consider op-
ponents whose future behavior depends on the entire
history, we lose the ability to (provably) learn any-
thing about them in a single repeated game, since we
see a given history only once. The concept of memory-
boundedness limits the opponent’s ability to condition
on history, thereby giving us a chance to learning its
policy.

We now specify what we mean by playing optimally
against adaptive opponents. For notational clarity, we
denote the other agents as a single agent o. It has
been shown previously (Chakraborty & Stone, 2008)
that the dynamics of playing against such an o can be
modeled as a Markov Decision Process (MDP) whose
transition probability function and reward function are
determined by the opponents’ (joint) strategy π. As
the MDP is induced by an adversary, this setting is
called an Adversary Induced MDP, or AIM in short.

An AIM is characterized by the K of the opponent
which induces it: the AIM’s state space is the set of
all feasible joint action sequences of length K. By way
of example, consider the game of Roshambo or rock-
paper-scissors (Figure 1) and assume that o is a single
agent and has K = 1, meaning that it acts entirely
based on the immediately previous joint action. Let
the current state be (R,P), meaning that on the pre-
vious step, i selected R, and o selected P . Assume
that from that state, o plays actions R,P and S with

Convergence, Targeted Optimality, and Safety in Multiagent Learning

probability 0.25, 0.25, and 0.5 respectively. When i

chooses to take action S in state (R,P), the probabil-
ities of transitioning to states (S,R), (S, P) and (S, S)
are then 0.25, 0.25 and 0.5 respectively. Transitions to
states that have a different action for i, such as (R,R),
have probability 0. The reward obtained by i when it
transitions to state (S,R) is -1 and so on.

The optimal policy of the MDP associated with the
AIM is the optimal policy for playing against o. A
policy that achieves an expected return within ǫ of
the expected return achieved by the optimal policy is
called an ǫ-optimal policy (the corresponding return
is called ǫ-optimal return). If π is known, then we
can have computed the optimal policy (and hence ǫ-
optimal policy) by doing dynamic programming (Sut-
ton & Barto, 1998). However, we do not assume that
π or even K are known in advance: they need to be
learned in online play. By return, we mean the time
averaged return of running a policy in a MDP.

Finally, it is important to note that there exist oppo-
nents in the literature which do not allow convergence
to the optimal policy once a certain set of moves have
been played. For example, the grim-trigger opponent
in the well-known Prisoner’s Dilemma (PD) game, an
opponent with memory size 1, plays cooperate at first,
but then plays defect forever once the other agent has
played defect once. Thus, there is no way of detecting
its strategy without defecting, after which it is im-
possible to recover to the optimal strategy of mutual
cooperation. In our analysis, we constrain the class
of adaptive opponents to include only those which do
not negate the possibility of convergence to optimal
exploitation, given any arbitrary initial sequence of ex-
ploratory moves (Powers & Shoham, 2005).

3. Model learning with Safety (MLeS)

In this section, we introduce a novel algorithm, Model
Learning with Safety (MLeS), that ensures targeted
optimality against adaptive opponents and safety.

3.1. Overview

MLeS begins with the hypothesis that the opponent
is an adaptive opponent (denoted as o) with an un-
known memory size K, that is bounded above by a
known value Kmax. MLeS maintains a model for each
possible value of o’s memory size, from k = 0 to Kmax.
Each model π̂k is a mapping (Ai ×Ao)

k
7→ ∆A rep-

resenting a possible o strategy. π̂k is the maximum
likelihood distribution based on the observed actions
played by o for each joint history of size k encountered.
Henceforth we will refer to a joint history of size k as

R

P

S

R P S

R − Rock, P − Paper, S − Scissor

0,0 1,−1

1,−1 −1,1

−1,1 0,01,−1

0,0

−1,1

Roshambo

(R,P)

0.25

0.5

0.25

R

P

S

(R,P)
0.25

0.25

0.5

(S,R) (S,P) (S,S)

Partial Transition Function
for state (R,P) and action S

Opponent Strategy

Figure 1. Example of AIM

sk and the empirical distribution captured by π̂k for
sk as π̂k(sk). π̂k(sk, ao) will denote the probability as-
signed to action ao, by π̂k(sk). When a particular sk is
encountered and the respective o’s action in the next
step is observed, the empirical distribution π̂k(sk) is
updated. Such updates happen for every π̂k, on ev-
ery step. For every sk, MLeS maintains a count value
v(sk), which is the number of times sk has been vis-
ited.

