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Abstract— Natural language understanding for robotics can
require substantial domain- and platform-specific engineering.
For example, for mobile robots to pick-and-place objects in an
environment to satisfy human commands, we can specify the
language humans use to issue such commands, and connect
concept words like red can to physical object properties. One
way to alleviate this engineering for a new domain is to
enable robots in human environments to adapt dynamically—
continually learning new language constructions and perceptual
concepts. In this work, we present an end-to-end pipeline
for translating natural language commands to discrete robot
actions, and use clarification dialogs to jointly improve language
parsing and concept grounding. We train and evaluate this
agent in a virtual setting on Amazon Mechanical Turk, and
we transfer the learned agent to a physical robot platform to
demonstrate it in the real world.

I. INTRODUCTION

As robots become ubiquitous across diverse human en-
vironments such as homes, factory floors, and hospitals,
the need for effective human-robot communication grows.
These spaces involve domain-specific words and affordances,
e.g., turn on the kitchen lights, move the pallet six feet to
the north, and notify me if the patient’s condition changes.
Thus, pre-programming robots’ language understanding can
require costly domain- and platform-specific engineering.
In this paper, we propose and evaluate a robot agent that
leverages conversations with humans to expand an initially
low-resource, hand-crafted language understanding pipeline
to reach better common ground with its human partners.

We combine bootstrapping better semantic parsing through
signal from clarification dialogs [1], previously using no
sensory representation of objects, with an active learning ap-
proach for acquiring such concepts [2], previously restricted
to object identification tasks. Thus, our system is able to
execute natural language commands like Move a rattling
container from the lounge by the conference room to Bob’s
office (Figure [5) that contain compositional language (e.g.,
lounge by the conference room understood by the semantic
parser and objects to be identified by their physical properties
(e.g., rattling container). The system is initialized with a
small seed of natural language data for semantic parsing,
and no initial labels tying concept words to physical objects,
instead learning parsing and grounding as needed through
human-robot dialog.
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X' This container has
properties that other
“rattling” objects have.

F
Fig. 1: Through dialog, a robot agent can acquire task-
relevant information from a human on the fly. Here, rattling
is a new concept the agent learns with human guidance in
order to pick out a remote target object later on.

Our contributions are: 1) a dialog strategy to improve
language understanding given only a small amount of ini-
tial in-domain training data; 2) dialog questions to acquire
perceptual concepts in situ rather than from pre-labeled data
or past interactions alone (Figure [I)); and 3) a deployment of
our dialog agent on a full stack, physical robot platform.

We evaluate this agent’s learning capabilities and usability
on Mechanical Turk, asking human users to instruct the agent
through dialog to perform three tasks: navigation (Go fo the
lounge by the kitchen), delivery (Bring a red can to Bob), and
relocation (Move an empty jar from the lounge by the kitchen
to Alice’s office). We find that the agent receives higher
qualitative ratings after training on information extracted
from previous conversations. We then transfer the trained
agent to a physical robot to demonstrate its continual learning
process in a live human-robot dialog

II. RELATED WORK

Research on the topic of humans instructing robots spans
natural language understanding, vision, and robotics. Re-
cent methods perform semantic parsing using sequence-to-
sequence [3], [4], [5] or sequence-to-tree [6] neural networks,
but these require hundreds to thousands of examples. In
human-robot dialog, gathering information at scale for a
given environment and platform is unrealistic, since each data
point comes from a human user having a dialog interaction
in the same space as a robot. Thus, our methods assume only
a small amount of seed data.

Semantic parsing has been used as a language understand-
ing step in tasks involving unconstrained natural language
instruction, where a robot must navigate an unseen environ-
ment [7], [8], [9], [10], [11], to generate language requests
regarding a shared environment [12], and to tie language to

'A demonstration video can be viewed at
https://youtu.be/PbOfteZ_CJc?t=5|
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Fig. 2: User commands are parsed into semantic slots (left), which are grounded (center) using either a known map (for
rooms and people) or learned concept models (for objects) to a distribution over possible satisfying constants (e.g., all rooms
that can be described as an “office”). A clarification dialog (right) is used to recover from ambiguous or misunderstood
slots (e.g., QI), and to improve concept models on the fly (e.g., O2).

planning [13], [14], [15], [16]. Other work memorizes new
semantic referents in a dialog, like this is my snack [17], but
does not learn a general concept for snack. In this work,
our agent can learn new referring expressions and novel
perceptual concepts on the fly through dialog.

