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Abstract

We consider the general, widely applicable
problem of selecting from n real-valued ran-
dom variables a subset of size m of those with
the highest means, based on as few samples as
possible. This problem, which we denote Ex-

plore-m, is a core aspect in several stochas-
tic optimization algorithms, and applications
of simulation and industrial engineering. The
theoretical basis for our work is an extension
of a previous formulation using multi-armed
bandits that is devoted to identifying just the
one best of n random variables (Explore-
1). In addition to providing PAC bounds
for the general case, we tailor our theoreti-
cally grounded approach to work efficiently
in practice. Empirical comparisons of the
resulting sampling algorithm against state-
of-the-art subset selection strategies demon-
strate significant gains in sample efficiency.

1. Introduction

We consider the problem of efficient subset selection:
given n real-valued random variables, our task is to re-
liably identify m among them with the highest means,
while keeping the total number of samples minimal.
This problem merits attention from several fields, in-
cluding industrial engineering (Koenig & Law, 1985),
simulation (Kim & Nelson, 2001), and evolutionary
computation (Schmidt et al., 2006).

The theoretical basis for our work is an extension
of recent research from Even-Dar et al. (2006) (and
Mannor & Tsitsiklis (2004)), who consider a prob-
lem of “pure exploration” in a multi-armed ban-
dit (Berry & Fristedt, 1985). Unlike traditional ban-
dit problems in which the rewards accrued during
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the exploratory phase must be maximized (and thus
the regret minimized), in their problem the aim is
to minimize the total number of samples needed to
reliably identify an arm with an expected reward
that is within ǫ of the maximum achievable (an “ǫ-
optimal” arm). The parameter ǫ serves to specify tol-
erance. Casting the problem into a PAC framework,
Even-Dar et al. (2006) provide an algorithm that iden-
tifies an ǫ-optimal arm in an n-armed bandit with
probability at least 1 − δ, incurring a sample com-
plexity that is O( n

ǫ2
log( 1

δ
)). This sample complexity

matches, up to constants, a lower bound derived by
Mannor & Tsitsiklis (2004).

In this paper we generalize the problem formulated by
Even-Dar et al. (2006): our aim is to identify m arms
of an n-armed bandit such that the expected reward
of each chosen arm is at least pm − ǫ, where pm is
the mth highest expected reward among the bandit’s
arms. We denote this problem “Explore-m” (thus,
the special case studied by Even-Dar et al. (2006) is
Explore-1). We extend the “median elimination”
algorithm proposed by Even-Dar et al. (2006) to pro-
vide an algorithm for Explore-m that satisfies a PAC
constraint similar to the one for Explore-1, while
achieving a sample complexity that is O( n

ǫ2
log(m

δ
)).

We argue that in practice, sample efficiency can be
further improved by adapting to data through a se-
quential procedure, while preserving the PAC guaran-
tee. Empirical results affirm significant gains for the
resulting adaptive method when compared with state-
of-the-art subset selection methods (Chen et al., 2008;
Heidrich-Meisner & Igel, 2009).

This paper is organized as follows. We define the Ex-

plore-m problem in Section 2. In Section 3 we pro-
vide three PAC algorithms for Explore-m and ana-
lyze their sample complexity. In sections 2 and 3 we
closely follow the presentation style of Even-Dar et al.
(2006). In Section 4 we present an adaptive method
for solving Explore-m in practice. Empirical evalu-
ation and comparisons follow in Section 5. We discuss
related work and conclude in Section 6.
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2. Problem Statement

We consider an n-armed bandit with its arms num-
bered 1, 2, . . . , n. Each sample (or “pull”) of arm a

yields a reward of either 0 or 1, generated randomly
from a Bernoulli distribution with mean pa. Without
loss of generality we assume that

p1 > p2 > . . . > pn. (1)

The arm distributions are independent, and do not
depend on the history of pulls.1 Arm a is defined to
be (ǫ,m)-optimal, ∀ǫ > 0, ∀m ∈ {1, 2, . . . , n}, if

pa ≥ pm − ǫ. (2)

To solve the Explore-m problem, an algorithm may
sample arms of the n-armed bandit and record the
results of its pulls; the algorithm is required to termi-
nate and return a set of m arms. Such an algorithm
L is defined to be (ǫ,m, δ)-optimal, ∀δ ∈ (0, 1), if with
probability at least 1 − δ, each of the arms it returns
is (ǫ,m)-optimal. Note that we do not require the m

arms returned by L to be in any particular order. The
sample complexity of L is the total number of pulls it
performs before termination.