The operations performed by MLeS on each step can
be summarized as follows:
1. Update all models based on the past step.
2. Determine kbest which is the best memory size that
describes o’s behavior. In order to do so, it makes a
call to the Find-K algorithm.
3. Take a step towards solving the reinforcement learn-
ing (RL) problem for the AIM induced by kbest.
Of these three steps, Step 2 is by far the most complex.
We present how MLeS addresses it next.

3.2. Find-K algorithm

The objective of Find-K is to return the best estimate
of o’s memory size (kbest) on every time step. From a
high level, it does so by comparing models of increas-
ing size to determine at which point the larger models
cease to become more predictive of o’s behavior.

We begin by proposing a metric called ∆k, which is
an estimate of how much models π̂k and π̂k+1 differ
from each other. But, first, we introduce two notations
that will be instrumental in explaining the metric. We
denote (ai, ao) · sk to be a joint history of size k+1,
that has sk as its last k joint actions and (ai, ao) as
the last k+1’th joint action. For any sk, we define
a set Aug(sk) = ∪∀ai,ao∈Ai×Ao

((ai, ao) · sk|v((ai, ao) ·
sk) > 0). In other words Aug(sk) contains all joint
histories of size k+1 which have sk as their last k joint
actions and have been visited at least once. ∆k is
then defined as maxsk,sk+1∈Aug(sk),ao∈A|π̂k(sk, ao) −
π̂k+1(sk+1, ao)|. ∆k is thus the maximum difference
in prediction of the models π̂k and π̂k+1.

Based, on the concept of ∆k, we make a couple of
crucial observations that will come in handy for our
theoretical claims made later in this subsection.

Convergence, Targeted Optimality, and Safety in Multiagent Learning

Observation 1. For all K ≤ k < Kmax and for

any k sized joint history sk and any sk+1 ∈ Aug(sk),
E(π̂k(sk)) = E(π̂k+1(sk+1)). Hence E(∆k) = 0.

Let, sK be the last K joint actions in sk and sk+1.
π̂k(sk) and π̂k+1(sk+1) represent draws from the same
fixed distribution π(sK). So, their expectations will
always be equal to π(sK). This is because o just looks
at the most recent K joint actions in its history, to
decide on its next step action.

Observation 2. Once every joint history of size K

has been visited at least once, E(∆K−1) ≥ ψ > 0,
where ψ is the lower bound of the extent to which π̂K−1

can approximate π.

Intuitively, Observation 2 follows from the reasoning
that π̂K−1 cannot fully represent π without losing
some information. We illustrate this with a simple
example. Assume that o is of memory size 1 (K = 1)
and let A = {a, b}, i.e., each player has just two ac-
tions, a and b. Let the probabilities assigned by o to
action a for the possible 1 step joint histories (a, a),
(a, b), (b, a) and (b, b) be 0.2, 0.3, 0.3 and 0.7 respec-
tively. Now the probability assigned to action a by
the 0 step model π̂0(, a) can only be a linear combina-
tion of these values, where the coefficients come from
the number of visits made to each of these joint histo-
ries. Once every 1-step joint history has been visited
once, E(π̂0(, a)) can lie anywhere between 0.2 and 0.7.
Since E(π̂1((a, a), a)) = 0.2, . . . , E(π̂1((b, b), a)) = 0.7,
it is evident that E(∆0) is lowest when E(π̂0(, a)) is
0.2+0.7

2 = 0.45. Hence ψ = 0.25 in this case.