Mapping from a referring expression such as the red
cup to a referent in the world is an example of the sym-
bol grounding problem [18). Grounded language learning
bridges machine representations with natural language. Most
work in this space has relied solely on visual perception
[19], [20], [21], [22], [23], [24], though some work explores
grounding using audio, haptic, and tactile signals produced
when interacting with an object [25], [26], [27], [28]. In
this work, we explicitly model perceptual predicates that
refer to visual (e.g., red), audio (e.g., rattling), and haptic
properties (e.g., full) of a fixed set of objects. We gather
data for this kind of perceptual grounding using interaction
with humans, following previous work on learning to ground
object attributes and names through dialog [29], [30], [31],
[32], [33]. We take the additional step of using these concepts
to accomplish a room-to-room, pick-and-place task instructed
via a human-robot dialog. To our knowledge, there is no
existing end-to-end, grounded dialog agent with multi-modal
perception against which to compare, and we instead ablate
our model during evaluation.

III. CONVERSATIONAL AGENT

We present a end-to-end pipeline (Figure |2)) for an task-

driven dialog agent that fulfills requests in natural languageE]

2The source code for this dialog agent, as well as the deployments
described in the following section, can be found at
https://github.com/thomason—jesse/grounded_dialog_
agent,

A. Semantic Parser

The semantic parsing component takes in a sequence of
words and infers a semantic meaning representation of the
task. For example, a relocate task moves an item (patient)
from one place (source) to another (goal) (Figure . The
agent uses the Combinatory Categorial Grammar (CCG)
formalism [34] to facilitate parsing.

Word embeddings [35] augment the lexicon at test time
to recover from out-of-vocabulary words, an idea similar in
spirit to previous work [36], but taken a step further via
formal integration into the agent’s parsing pipeline. This
allows, for example, the agent to use the meaning of known
word fake for unseen word grab at inference time.

B. Language Grounding

The grounding component takes in a semantic meaning
representation and infers denotations and associated confi-
dence values (Figure [2). The same semantic meaning can
ground differently depending on the environment. For ex-
ample, the office by the kitchen refers to a physical location,
but that location depends on the building.

Perceptual concepts like red and heavy require considering
sensory perception of physical objects. The agent builds
multi-modal feature representations of objects by exploring
them with a fixed set of behaviors. In particular, before
our experiments, a robot performed a grasp, lift, lower,
drop, press, and push behavior on every object, recording
audio information from an onboard microphone and haptic
information from force sensors in its arm. That robot also
looked at each object with an RGB camera to get a visual
representation. Summary audio, haptic, and visual features
are created for each applicable behavior (e.g., drop-audio,
look-vision), and these features represent objects at training


https://github.com/thomason-jesse/grounded_dialog_agent
https://github.com/thomason-jesse/grounded_dialog_agent

B max per role Min

(action, patient, Prob Question Type
recipient, source, goal) B Role

(2,9,9,9,9) All What should I do? Clarification
(walk, @, @, &, r1) action You want me to go somewhere? Confirmation
(deliver, &, p1, &, @) patient What should I deliver to p1? Clarification
(relocate, @, @, &, &) source Where should I move something from on its way somewhere else?  Clarification
(relocate, 01, &, 71, 72) - You want me to move o1 from r1 to r2? Confirmation

TABLE I: Samples of the agent’s static dialog policy 7 for mapping belief states to questions.

and inference time both in simulation and the real world[]

Feature representations of objects are connected to lan-
guage labels by learning discriminative classifiers for each
concept using the methods described in previous work [37],
[31]. In short, each concept is represented as an ensemble of
classifiers over behavior-modality spaces weighted according
to accuracy on available data (so yellow weighs look-vision
highly, while rattle weighs drop-audio highly). While the
objects have already been explored (i.e., they have feature
representations), language labels must be gathered on the fly
from human users to connect these features to words.

Different predicates afford the agent different certainties.
Map-based facts such as room types (office) can be grounded
with full confidence. For words like red, perceptual concept
models give both a decision and a confidence value in [0, 1].
Since there are multiple possible groundings for ambiguous
utterances like the office, and varied confidences for per-
ceptual concept models on different objects, we associate
a confidence distribution with the possible groundings for a
semantic parse (Figure [2)).

C. Clarification Dialog

We denote a dialog agent with A. Dialog begins with a
human user commanding the agent to perform a task, e.g.,
grab the silver can for alice. The agent maintains a belief
state modeling the unobserved true task in the user’s mind,
and uses the language signals from the user to infer that
task. The command is processed by the semantic parsing
and grounding components to obtain pairs of denotations and
their confidence values. Using these pairs, the agent’s belief
state is updated, and it engages in a clarification dialog to
refine that belief (Figure [2).