Let us denote by Ti the set {1, 2, . . . , i}. From (1)
and (2) we see that every arm in Tm is (ǫ,m)-optimal.
Hence, there are at least m (ǫ,m)-optimal arms, and
so the Explore-m problem is well-defined. Let us de-
note by B the set of arms that are not (ǫ,m)-optimal.
In general 0 ≤ |B| ≤ (n − m). Note that Explore-m
is a trivial problem when m = n.

3. Algorithms and PAC Analysis

Even-Dar et al. (2006) present two (ǫ, 1, δ)-optimal al-
gorithms for Explore-1: a näıve algorithm that
achieves a sample complexity O( n

ǫ2
log(n

δ
)), and a “me-

dian elimination” algorithm that improves the sample
complexity to O( n

ǫ2
log( 1

δ
)). We generalize these ex-

isting algorithms to construct three (ǫ,m, δ)-optimal
algorithms for Explore-m. Our first algorithm,
“Direct,” essentially implements the näıve strategy
of pulling each arm a fixed number of times. The
second algorithm, “Incremental,” uses the median
elimination algorithm as a subroutine. The sample
complexities of both methods are improved by our
third algorithm, “Halving,” which modifies the me-
dian elimination algorithm to identify m arms instead
of 1. In the following text, ln denotes the natural log-
arithm and log denotes the logarithm to the base 2.

DIRECT: Under Direct (Algorithm 1), arms are
sampled a fixed number of times (line 2) such that with

1The analysis and algorithms in this paper easily extend
to the case where arm distributions have known, bounded
ranges, and also when some have equal means.

high probability the m arms with the highest empirical

averages (denoted p̂) are all (ǫ,m)-optimal.

Algorithm 1 Direct(n, m, ǫ, δ)

1: for all a ∈ Tn do
2: Sample arm a ⌈ 2

ǫ2
ln(n

δ
)⌉ times; let p̂a be its average

reward.
3: end for
4: Find S ⊂ Tn such that |S| = m, and ∀i ∈ S ∀j ∈

(Tn − S): (p̂i ≥ p̂j).
5: Return S.

Theorem 1. Direct(n,m, ǫ, δ) is (ǫ,m, δ)-optimal

with sample complexity O( n
ǫ2

log(n
δ
)).

Proof. Recall that B is the set of arms in Tn that are
not (ǫ,m)-optimal. From (1) and (2) we can relate Tm

and B as follows:

∀i ∈ Tm ∀j ∈ B : (pi − pj > ǫ). (3)

Since |S| = m, an arm j in B can occur in S only if
there is some arm i in Tm such that p̂i ≤ p̂j (line 4). In
turn (3) implies that the latter event can only occur if
p̂i ≤ pi − ǫ

2 or p̂j ≥ pj + ǫ
2 . Switching to probabilities,

applying the union bound and Hoeffding’s inequality,
we get:

P (∃j ∈ B : (j ∈ S))

≤ P (∃i ∈ Tm : (p̂i ≤ pi −
ǫ

2
)) + P (∃j ∈ B : (p̂j ≥ pj +

ǫ

2
))

≤
X

i∈Tm

P (p̂i ≤ pi −
ǫ

2
) +

X

j∈B

P (p̂j ≥ pj +
ǫ

2
)

≤ |Tm|e
− ǫ

2

2
⌈ 2

ǫ2
ln( n

δ
)⌉

+ |B|e
− ǫ

2

2
⌈ 2

ǫ2
ln( n

δ
)⌉

≤ (|Tm|+ |B|)(
δ

n
) ≤ δ.

Since each arm is pulled exactly ⌈ 2
ǫ2

ln(n
δ
)⌉ times, the

sample complexity of Direct is O( n
ǫ2

log(n
δ
)).

INCREMENTAL: Unlike Direct, Incremental

(Algorithm 2) proceeds through m rounds. At the
beginning of round l, Sl is the set of arms that have
been selected, and Rl the set of arms remaining (line
1). During round l, an (ǫ, 1)-optimal arm in Rl is se-
lected with high probability by invoking the median
elimination algorithm (Even-Dar et al., 2006) (line 3).
We show that an (ǫ, 1)-optimal arm in Rl is necessarily
(ǫ,m)-optimal in Tn.