High-level idea of Find-K: We denote the current
values of π̂k and ∆k at time t, as π̂tk and ∆t

k respec-
tively. The approach taken by Find-K (Alg. 1) can be
broadly divided into two steps:
line 2: For each time step t, compute values ∆t

k and
σtk, for all 0 ≤ k < Kmax. For the time being, assume
that the σtk’s computed always satisfy the condition:

∀K ≤ k < Kmax: Pr(∆
t
k ≥ σtk) ≤ ρ (1)

where ρ is a very small probability value. In other
words, even without the knowledge of K, we want the
difference between two consecutive models of size k

and k+1 where k ≥ K to be less than σtk with a high
probability of at least 1 − ρ. Note that although we
compute a σtk for every 0 ≤ k < Kmax, the guarantee
from Inequality 1 only holds for K ≤ k < Kmax. We
will soon show how we compute the σtk’s.
lines 3 -12 : Then, iterate over values of k starting
from 0 to Kmax and choose the minimum k s.t. for all
k ≤ k′ < Kmax, the condition ∆t

k′ < σtk′ is satisfied.
Finally return that value as kbest.

Next we show that eventually the kbest returned by
Find-K is K with a high probability. We start by
providing an intuitive justification for it, we will prove
it later when we specify Lemma 3.1.

We begin by showing that eventually Find-K will
reject a k < K as a possible value for kbest, with
a high probability. With more samples, ∆t

K−1 will
tend to a positive value ≥ ψ with a high proba-
bility (from Observation 2). This coupled with the
fact that σtK−1 assumes a value lower than ψ eventu-
ally (once the condition stated in Lemma 3.1 is met),
makes σtK−1 < ∆t

K−1. This is a sufficient condition
for Find-K to keep rejecting all k < K as a possible
candidate for kbest (Steps 6-8).

Next we show that, once every k < K keeps getting
rejected consistently, Find-K will select K as a possi-
ble value for kbest with a high probability of at least
1− (Kmax −K)ρ (the proof follows from Inequality 1
and using Union bound over all K ≤ k < Kmax).
k > K is only considered for selection once K gets
rejected. The latter can only happen with a proba-
bility of at most (Kmax − K)ρ which is a very small
value. Thus Find-K will converge to selecting K as
kbest with a high probability eventually.

We now address the final part of Find-K that we have
yet to specify: setting the σtk’s (Step 2).
Choosing σtk: In the computation of ∆t

k, MLeS

chooses a specific stk from the set of all possible joint
histories of size k, a specific stk+1 from Aug(stk) and
an action ato, for which the models π̂tk and π̂tk+1 differ
maximally on that particular time step. So,

∆t
k < σtk ≡ |π̂tk(s

t
k, a

t
o) − π̂tk+1(s

t
k+1, a

t
o)| < σtk (2)

The goal will be to select a value for σtk s.t. Inequality 1
is always satisfied. Hence the rest of the derivation
will focus on the range K ≤ k < Kmax. We can then
rewrite Inequality 2 as,

≡ |(π̂tk(s
t
k, a

t
o) − E(π̂tk(s

t
k, a

t
o)) − (π̂tk+1(s

t
k+1, a

t
o)

−E(π̂tk+1(s
t
k+1, a

t
o))| < σtk (3)

The above step follows from using E(π̂tk(s
t
k, a

t
o)) =

E(π̂tk+1(s
t
k+1, a

t
o)) (Observation 1). One way to satisfy

Inequality 3 is to have both |π̂tk(s
t
k, a

t
o)−E(π̂tk(s

t
k, a

t
o))|

and |π̂tk+1(s
t
k+1, a

t
o)−E(π̂tk+1(s

t
k+1, a

t
o))| be <

σt

k

2 . By
upper bounding the probabilities of failure of the above
2 events by ρ

2 and then using Union bound, we get
Pr(∆t

k < σtk) > 1 − ρ.

