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Monte Carlo Tree Search
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Monte Carlo Tree Search
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4 stages in MCTS:
➢ Selection
➢ Expansion
➢ Simulation
➢ Backpropagation
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MCTS - Backpropagation (Motivation)
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Monte Carlo backup for 
single trajectory:

Across all trajectories:

Can we do better?

4



ICML 2016Backup Strategies in MCTSPiyush Khandelwal  (UT Austin)

This talk

Contribution:
➢ Formalize and analyze different on-policy/off-policy complex 

backup approaches from RL literature for MCTS planning.

Talk outline:
➢ Review complex backup strategies from RL in MCTS context.

➢ Empirical evaluation using IPC benchmarks.

➢ Explore relationship between domain structure and backup 
strategy performance.
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n-step return (bias-variance tradeoff)

We can compute the return sample in 
many different ways!

1-step:

n-step:

Monte Carlo:
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We have estimates for all Q values 
while performing backpropagation.

More
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 MCTS - Complex return
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Complex return:

λ-return/eligibility [Rummery 1995]:

   ➡ MCTS(λ)

γ-return weights [Konidaris et al. 2011]:

   ➡ MCTSγ
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 MCTS - Complex return
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Complex return:

λ-return/eligibility [Rummery 1995]:

   ➡ MCTS(λ)

γ-return weights [Konidaris et al. 2011]:

   ➡ MCTSγ
➢ Parameter free.
➢ Assumes n-step return variances are 

highly correlated.

➢ Easier to implement.
➢ Assumes n-step return variances increase @ λ-1.
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MaxMCTS - Off-policy style returns

9

Subtree with higher value

Backup using best known action:

Intuition:
➢ Don’t penalize exploratory actions.
➢ Reinforce previously seen better 

trajectories instead.
Equivalent to Peng’s Q(λ) style updates.

MaxMCTS(λ) and MaxMCTSγ
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Experiments

● 4 variants:
○ On-policy: MCTS(λ) and MCTSγ
○ Off-policy: MaxMCTS(λ) and MaxMCTSγ

● Test performance in IPC domains
○ Limited planning time (10,000 rollouts per step).

● Grid-world experiments to explore dependency between 
domain structure and backup strategy performance.
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IPC - Random action selection
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IPC - Random action selection
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IPC - UCB1 action selection
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Computational Time Comparison
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Grid World Domain
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Start 
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States 

Step -1 

➢ 90% chance of moving in 
intended direction.

➢ 10% chance of moving to 
any neighbor randomly.
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Grid World Domain
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#0-Term 0 3 6 15

λ = 1 90.4 11.3 0.9 -2.2

λ = 0.8 90.2 28.0 10.7 -1.4

λ = 0.6 89.5 62.8 45.3 8.5

λ = 0.4 88.7 85.1 77.6 24.1

λ = 0.2 87.7 82.6 78.1 28.4

λ = 0 84.5 79.8 74.1 31.8

Start 

Goal +100

Variable 
number of
0 Reward
Terminal
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Step -1 



ICML 2016Backup Strategies in MCTSPiyush Khandelwal  (UT Austin)

Related Work
● λ-return has been applied previously for planning:

○ TEXPLORE used a slightly different version of MaxMCTS(λ) 
[Hester 2012].

○ Dyna2 used eligibility traces [Silver et al. 2008].

● Other backpropagation strategies:

○ MaxMCTS(λ=0) is equivalent to MaxUCT [Keller, Helmert 2012].

○ Coulom analyzed hand-designed backpropagation strategies in 
9x9 Computer Go [Coulom 2007].

● Planning Horizon:
○ Dependence of planning horizon on performance [Jiang et al. 

2015].
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Conclusions
➢ In some domains, selecting the right complex backup strategy 

is important.

➢ MaxMCTSγ is a parameter-free approach that always performs 
better than/equivalent to Monte Carlo.

➢ MaxMCTS(λ) performs best if λ can be selected appropriately.

➢ Backup strategy performance related to number of 
trajectories with high rewards.
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Multi-robot coordination
[Khandelwal et al. 2015]
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➢ 84 discrete and 
continuous factors

➢ 100-500 actions per 
state (10-50 after 
heuristic reduction).