Algorithm 2 Incremental(n, m, ǫ, δ)

1: S1 ← {}; R1 ← Tn.
2: for l = 1 to m do
3: a′ ←Median-Elimination(Rl, ǫ,

δ
m

).
4: Sl+1 ← Sl ∪ {a

′}; Rl+1 ← Rl − {a
′}.

5: end for
6: Return Sm+1.
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Theorem 2. Incremental(n,m, ǫ, δ) is (ǫ,m, δ)-
optimal with sample complexity O(mn

ǫ2
log(m

δ
)).

Proof. Since |Rl| = n− l+1, and l ≤ m, Rl necessarily
contains an arm a in Tm. Among the true means of the
arms in Rl, let p∗ be the highest. It follows from (1)
and (2) that for any arm a′ that is (ǫ, 1)-optimal with
respect to Rl, pa′ ≥ p∗− ǫ ≥ pa − ǫ ≥ pm − ǫ: i.e., a′ is
(ǫ,m)-optimal with respect to Tn. On round l, since
Median-Elimination (line 3) returns an arm that is
not (ǫ, 1)-optimal in Rl with probability at most δ

m
,

the probability that Incremental selects an arm that
is not (ǫ,m)-optimal is at most δ.

The sample complexity of Incremental is derived
from its m calls to Median-Elimination. Since
|Rl| ≤ n, each call performs at most O( n

ǫ2
log( 1

δ

m

))

pulls (see Even-Dar et al., 2006, Lemma 12), giving
a total sample complexity that is O(mn

ǫ2
log(m

δ
)).

HALVING: While Incremental selects an arm ev-
ery round, Halving (Algorithm 3) eliminates multiple
arms every round based on their inferior empirical av-
erages. From Rl, the set of arms remaining at the be-
ginning of round l, half proceed to round l +1 (except
that m proceed to the last round). Arms are sampled
enough times each round (line 5) such that at least m

(ǫ,m)-optimal arms are likely to survive elimination.
Specifically, round l is associated with parameters ǫl

and δl, and we ensure that with probability at least
1 − δl the mth highest true mean in Rl+1 is not lower
than the mth highest true mean in Rl by more than
ǫl. The sequences (ǫl) and (δl) (lines 2 and 9) are
designed such that Halving is (ǫ,m, δ)-optimal with
sample complexity O( n

ǫ2
log(m

δ
)).

Algorithm 3 Halving(n, m, ǫ, δ)

1: R1 ← Tn.
2: ǫ1 ←

ǫ
4
; δ1 ←

δ
2
.

3: for l = 1 to ⌈log( n
m

)⌉ do
4: for all a ∈ Rl do
5: Sample arm a ⌈ 2

ǫ2
l

ln( 3m
δl

)⌉ times; let p̂a be its av-

erage reward.
6: end for
7: Find R′

l ⊂ Rl such that |R′
l| = max(⌈ |Rl|

2
⌉, m), and

∀i ∈ Rl ∀j ∈ (Rl −R′
l): (p̂i ≥ p̂j).

8: Rl+1 ← R′
l.

9: ǫl+1 ←
3
4
ǫl; δl+1 ←

1
2
δl.

10: end for
11: Return R⌈log( n

m
)⌉+1.

Theorem 3. Halving(n,m, ǫ, δ) is (ǫ,m, δ)-optimal

with sample complexity O( n
ǫ2

log(m
δ

)).

Proof. Let us sort the arms in Rl in decreasing order
of their true means. Let al

i be the ith arm in the sorted
list and let pl

i be its true mean. We say a “mistake”

is made in round l if pl
m − pl+1

m > ǫl. Note that (1)

p1
m = pm, (2)

∑⌈log( n

m
)⌉

l=1 ǫl < ǫ, and (3)
∑⌈log( n

m
)⌉

l=1 δl <

δ. In effect, it suffices to show that the probability
of making a mistake in round l is at most δl: this

would establish that P (pm − p
⌈log( n

m
)⌉+1

m > ǫ) < δ, or
in other words, that Halving is (ǫ,m, δ)-optimal. We
show that for a mistake to occur on round l, at least
one of two events, E1 and E2, must occur; however,
P (E1) + P (E2|¬E1) ≤ δl.