Also, we observe that the following holds :

Pr(|π̂tk+1(s
t
k+1, a

t
o) − E(π̂tk+1(s

t
k+1, a

t
o))| ≥

σtk
2

) ≤
ρ

2
(4)

=⇒ Pr(|π̂tk(s
t
k, a

t
o) − E(π̂tk(s

t
k, a

t
o))| ≥

σtk
2

) ≤
ρ

2
(5)

Convergence, Targeted Optimality, and Safety in Multiagent Learning

Algorithm 1: Find-K

output : kbest

kbest ← Kmax1

for all 0 ≤ k < Kmax, compute ∆t
k and σt

k2

for 0 ≤ k < Kmax do3

flag ← true4

for k ≤ k′ < Kmax do5

if ∆t
k′ ≥ σt

k′ then6

flag ← false7

break8

if flag then9

kbest ← k10

break11

return kbest12

This can be derived by applying Hoeffding’s inequal-
ity and using v(stk) ≥ v(stk+1). v(stk) ≥ v(stk+1)
because the number of visits to a joint history sk
must be at least the number of visits to any mem-
ber from Aug(sk). Intuitively, if we are confident that
we have learned a bigger model to a reasonable ap-
proximation, then we are also confident with at least
the same confidence that we have learned a smaller
model to the same approximation. So, Inequality 4
=⇒ Pr(∆t

k < σtk) > 1 − ρ

The problem now boils down to selecting a suitable σtk
s.t. Inequality 4 is satisfied. By applying Hoeffding’s
inequality and solving for σtk, we get,

σtk =

√

(
2

v(stk+1)
ln(

4

ρ
)) (6)

So in general, for each k ∈ [0,Kmax − 1], the σtk value
is set as above. Note that, v(stk+1) is the number of
visits to the specific stk+1 chosen for the computation
of ∆t

k.

Theoretical underpinnings: Now, we state our
main theoretical result regarding Find-K.

Lemma 3.1. After all feasible joint histories of size K

have been visited 8
ψ2 ln(4

ρ
) times, then with probability

at least 1 − (Kmax + 1)ρ, the kbest returned by Find-

K is K. ψ is the lower bound on the degree to which

π̂tK−1 can approximate π, and ρ is the small probability

value from Inequality 1.

Proof Sketch: We have already shown that (i) once
the choice boils down to selecting a kbest from the
range [K,Kmax], K is selected with a high probability
of at least 1-(Kmax − K)ρ. Now, we show that after
all feasible joint histories of size K have been visited
the number of times specified in the definition of the
lemma, the probability of rejecting a kbest < K is at
least 1 − ρ.

To reject a k < K, it is sufficient to have ∆t
K−1 ≥

σtK−1. By using Hoeffding’s inequality, we can show
that ∆t

K−1 ≥ E(∆t
K−1) − σtK−1 ≥ ψ − σtK−1, with

probability of error at most ρ. Therefore ∆t
K−1 ≥

σtK−1 ⇐ σtK−1 ≤ ψ
2 ⇔ v(stK) ≥ 8

ψ2 ln(4
ρ
) (the last step

follows from using Equation 6). Hence (ii) when all
joint histories of size K are visited ≥ 8

ψ2 ln(4
ρ
) times,

the probability of rejecting a k < K is at least 1 − ρ.
By combining (i) and (ii) we have the proof. �

The onus now lies on the action selection mechanism
(Step 3 of MLeS) to ensure that every feasible K sized
history gets visited the number of times specified in
Lemma 3.1, which will enable Find-K to keep return-
ing K consistently.

3.3. Action selection

On each time step, the action selection mechanism
decides on what action to take for the ensuing time
step. It picks the AIM associated with opponent mem-
ory kbest and takes the next step in the reinforcement
learning problem of computing a near-optimal policy
for that AIM. In order to solve this RL problem, we
use the model based RL algorithm R-Max (Brafman &
Tennenholtz, 2003). We maintain a separate instanti-
ation of the R-Max algorithm for each of the possible
Kmax+1 AIMs pertaining to the possible memory sizes
of o, i.e, M0,M1, . . . ,MKmax

. On each step, based on
the kbest returned, the R-Max instance for the AIM
Mkbest

is selected to take an action. The two condi-
tions that ensure targeted optimality against adaptive
opponents are then:

1. With probability at least 1 − δ
3 , ensure that all

histories of size K are visited 8
ψ2 ln(12(Kmax+1)

δ
) times.