The belief state, 13, is a mapping from semantic roles
(components of the task) to probability distributions over
the known constants that can fill those roles (action, patient,
recipient, source, and goal). The belief state models uncer-
tainties from both the semantic parsing (e.g., prepositional
ambiguity in “pod by the office to the north”; is the pod or the
office north?) and language grounding (e.g., noisy concept
models) steps of language understanding.

The belief states for all roles are initialized to uniform
probabilities over constantsE] We denote the beliefs from a
single utterance, x, as B, itself a mapping from semantic

3That is, at inference time, while all objects have been explored, the
language concepts that apply to them (e.g., heavy) must be inferred from
their feature representations.

4Half the mass of non-action roles is initialized on the & constant, a prior
indicating that the role is not relevant for the not-yet-specified action.

roles to the distribution over constants that can fill them. The
agent’s belief is updated with

B(r,a) « (1 — p)B(r,a) + pB(r,a), (D

for every semantic role r and every constant a. The parameter
p € [0,1] controls how much to weight the new information
against the current beliefE]

After a belief update from a user response, the highest-
probability constants for every semantic role in the current
belief state B are used to select a question that the agent
expects will maximize information gain. Table [I] gives some
examples of the policy .

For updates based on confirmation question responses, the
confirmed B, constant(s) receive the whole probability mass
for their roles (i.e., p = 1). If a user denies a confirmation,
B, is constructed with the constants in the denied question
given zero probability for their roles, and other constants
given uniform probability (so Equation [I] reduces the belief
only for denied constants). A conversation concludes when
the user has confirmed every semantic role.

D. Learning from Conversations

The agent improves its semantic parser by inducing train-
ing data over finished conversations. Perceptual concept
models are augmented on the fly from questions asked to
a user, and are then aggregated across users in batch.

a) Semantic Parser Learning From Conversations: The
agent identifies utterance-denotation pairs in conversations
by pairing the user’s initial command with the final confirmed
action, and answers to questions about each role with the
confirmed role (e.g., robert’s office as the goal location ry),
similar to prior work [1]. Going beyond prior work, the agent
then finds the latent parse for the pair: a beam of parses is
created for the utterance, and these are grounded to discover
those that match the target denotation. The agent then retrains
its parser given these likely, latent utterance-semantic parse
pairs as additional, weakly-supervised examples of how
natural language maps to semantic slots in the domain.

b) Opportunistic Active Learning: Some unseen words
are perceptual concepts. If one of the neighboring words
of unknown word z; is associated with a semantic form
involving a perceptual concept, the agent asks: I haven’t
heard the word ‘x;’ before. Does it refer to properties of
things, like a color, shape, or weight? If confirmed, the
agent ranks the nearest neighbors of x; by distance and
sequentially asks the user whether the next nearest neighbor

SWe set p = 0.5 for clarification updates.



t, is a synonym of z;. If so, new lexical entries are created to
allow z; to function like ¢,, including sharing an underlying
concept model (e.g., in our experiments, fall was identified
as a synonym of the already-known word long). Otherwise, a
new concept model is created for x; (e.g., in our experiments,
the concept red).

We introduce opportunistic active learning questions [2]
as a sub-dialog, in which the agent can query about training
objects local to the human and the robot (Figure [3). This
facilitates on the fly acquisition of new concepts, because
the agent can ask the user about nearby objects, then apply
the learned concept to remote test objects (Section [[V-C).

IV. EXPERIMENTS

We hypothesize that the learning capabilities of our agent
will improve its language understanding and usability. We
also hypothesize that the agent trained in a simplified world
simulation on Mechanical Turk can be deployed on a phys-
ical robot, and can learn non-visual concepts (e.g., rattling)
on the fly that could not be acquired in simulation.

A. Experiment Design

The agent (and corresponding robot) can perform three
high-level tasks: navigation (the agent goes to a location),
delivery (the agent takes an object to a person), and re-
location (the agent takes an object from a source location
to a goal location). We denote 8 (randomly selected) of
the 32 objects explored in prior work [38] as test objects
and the remaining 24 as training objects available for active
learning queries. We randomly split the set of possible task
instantiations (by room, person, and object arguments) into
initialization (10%), train (70%), and test sets (20%).

a) Initialization Phase: Sixteen users (graduate stu-
dents) were shown one of each type of task (from the
initialization set) and gave two high-level natural language
commands for each (initial and rephrasing). We used a subset
of these utterancesd] as a scaffold on which to build a seed
language-understanding pipeline: an initial lexicon and a set
of 44 utterance-semantic parse pairs, Doﬂ

b) Training Procedure: The initial pipeline is used by
a baseline agent A;; we denote its parser P; trained on Dy,
and denote untrained concept models for several predicates
P, 1. That is, the initial lexicon contains several concept
words (like yellow), but no labels between objects and these
concepts. All learning for the parsing and perception modules
arises from human-agent conversations.