Let Al = {al
i, i ∈ 1, 2, . . . ,m}: Al contains the m arms

from Rl with the highest true means. E1 denotes the
event ∃a ∈ Al : (p̂a ≤ pa− ǫl

2 ). By applying Hoeffding’s
inequality and the union bound we obtain:

P (E1) ≤ me
−

ǫ
2
l
2

⌈ 2
ǫ2
l

ln( 3m

δl
)⌉

≤
δl

3
. (4)

Let Bl = {j ∈ Rl, pj < pl
m − ǫl}: Bl is the set of

arms that are not (ǫl,m)-optimal in Rl. We call an
arm b in Bl “bad” if its empirical average equals or
exceeds that of some arm in Al. If E1 does not occur,
note that b can be bad only if p̂b ≥ pb + ǫl

2 ; a similar
application of Hoeffding’s inequality shows that the
probability of the latter event is at most δl

3m
. Let the

number of bad arms in Bl be #bad; counting bad arms
as Boolean results of |Bl| coin tosses, we obtain that
E[#bad|¬E1] is at most |Bl| δl

3m
.

E2 denotes the event that #bad ≥ |Rl+1| − m + 1.
A moment’s reflection informs us that if E1 does not
occur, a mistake can be made on round l only if E2

occurs. Markov’s inequality establishes that

P (E2|¬E1) = P (#bad ≥ (|Rl+1| −m + 1)|¬E1)

≤
E[#bad|¬E1]

|Rl+1| −m + 1
≤

|Bl|

|Rl+1| −m + 1
(

δl

3m
)

≤
|Rl| −m

|Rl+1| −m + 1
(

δl

3m
) ≤

2

3
δl. (5)

Arithmetic for the last step follows from the observa-
tion that |Rl| ≤ 2|Rl+1| (lines 7 and 8). Together, (4)
and (5) complete our proof.

In Algorithm 3 the total number of pulls across all

rounds (line 5) is
∑⌈log( n

m
)⌉

l=1 ⌈ 2|Rl|
ǫ2

l

ln( 3m
δl

)⌉. Slight

modifications to the steps for bounding a similar sum
when m = 1 (see Even-Dar et al., 2006, Lemma 12)
establish that it is O( n

ǫ2
log(m

δ
)).

Indeed Halving achieves the lowest sample com-
plexity bound (O( n

ǫ2
log(m

δ
))) among the algorithms

presented in this section. At present we are un-
aware of a tighter lower bound for Explore-m than
the one automatically carrying over from Explore-
1 (Ω( n

ǫ2
log( 1

δ
))) (Mannor & Tsitsiklis, 2004). Thus,

proving matching upper and lower bounds for Ex-

plore-m is an open problem.
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4. Adaptive Bounds in Practice

Which instances of Explore-m are easy and which
ones are difficult? It seems intuitive that when the
top m and bottom n−m arms are separated by a rel-
atively large margin, or when arm distributions have
low variances, fewer samples would be needed to re-
liably identify m (ǫ,m)-optimal arms. However, for
given n, m, ǫ, and δ, note that any of the algorithms
presented in Section 3 performs the same number of
pulls, regardless of the arm distributions. These al-
gorithms are designed to be sufficient for achieving
a PAC guarantee in the worst case, when differences
between the arms’ true means are small.

In this section we focus on improving sample effi-
ciency in practice by adapting to the spacing between
arm means and their variances, guided by their em-
pirical returns. Starting with a conceptually simple
“Uniform” algorithm that samples arms equally of-
ten, we consider progressive improvements to conserve
samples in practice while retaining the PAC guaran-

tee. Experiments in Section 5 show that the sequential
procedure thus developed achieves significant gains in
sample complexity over existing sampling methods.

Recall that numbers 1, 2, . . . , n index the true means
of the arms in decreasing order. In the absence of
knowledge about these indices, let us index the arms
(1), (2), . . . , (n) after each pull such that their empir-

ical means are in non-decreasing order, i.e., p̂(1) ≥
p̂(2) ≥ . . . ≥ p̂(n). Let us separate the highest m arms
into a set High = {(1), (2), . . . , (m)} and leave the rest
in the set Low = {(m + 1), (m + 2), . . . , (n)}.
With each arm h in High let us associate numbers
δh and LBh such that by Hoeffding’s inequality, with
probability at least 1 − δh, ph ≥ LBh. Likewise for
each arm l in Low we ensure that with probability
at least 1 − δl, UBl ≥ pl. Here LB(i) and UB(i) are
respectively lower and upper bounds on the true mean
of (i). If we return High as our answer, we can meet
PAC requirements by ensuring that (a)

∑n
i=1 δ(i) ≤ δ,

and (b) ∀h ∈ High,∀l ∈ Low : (LBh + ǫ ≥ UBl).