Once the above criterion is satisfied, Find-K keeps re-
turning kbest = K with probability at least 1− δ

3 (from

Lemma 3.1 and by setting ρ = δ
3(Kmax+1)).

2. With probability at least 1 − δ
3 , allow R-Max in-

stance of MK to converge to achieving an ǫ-optimal
return.

Our ultimate goal is to have our action selection mech-
anism implicitly satisfy both the conditions in sample
complexity polynomial in 1

ǫ
, 1
δ
, 1
ψ

, 1
λ
, Kmax, NK , |A|

and T ∗. NK is the number of joint histories of size K
and T ∗ is the mixing time for the average return (Braf-
man & Tennenholtz, 2003). λ is the minimum positive
probability that o assigns to any action. Note, we do
not have the ability to take samples at will from differ-
ent histories, but may need to follow a chain of differ-
ent histories to get a sample pertaining to one history.
In the worst case, the chain can be the full set of all
K sized histories, with each transition occurring with

Convergence, Targeted Optimality, and Safety in Multiagent Learning

λ. Hence the unavoidable dependence on 1
λ

in sam-
ple complexity. By the sample complexity property
of R-Max, condition 2 will always be satisfied in sam-
ple complexity polynomial in 1

ǫ
, 1
δ
, NK , |A|, and T ∗.

Hence, all we need to ensure is that condition 1 re-
mains satisfied in similar sample complexity with an
additional dependence on 1

ψ
, 1
λ
, and Kmax.

RMax requires knowledge of the mixing time (T ∗) of
the MDP. If T ∗ is unknown, then RMax has to be
run in phases where in each phase the mixing time is
assigned to a value T , T being incremented with each
phase. Each phase is essentially a restart and it ends
when RMax has run for a sufficient number of time
steps (see (Brafman & Tennenholtz, 2003) for an exact
value) with that value of T as T ∗. The number of time
steps for each phase is the number required by RMax
to ensure an ǫ-optimal return for that whole phase,
with a high probability, assuming T is the correct value
for T ∗. Since from some phase onwards T equals or
exceeds T ∗, the return is always ǫ-optimal from then
onwards, with a high probability.

On a similar note to facilitate our theoretical claims,
we run each RMax instance in phases by increment-
ing T . A phase for an instance ends when that in-
stance has been selected by the action selection mech-
anism to decide on an action a sufficient number of
times, as required by RMax. It can be shown that
due to these repeated restarts, eventually in a partic-
ular phase, all feasible joint hsitories of size K do get
visited a sufficient number of times allowing Find-K

to keep returning K consistently from then onwards,
with a high probability. As a consequence, the RMax
instance associated with MK is chosen by the action
selection mechanism to decide on its action from then
onwards, with a high probability. This in turn leads
to MLeS eventually achieving a near-optimal return
for that AIM, with a high probability.

This brings us to our main theorem regarding MLeS.

Theorem 3.2. For any arbitrary ǫ > 0 and δ > 0,
with probability at least 1-δ, MLeS achieves at least

within ǫ of the best response against any adaptive op-

ponent, in number of time steps polynomial in 1
ǫ
, 1
δ
,

1
ψ
, 1
λ
, Kmax, NK , |A| and T ∗.

If there is an arbitrary opponent (neither MLeS nor
adaptive) in the population, then MLeS models it by
assigning it a memory size from 0 to Kmax that best
describes its behavior. Depending on the nature of
the arbitrary opponent, that might turn out to be a
good strategy leading to a good return for the MLeS

agent. However, in the worst case, this may lead to a
return that is less than the agent’s security value due
to the inadequate model. To counteract this possi-

bility, MLeS always checks its return before an RMax
instance restarts. If the return is more than ǫ less than
its security value, it plays its maximin strategy a suffi-
cient number of time steps following it to compensate
for the loss and brings the return back to within ǫ of
its security value. The number of times it requires to
play its maximin strategy depends on how much less
is the return from security value minus ǫ, and can be
computed using Hoeffding’s inequality. Thus, MLeS

always achieves a return which is at least very close to
its security value, with a high probability.

