Complex Backup Strategies in Monte Carlo Tree Search

Piyush Khandelwal, Elad Liebman, Scott Niekum, and Peter Stone

University of Texas at Austin

ICML 2016

Piyush Khandelwal (UT Austin)

Backup Strategies in MCTS

ICML 2016

Monte Carlo Tree Search

Learning

Monte Carlo Tree Search

4 stages in MCTS:

- > Selection
- > Expansion
- Simulation
- Backpropagation

MCTS - Backpropagation (Motivation)

Monte Carlo backup for single trajectory: $R = \sum_{i=0}^{L-1} \gamma^{i} r_{t+i}$

Across all trajectories:

$$Q(s_t, a_t) = \mathbb{E}\left[\sum_{i=0}^{L-1} \gamma^i r_{t+i}\right]$$

Can we do better?

-

Piyush Khandelwal (UT Austin)

This talk

Contribution:

Formalize and analyze different on-policy/off-policy complex backup approaches from RL literature for MCTS planning.

Talk outline:

- Review complex backup strategies from RL in MCTS context.
- > Empirical evaluation using IPC benchmarks.
- Explore relationship between domain structure and backup strategy performance.

n-step return (bias-variance tradeoff)

We have estimates for all Q values while performing backpropagation.

We can compute the return sample in many different ways!

1-step: $R^{(1)} = r_t + \gamma Q(s_{t+1}, a_{t+1}), \qquad \text{Bias}$ **n-step:** $R^{(n)} = \left[\sum_{i=0}^{n-1} \gamma^i r_{t+i}\right] + \gamma^n Q(s_{t+n}, a_{t+n})$ **Monte Carlo:**

 $R = \sum_{i=0}^{L-1} \gamma^i r_{t+i}$

More Variance

MCTS - Complex return

Complex return: $R^C = \sum_{i=1}^{L} \left[w_{n,L} \cdot R^{(n)} \right]$

λ-return/eligibility [Rummery 1995]:

 $\implies \mathsf{MCTS}(\lambda) \qquad \qquad w_{n,L}^{\lambda} = \begin{cases} (1-\lambda)\lambda^{n-1} & 1 \le n < L \\ \lambda^L & n = L \end{cases}$

γ-return weights [Konidaris et al. 2011]: $w_{n,L}^{\gamma} = \frac{(\sum_{i=1}^{n} \gamma^{2(i-1)})^{-1}}{\sum_{n=1}^{L} (\sum_{i=1}^{n} \gamma^{2(i-1)})^{-1}}$

> LEARCE Learning Agents Research Croup The University of Texas of Atatin

MCTS - Complex return

Complex return: $R^{C} = \sum_{i=1}^{L} \left[w_{n,L} \cdot R^{(n)} \right]$

λ-return/eligibility [Rummery 1995]:

- ➡ MCTS(λ)
- $w_{n,L}^{\lambda} = \begin{cases} (1-\lambda)\lambda^{n-1} & 1 \le n < L \\ \lambda^{L} & n = L \end{cases}$
- ➤ Easier to implement.
- Assumes n-step return variances increase @ λ^{-1} .

γ**-return weights** [Konidaris et al. 2011]:

➡ MCTSγ

$$w_{n,L}^{\gamma} = \frac{\left(\sum_{i=1}^{n} \gamma^{2(i-1)}\right)^{-1}}{\sum_{n=1}^{L} \left(\sum_{i=1}^{n} \gamma^{2(i-1)}\right)^{-1}}$$

- > Parameter free.
 - Assumes n-step return variances are highly correlated.

MaxMCTS - Off-policy style returns

Backup using best known action:

$$R^{(1)} = r_t + \gamma \max_{a} Q(s_{t+1}, a)$$
$$R^{(n)} = \sum_{i=0}^{n-1} \gamma^i r_{t+i} + \gamma^n \max_{a} Q(s_{t+n}, a)$$

Intuition:

- Don't penalize exploratory actions.
 Reinforce previously seen better
 - reinforce previously seer trajectories instead.

Equivalent to Peng's Q(λ) style updates.

MaxMCTS(\lambda) and **MaxMCTS** γ

Subtree with higher value

Experiments

- 4 variants:
 - On-policy: MCTS(λ) and MCTS_v
 - Off-policy: MaxMCTS(λ) and MaxMCTS
- Test performance in IPC domains
 Limited planning time (10,000 rollouts per step).
- Grid-world experiments to explore dependency between domain structure and backup strategy performance.

IPC - Random action selection

IPC - Random action selection

IPC - UCB1 action selection

Computational Time Comparison

Grid World Domain

Goal +100

Step -1

- 90% chance of moving in intended direction.
- 10% chance of moving to any neighbor randomly.

Grid World Domain

Goal +100

Step -1

#0-Term	0	3	6	15
$\lambda = 1$	90.4	11.3	0.9	-2.2
$\lambda = 0.8$	90.2	28.0	10.7	-1.4
$\lambda = 0.6$	89.5	62.8	45.3	8.5
$\lambda = 0.4$	88.7	85.1	77.6	24.1
$\lambda = 0.2$	87.7	82.6	78.1	28.4
$\lambda = 0$	84.5	79.8	74.1	31.8

ICML 2016

Piyush Khandelwal (UT Austin)

Backup Strategies in MCTS

Related Work

- λ -return has been applied previously for planning:
 - TEXPLORE used a slightly different version of MaxMCTS(λ) [Hester 2012].
 - Dyna2 used eligibility traces [Silver et al. 2008].
- Other backpropagation strategies:
 - MaxMCTS(λ =0) is equivalent to MaxUCT [Keller, Helmert 2012].
 - Coulom analyzed hand-designed backpropagation strategies in 9x9 Computer Go [Coulom 2007].
- Planning Horizon:
 - Dependence of planning horizon on performance [Jiang et al. 2015].

Conclusions

- In some domains, selecting the right complex backup strategy is important.
- MaxMCTS_γ is a parameter-free approach that always performs better than/equivalent to Monte Carlo.
- > MaxMCTS(λ) performs best if λ can be selected appropriately.
- Backup strategy performance related to number of trajectories with high rewards.

Multi-robot coordination

[Khandelwal et al. 2015]

- 84 discrete and continuous factors
- 100-500 actions per state (10-50 after heuristic reduction).