If we adopt the convention of adding ǫ to the sam-
ple means (and lower bounds) of arms in High, crite-
rion (b) essentially states that lower bounds of arms
in High and upper bounds of arms in Low must not
collide 2. The Direct algorithm in Section 3 precisely
achieves criteria (a) and (b) by setting δi = δ

n
and en-

suring that the widths of its bounds are smaller than
ǫ
2 . For concreteness, we consider a randomized im-

2We say an arm in High collides if its lower bound is
lower than the upper bound of some arm in Low; collision
is defined similarly for arms in Low.

plementation of Direct, which we denote Uniform

(and equivalently, as policy π1).

π1: Among arms with bound widths greater than ǫ
2

when δ(i) = δ
n
, pull an arm uniformly randomly.

Figure 1 illustrates the evolution of our sampling poli-
cies on an instance of Explore-m with n = 5, m = 2,
ǫ = 0.1, δ = 0.05. Figure 1(a) shows a schematic de-
scription of the various arms and their bounds when
π1 terminates. By being no larger than ǫ

2 , the widths
of the bounds are sufficient for a PAC guarantee. The
question that arises in immediate response is: what
is necessary of the bounds in order to uphold a PAC
guarantee? Indeed we observe that as long as arms
from High and Low do not collide, the PAC constraint
would still be met. Correspondingly we update our
policy to only select from among arms that are cur-
rently colliding; we denote the resulting policy π2.

π2: Among arms that collide when δ(i) = δ
n
, pull an

arm uniformly randomly.

By only picking arms that collide, π2 conserves sam-
ples in comparison to π1. A key step in further im-
proving sample efficiency follows from the observation
that although bounds have different widths when π2

terminates (Figure 1(b)), they are all computed under
the same value δ(i) = δ

n
. Recall that we do not need

the δ(i) to be equal; only that their sum not exceed
δ. In practice we find that significant economy can
be achieved by allocating “larger portions of δ” to the
arms that need it: arms with true means close to the
boundary between High and Low ((2) and (3) in Fig-
ure 1). We posit that arms with true means farther
away from the boundary ((1) and (5)) would require
relatively fewer samples to shrink their bounds enough
to avoid collisions, even for low values of δ(i).

Under both π1 and π2 we fix δ(i) a priori such that
their sum does not exceed δ, and sample arms enough
times to eliminate collisions. By contrast, under our
third policy, π3, we manipulate the δ(i) at every stage
such that no collisions occur. Specifically we pick a
“cutoff” c such that for every arm h in High, LBh = c,
and for every arm l in Low, UBl = c (Figure 1(c)). For
each arm (i) we set δ(i) = δc

(i) such that its relevant
upper or lower bound coincides with c. The quantity
δc
(i) is obtained by inverting Hoeffding’s inequality, and

bounds the probability that the mean of arm (i) vio-
lates the cutoff c. δc

(i) effectively signifies how hard

it is to make arm (i) collision free eventually: arms
with high δc

(i) are likely to need more samples. We
translate this intuition into policy π3, which samples
arm (i) with a probability proportional to δc

(i). Em-

pirical results (Section 5) confirm that π3 achieves a
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Low

High

p + 0.1

p + 0.1

p

p

p

R

(1)

(2)

(3)

(4)

(5)
Hoeffding’s bound

0.01, 0.05

0.01, 0.05

0.01, 0.05
0.01, 0.05

0.01, 0.05

(a) π1 (Uniform)

R

0.01, 0.15

0.01, 0.08

0.01, 0.090.01, 0.06

0.01, 0.1

(b) π2

R

c
0.022, 0.08

0.005, 0.09

0.001, 0.15

0.021, 0.06

0.001, 0.1

(c) π3

R tight bound

c

0.001, 0.15

0.022, 0.08

0.021, 0.06 0.005, 0.09

0.001, 0.1

(d) π4 (Adapt)

Figure 1. Illustrative example of Explore-m (n = 5, m = 2, ǫ = 0.1, and δ = 0.05) showing progressively efficient
sampling policies. The figure shows examples of terminal conditions when policies π1 through π4 are employed. Beside
each bound is shown “δ(i), width(i)”: if arm (i) is in High, width(i) = (p̂(i) + ǫ) − (LB(i) + ǫ), and if it is in Low,
width(i) = UB(i) − p̂(i). The depicted values of δ(i) and width(i) are not precise or drawn to scale; they are illustrative.

significant reduction in sample complexity over π2.