4. Convergence and Model learning
with Safety (CMLeS)

In this section we build on MLeS to introduce a
novel MAL algorithm for an arbitrary repeated game
which achieves safety, targeted optimality, and conver-
gence, as defined in Section 1. We call our algorithm,
Convergence with Model Learning and Safety: (CM-

LeS). CMLeS begins by testing the opponents to see if
they are also running CMLeS (self-play); when not, it
uses MLeS as a subroutine.

4.1. Overview

CMLeS (Alg. 2) can be tuned to converge to any Nash
equilibrium (NE) of the repeated game in self-play.
Here, for the sake of clarity, we present a variant
which converges to the single stage NE. This equilib-
rium also has the advantage of being the easiest of
all Nash equilibria to compute and hence has histori-
cally been the preferred solution concept in multiagent
learning (Bowling & Veloso, 2001; Conitzer & Sand-
holm, 2006).

Steps 1 - 2: Like Awesome, we assume that all
agents have access to a NE solver and they compute
the same Nash equilibrium profile.
Steps 3 - 4: The algorithm maintains a null hypoth-
esis that all agents are playing equilibrium (AAPE).
The hypothesis is not rejected unless the algorithm is
certain with probability 1 that the other agents are
not playing CMLeS. τ keeps count of the number of
times the algorithm reaches Step 4.
Steps 5 - 8 (Same as Awesome): Whenever the algo-
rithm reaches Step 5, it plays the equilibrium strategy
for a fixed number of episodes, Nτ . It keeps a running
estimate of the empirical distribution of actions played
by all agents, including itself, during this run. At Step
8, if for any agent j, the empirical distribution φτj dif-
fers from π∗

j by at least ǫτe , AAPE is set to false. The
CMLeS agent has reason to believe that j may not be
playing the same algorithm. The ǫτe and Nτ values for
each τ are assigned in a similar fashion to Awesome

Convergence, Targeted Optimality, and Safety in Multiagent Learning

(Definition 4 of (Conitzer & Sandholm, 2006)).
Steps 10 - 20: Once AAPE is set to false, the algo-
rithm goes through a series of steps in which it checks
whether the other agents are adaptive with memory
size at most Kmax. The details are explained below in
Theorem 4.1.
Step 21: Before the CMLeS agents enter a new equi-
librium coordination phase, they check whether their
return is more than ǫ less than their security value. If
so, then they play their maximin strategy for a suffi-
cient number of time steps to compensate for it. Akin
to MLeS, the number of times it requires to play its
maximin strategy depends on how much less is the re-
turn from security value minus ǫ, and can be computed
using Hoeffding’s inequality. To keep every CMLeS

agent in sync, once a CMLeS agent switches to play-
ing its maximin strategy to compensate for any loss,
every other agent also does so, and waits for the pro-
cess to complete. Once that is over, they go back and
start a new NE coordination phase (Step 4).
Step 24: When the algorithm reaches here, it is sure
(probability 1) that the other agents are not CMLeS

agents. Hence it switches to playing MLeS.

4.2. Theoretical underpinnings

CMLeS cannot distinguish between a CMLeS agent
and an adaptive agent if the latter plays the computed
NE strategy from the beginning, and hence may coor-
dinate with it to converge to the NE. Note, this might
not strictly be the best response against such an adap-
tive opponent, but we believe it to be a reasonable so-
lution concept for such cases. Henceforth, our analysis
on adaptive opponents will exclude this special case.

Theorem 4.1. CMLeS achieves targeted optimality

against adaptive opponents.

Proof. To prove the theorem, we need to prove that
for adaptive opponents of memory size at most Kmax,
CMLeS reaches Step 24 with some probability. We
utilize the property that a K adaptive opponent is
also a Kmax adaptive opponent (see Observation 1).
The first time AAPE is set to false, it selects a ran-
dom action ao and then plays it Kmax+1 times in a
row. The second time when AAPE is set to false, it
plays ao, Kmax times followed by a different action.
If the other agents have behaved identically in both
of the above situations, then CMLeS knows : 1) ei-
ther the rest of the agents are playing CMLeS, or, 2) if
they are adaptive, they play stochastically for a Kmax

bounded memory where all agents play ao. The lat-
ter observation comes in handy below. Henceforth,
whenever AAPE is set to false, CMLeS always plays
ao, Kmax+1 times in a row. Since an adaptive oppo-
nent must be stochastic (from the above observation),

Algorithm 2: CMLeS

input : n, τ = 0, τ ′ = 0
for ∀j ∈ {1, 2, . . . , n} do1

π∗

j ← ComputeNashEquilibriumStrategy()2

AAPE ← true3

while AAPE do4

for Nτ rounds do5

Play π∗

self6

For each agent j update φτ
j7

recompute AAPE using the φτ
j ’s and π∗

j ’s8

if AAPE is false then9

if τ ′ = 0 then10

Play ao, Kmax+1 times11

else if τ ′ = 1 then12

Play ao, Kmax times followed by a13

random action other than ao14

else15

Play ao, Kmax+1 times16

if any other agent plays differently then17

AAPE ← false18

else19

AAPE ← true20

If return < security value - ǫ, then play21

maximin strategy enough times to compensate
τ ′ ← τ ′ + 122

τ ← τ + 123

Play MLeS24

at some point of time, it will play a different action
on the Kmax+1’th step with a non-zero probability.
CMLeS then rejects the null hypothesis that all other
agents are CMLeS agents and jumps to Step 24.

Theorem 4.2. In self-play, CMLeS converges to play-

ing the Nash equilibrium of the repeated game.

The proof follows from the corresponding proof for
Awesome (Theorem 3 of Conitzer et al., 2006).

All that remains to be shown is that CMLeS achieves
safety against arbitrary opponents. If CMLeS con-
verges to playing MLeS, then by virtue of MLeS, it
achieves safety. If CMLeS never converges to playing
MLeS, then Step 21 ensures that it never gets exploited
by an arbitrary opponent, and safety is ensured.

5. Results

We now present empirical results that supplement the
theoretical claims. We focus on how efficiently CMLeS

models adaptive opponents in comparison to existing
algorithms, PCM(A) and Awesome. For CMLeS, we
set ǫ = 0.1, δ = 0.01 and Kmax = 10. To make the
comparison fair with PCM(A), we use the same values
of ǫ and δ and always include the respective opponent

Convergence, Targeted Optimality, and Safety in Multiagent Learning

in the target set of PCM(A). We also add an adaptive
strategy with K = 10 to the target set of PCM(A), so
that it needs to explore joint histories of size 10.

We use the 3-player Prisoner’s Dilemma (PD) game
as our representative matrix game. The game is
a 3 player version of the N-player PD present in
GAMUT (http://gamut.stanford.edu).The adap-
tive opponent strategies we test against are :
1. Type 1: every other player plays defect if in the
last 5 steps CMLeS played defect even once. Other-
wise, they play cooperate. The opponents are thus de-
terministic adaptive strategies with K = 5.
2. Type 2: every other player behaves as type-1 with
0.5 probability, or else plays completely randomly. In
this case, the opponents are stochastic with K = 5.
The total number of joint histories of size 10 in this
case is 810, which makes PCM(A) highly inefficient.
However, CMLeS quickly figures out the true K and
converges to optimal behavior in tractable number of
steps. Figure 2 shows our results against these two
types of opponents. The Y-axis shows the payoff of
each algorithm as a fraction of the optimal payoff
achievable against the respective opponent. Each plot
has been averaged over 30 runs to increase robust-
ness. Against type-1 opponents (Figure 2(i)), CM-