π3: Pull arm (i) with a probability proportional to δc
(i).

Just as δc
(i) indicates arm (i)’s relative need for sam-

ples, the aggregate bound δc = 1−
∏n

i=1(1−δc
(i)) sum-

marizes the progress made by our sampling policy. For
a given value of ǫ, after every pull we can compute δc

as a bound on the probability that our current answer
is incorrect; we can stop if δc ≤ δ. Notice that in-
deed we can compute δc

(i) and δc at every stage for
any sampling policy, including π1 and π2.

Naturally the choice of the cutoff c affects δc. Since
it functions as a lower bound for arms in High and
as an upper bound for arms in Low, c must lie in

the interval I
(m)
(m+1) = (p̂(m+1), p̂(m) + ǫ), as in Fig-

ure 1(c). Indeed if each δc
(i) is derived using Hoeffding’s

inequality, we find that it is possible to efficiently com-
pute c∗ = argmin

c∈I
(m)

(m+1)

δc. This computation relies

on convexity properties of Hoeffding’s bound. Search-
ing for an optimal cutoff becomes less attractive when
other bounds are used to compute δc

(i), as we observe
shortly. For our experiments we use a cutoff ĉ such

that it divides the interval I
(m)
(m+1) in proportion to the

standard errors of the mean of arms (m + 1) and (m).
We borrow this strategy from Chen et al. (2008), who
consider a similar subset selection problem. Although
easy to compute, ĉ is a sub-optimal cutoff, as it only
depends on arms (m) and (m+1), whereas c∗ includes
terms from all the arms.

Our transition from π3 to a policy π4 is simple, yet
practically significant. Rather than relying exclu-
sively on Hoeffding’s bound at every stage, we consider
the tightest of the bounds that apply (Figure 1(d)).
In particular, the recently proposed “empirical Bern-
stein bound” (Mnih et al., 2008) incorporates empir-
ical variances into the calculation of bounds, and is

particularly effective when some arms have relatively
small variances.

π4: Implement π3 using the tightest applicable bounds
to compute LB(i) and UB(i).

We refer to our final policy, π4, as “Adapt”. Although
Adapt is extremely sample efficient in practice (as we
see in the following section), and is indeed a PAC al-
gorithm, it does not have a provably bounded worst

case sample complexity. However, a worst case bound
can be easily enforced by overlaying Adapt with a
rule not to sample any arm more times than the Di-

rect algorithm would. With more careful monitoring
through rounds in our Halving algorithm, we could
restrict Adapt to a worst case sample complexity of
O( n

ǫ2
log(m

δ
)). In our experiments we do not find such a

need, as the PAC guarantee is typically realized early.

5. Experimental Results

In this section we compare various policies for Ex-

plore-m on a test instance with m = 50, n = 15,
ǫ = 0.1, and δ = 0.15. The arms all have their
true means drawn uniformly from the interval [0, 1];
each arm implements a uniform distribution with a
standard deviation of 1 (a width of

√
12), which is

relatively large compared to the spacing between the
means. We report statistics on this instance of Ex-

plore-m based on averages of at least 1000 indepen-
dent trials. In our comparisons the Adapt algorithm
(π4) predominantly achieves the best results with the
fewest samples.

ADAPT: Figure 2 summarizes statistics comparing
policies π1 through π4. Figure 2(a) plots the value
of δĉ against the number of pulls. The order among
the policies is consistent with our expectation: notice
that only π4 is able to achieve the desired threshold
of δĉ ≤ δ = 0.15 within the 30, 000 samples plot-
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Figure 2. Comparison of policies π1 through π4 on test instance (n = 50, m = 15, ǫ = 0.1, δ = 0.15). For each policy, (a)
shows δĉ and (b) shows NSS as a function of the number of pulls. In (c) arms 1, 2, . . . , 50 are in decreasing order of their
true means, and a histogram shows the number of times each arm has been sampled. Notice peaks around 15 (m) and
16 (m + 1) under policies π3 and π4.

ted. While π4 takes roughly 22,000 pulls to deliver
the PAC guarantee, straightforward implementations
of Direct (Algorithm 1) and Halving (Algorithm 3)
would take millions of pulls at the same ǫ and δ values.