LeS figures out the true memory size in about 2000
steps and converges to playing near optimally by 16000
episodes. Against type-2 opponents (Figure 2(ii)), it
takes a little longer to converge to playing near opti-
mally (about 30000 episodes) because in this case, the
number of feasible joint histories of size 5 are much
more. Both Awesome and PCM(A) perform much
worse. PCM(A) plays a random exploration strategy
until it has visited every possible joint history of size
Kmax, hence it keeps getting a constant payoff during
this whole exploration phase.

Due to space constraints we skip the results for con-
vergence and safety. The convergence part of CMLeS

uses the framework of Awesome and the results are
exactly similar to it.

6. Conclusion and Future Work

In this paper, we introduced a novel MAL algorithm,
CMLeS, which in an arbitrary repeated game, achieves
convergence, targeted-optimality against adaptive op-
ponents, and safety. One key contribution of CMLeS

is in the manner it handles adaptive opponents: it re-
quires only a loose upper bound on the opponent’s
memory size. Second, and more importantly, CM-

LeS improves upon the state of the art algorithm, by
promising targeted optimality against adaptive oppo-
nents by requiring sufficient number of visits to only

 0

 0.25

 0.5

 0.75

 1

 0 5000 10000 15000 20000

P
ay

O
ff

Episode (Against Trigger Strategy)

 0

 0.25

 0.5

 0.75

 1

 0 20000 40000 60000 80000

P
ay

O
ff

Episode (Against 50 % Random and 50 % Trigger Strategy)

CMLeS PCM(A) AWESOME

Figure 2. Against adaptive opponents

all feasible joint histories of size K, where K is the op-
ponent’s memory size. Right now, the guarantees of
CMLeS are only in self-play or when all other agents
are adaptive. Our ongoing research agenda includes
improving CMLeS to have better performance guaran-
tees against arbitrary mixes of agents, i.e., some adap-
tive, some self-play, and the rest arbitrary.

Acknowledgments: This work took place at the Learning Agents
Research Group (LARG) at UT, Austin. LARG research is sup-
ported in part by grants from the National Science Foundation (IIS-
0917122), ONR (N00014-09-1-0658), DARPA (FA8650-08-C-7812),
and the Federal Highway Administration (DTFH61-07-H-00030).

References

Banerjee, Bikramjit and Peng, Jing. Performance bounded
reinforcement learning in strategic interactions. In
AAAI, pp. 2–7, 2004.

Bowling, Michael and Veloso, Manuela. Convergence of
gradient dynamics with a variable learning rate. In
ICML, pp. 27–34, 2001.

Brafman, Ronen I. and Tennenholtz, Moshe. R-max - a
general polynomial time algorithm for near-optimal re-
inforcement learning. J. Mach. Learn. Res., pp. 213–231,
2003.

Buşoniu, L., Babuška, R., and De Schutter, B. A com-
prehensive survey of multi-agent reinforcement learning.
IEEE Transactions on Systems, Man, and Cybernetics,
Part C: Applications and Reviews, pp. 156–172, 2008.

Chakraborty, Doran and Stone, Peter. Online multia-
gent learning against memory bounded adversaries. In
ECML, pp. 211–226, 2008.

Conitzer, Vincent and Sandholm, Tuomas. Awesome: A
general multiagent learning algorithm that converges in
self-play and learns a best response against stationary
opponents. In J. Mach. Learn. Res., pp. 23–43, 2006.

Powers, Rob and Shoham, Yoav. Learning against oppo-
nents with bounded memory. In IJCAI, pp. 817–822,
2005.

Powers, Rob, Shoham, Yoav, and Vu, Thuc. A general
criterion and an algorithmic framework for learning in
multi-agent systems. Mach. Learn., pp. 45–76, 2007.

Sutton, Richard S. and Barto, Andrew G. Reinforcement
Learning. MIT Press, 1998.