While δĉ determines the PAC guarantee for choosing
m (ǫ,m)-optimal arms, we evaluate the actual set of
arms that would be returned at any stage based on the
sums of their true means, i.e.,

∑m
i=1 p(i). We normalize

this “sum of selected means” such that it lies in [0, 1].
We denote the normalized sum NSS: note that the set
Tm will have NSS = 1. Figure 2(b), which plots NSS
against samples, shows a clear gulf between π3 and π4

on the one hand, and π1 and π2 on the other. Even
after 30,000 pulls, this gap is significant (p < 0.0001).

How do policies π1 through π4 ration samples among
the arms? Figure 2(c) shows a histogram plotting the
number of pulls as arms are sorted in decreasing order
of their true means. As we proceed from π1 to π4

a growing bias towards “contentious” arms (on either
side of m and m+1) is apparent. Recall that the arms
have equal variances; this leads to a fairly symmetric
pattern about m and m + 1 for policies π3 and π4.

OCBA-m: Chen et al. (2008) derive a sampling
method similar to Adapt by adopting a Bayesian per-
spective. Under the “Optimal Computing Budget Al-
location” (OCBA-m) framework, they model the true
means of the arms with non-informative prior distri-
butions, which get refined as samples are collected.
First, each arm is sampled a fixed number (n0) of times
to obtain an estimate of its variance (see Chen et al.,
2008, pp. 584–585). Subsequently arm (i) is allotted

s2
(i)

(p̂(i)−ĉ)2 samples, where s(i) is the sample standard

deviation of arm (i), and ĉ is the cutoff described in
Section 4. Sampling is performed in batches of size ∆:
only arms that have not already been sampled their al-
lotted number are sampled. Consistent with our fully
sequential approach in Adapt, we set ∆ = 1 in our
implementation of OCBA-m, picking arms probabilis-
tically in proportion to their allotments.

Clearly Adapt and OCBA-m are alike in spirit, focus-
ing their attention on arms with higher variances and
those close to the cutoff. However, while Adapt pro-
vides PAC bounds for subset selection, the Bayesian
formulation under OCBA-m forces the use of approxi-
mations that are only valid in the asymptotic case. In-
deed we find in our experiments that the performance
of OCBA-m depends crucially on n0, the number of
rounds of uniform sampling. Chen et al. (2008) rec-
ommend setting n0 ≥ 5, and use n0 = 20 in their ex-
periments; however, for such low values we notice pre-
mature plateauing on our test instance (Figure 3(a)).
For higher values of n0 (100, 500), OCBA-m coincides
with Uniform until a large number of pulls, and then
outperforms it for a period when it switches to intelli-
gent sampling.

We postulate that ideally the parameter n0 must adapt
to the relative spacing between arms and their vari-
ances, which it is not always possible to perceive a

priori. In informal experiments, noting that OCBA-m
does not have a tolerance parameter like ǫ, we com-
pare the methods by setting ǫ = 0 (PAC bounds are
still possible under Adapt as long as the true means
are separated). Additionally we set Gaussian distribu-
tions for the bandit arms with a standard deviation of
1 (for its bounds Adapt assumes that the support of
this distribution is limited to six standard deviations).
Although we do not report extensive results from these
variations here, in these experiments Adapt still out-
performs OCBA-m, for all the n0 values reported in
Figure 3(a), after 30, 000 samples (p < 0.0001).

RACING: In recent work Heidrich-Meisner & Igel
(2009) extend the idea of racing algo-
rithms (Maron & Moore, 1997) to the subset selection
problem. Their algorithm (“Racing”) proceeds for
a predetermined number of rounds R. In each round
arms are selected if with sufficient confidence they
have higher means than n − m others; they are
discarded if they have lower means than m others.
Such elimination is meant to progressively focus
sampling on contentious arms.
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Figure 3. (a) Comparisons with OCBA-m on our test instance. The plot shows NSS against the number of samples.
Under OCBA-m, curves are shown for multiple values of n0. (b) Similar curves for Racing, with multiple values of R

(only R = 1 is marked). (c) A histogram showing the number samples allocated to the bandit arms by the algorithms.

Like Adapt, Racing can also provide a PAC guaran-
tee of choosing the best subset (there is no tolerance
parameter ǫ). However, the guarantee can only be pro-
vided if m arms have indeed been selected at the end
of R rounds. Herein arises a dilemma: setting R to
a high value could provide more rounds for sampling;
however, the permissible mistake probabilities while
eliminating arms are (roughly) inversely proportional
to R. Racing has to enforce conservative mistake
probabilities because elimination is an irrevocable de-
cision, and further, bounds on the true means of arms
are not allowed to expand from round to round.

On our test instance, we are unable to select a sub-
set of size m within the specified number of rounds R

despite trying multiple values (between 1 and 500).
In response, we continue to run the algorithm (see
Heidrich-Meisner & Igel, 2009, p. 404) beyond R

rounds, using the confidence probabilities prescribed
for round R. Not surprisingly, the best NSS results
are achieved when we set R = 1 (Figure 3(b)), which
provides the largest scope for eliminating arms. As
R is increased (shown, but not marked in the figure),
Racing progressively tends towards the Uniform al-
gorithm, since fewer and fewer arms get eliminated.
We posit that Racing is likely to perform better on
a smaller problem instances, a hypothesis that is con-
firmed when we set n = 10, m = 3, ǫ = 0, and δ = 0.15.
Indeed Racing (R = 1) achieves a higher NSS value
after 30, 000 pulls compared to Uniform, and is not

distinguishable from Adapt (p < 0.05).

By and large, we observe that the superior sample effi-
ciency of Adapt is most pronounced when the number
of arms n is large, and the arms have relatively high
variances. Clear differences in the sampling strategies
of Adapt, OCBA-m, and Racing are visible in Fig-
ure 3(c), which plots histograms of their pulls. OCBA-
m and Adapt are both more peaked than Racing.
However, we notice that Adapt has a gradual slope
on either side of its peak, while OCBA-m rises more
dramatically near the separating boundary.

6. Related Work and Discussion

In the previous sections we have already encountered
work that is very closely related to our contribution;
we conclude by highlighting some further connections.
Our exploration strategy in the multi-armed bandit at-
tempts to minimize the number of samples to achieve a
prescribed level of confidence about the selected sub-
set. By contrast, alternative formulations for explo-
ration in bandits consider strategies to maximize the
chances of identifying the best arm when provided
a fixed budget of samples (Madani & Lizotte, 2004).
Even-Dar et al. (2006) extend their analysis of Ex-

plore-1 to develop exploration strategies for MDPs,
resulting in reinforcement learning algorithms with
similar PAC guarantees. In general an optimal pol-
icy for an MDP only relies on a single optimal action
for every state, and so it appears unlikely that our
generalization to Explore-m will have a direct bear-
ing on their problem. However, any practical imple-
mentation of their algorithm could benefit from using
Adapt, which applies equally to the case when m = 1.

Subset selection has been widely studied under vary-
ing assumptions. In early work Koenig & Law (1985)
provide a two-stage sampling procedure for selecting a
subset of size m containing the l best of k independent
normal populations. Kim & Nelson (2001) formalize
the notion of an “indifference zone” in subset selec-
tion, which corresponds closely to the parameter ǫ in
Explore-m. In their survey of empirical methods for
choosing the single best candidate from a population,
Inoue et al. (1999) suggest that Bayesian approaches,
which address the average case, could be more benefi-
cial in practice than worst case formulations. Through
Adapt we contribute an algorithm that effectively ma-
nipulates bounds to achieve efficiency in practice while
preserving a PAC guarantee.

Efficient subset selection is a primary subroutine in
several evolutionary algorithms (Schmidt et al., 2006)
and stochastic optimization methods (de Boer et al.,
2005). We expect that Adapt, which is straightfor-
ward to implement, can easily be integrated into ex-
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isting code bases to improve sample efficiency. How-
ever, it must be noted that while Explore-m specif-
ically implements subset selection, in general evo-
lutionary algorithms could employ other selection
schemes, such as tournament and proportionate se-
lection (Miller & Goldberg, 1996). Also, some evolu-
tionary algorithms seek to maintain good on-line per-
formance (Whiteson & Stone, 2006), which the “pure
exploration” nature of Explore-m does not match.

The tolerance parameter ǫ in Explore-m can natu-
rally control the tradeoff between the quality of selec-
tions on each iteration of an evolutionary algorithm
and the algorithm’s overall sample efficiency. Indeed
ǫ is the only input parameter of Adapt, which seeks
to reduce its mistake probability δĉ with each sample.
Note that OCBA-m also provides a probabilistic mea-
sure similar to δĉ to gauge the algorithm’s progress; in
contrast, Racing only preserves its PAC guarantee for
a fixed number of rounds. As our experiments show,
the effects of the input parameters to Racing (R) and
OCBA-m (n0) are not easy to intuit. We believe that
the superior empirical performance of Adapt, sup-
ported by its ease of use and principled theoretical
grounding, make it a promising method for the funda-
mental problem of subset selection.
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