We divide the training procedure into three phases, each
associated with 8 different objects from the active training
set of 24. The perceptual concept models are retrained on
the fly during conversations as questions are asked (e.g.,
as in Figure [I). The parsing model is retrained between
phases. Each phase i is carried out by agent A;, and training
on all phase conversations yields agent .4;,1 using concept
models P; 11 and parser P ;41. In each phase of training,

6Commands that would introduce rare predicates were dropped.

7An experimenter performed the annotations to create these resources in
about two hours.

ROBOT What should | do?

YOU  move a red can from the middle lab to the mallory's office

You want me to move an item from somewhere to somewhere (not
ROBOT .-~

give it to someone)?
YOU  yes
ROBOT Where should | move something from on its way somewhere else?
YOU the middle lab

ROBOT To where should | move something from here?
YOU [type your response here...

Lounge

Fig. 3: The agent asks questions to clarify the command
through dialog. Each clarification is used to induce weakly-
supervised training examples for the agent’s semantic parser.

and when evaluating agents in different conditions, we recruit
150 Mechanical Turk workers with a payout of $1 per HIT.

c) Testing and Performance Metrics: We test agent
As with parser P3 and perception models P 3 against
unseen tasksﬂ and denote it Trained (Parsing+Perception).
We also test an ablation agent, A}, with parser P; and
perception models P, 4 (trained perception models with an
initial, baseline parser with parsing rules only added for new
concept model words), and denote it Trained (Perception).
These agents are compared against the baseline agent A,
denoted Initial (Seed).

We measure the number of clarification questions asked
during the dialog to accomplish the task correctly. This
metric should decrease as the agent refines its parsing and
perception modules, needing to ask fewer questions about
the unseen locations and objects in the test tasks. We also
consider users’ answers to survey questions about usability.
Each question was answered on a 7-point Likert scale: from
Strongly Disagree (1) to Strongly Agree (7).

B. Mechanical Turk Evaluation

We prompt users with instructions like: Give the robot
a command to solve this problem: The robot should be at
the X marked on the green map, with a green-highlighted
map marking the target. Users are instructed to command the

8Empirically, parser P4 overfits the training data, so we evaluate with
Ps3. For Aj, this is not a concern since the initial parser parameters P;
are used.



Clarification Questions |,

Agent Navigation (p) Delivery (p) Relocation (p)
In 3.02 +£6.48 6.81 + 8.69 22.3£9.15

Tr* 4.05+8.81(.46) 8.16 £ 13.8(.53) 23.5 % 6.07(.67)
Tr 1.35 £ 4.44(.11)  7.50£9.93(.72)  19.6 + 7.89(.47)

TABLE II: The average number of clarification questions
agents asked among dialogs that reached the correct task.
Also given are the p-values of a Welch’s t-test between
the Trained* (Perception) and Trained (Parsing+ Perception)
model ratings against the Initial model ratings.

Usability Survey (Likert 1-7) 1

Agent Navigation (p) Delivery (p) Relocation (p)
In 3.09 +2.04 3.20 £ 2.12 3.37 £ 2.17

Tr* 3.51 £2.05(.09) 3.60+£2.09(.12)  3.60 & 2.08(.37)
Tr 3.76 +£2.07(.01) 3.87+2.10(.01) 3.93 +2.16(.04)

TABLE III: The average Likert rating given on usabil-
ity survey prompts for each task across the agents. Bold
indicates an average Trained* (Perception) and Trained
(Parsing+Perception) model ratings significantly higher than
the Initial model (p < 0.05) under a Welch’s t-test.

robot to perform a navigation, delivery, and relocation task
in that order. The simple, simulated environment in which the
instructions were grounded reflects a physical office space,
allowing us to transfer the learned agent into an embodied
robot (Section [[V-C). Users type answers to agent questions
or select them from menus (Figure [3). For delivery and
relocation, target objects are given as pictures. Pictures are
also shown alongside concept questions like Would you use
the word ‘rattling’ when describing this object?

Table [lI| gives measures of the agents’ performance in
terms of the number of clarification questions asked before
reaching the correct task specification to perform. For both
navigation and relocation, there is a slight decrease in
the number of questions between the Initial agent and the
Trained (Parsing+Perception) agent. The Trained (Percep-
tion) agent which only retrains and adds new concept models
from conversation history sees slightly worse performance
across tasks, possibly due to a larger lexicon of adjectives and
nouns (e.g., can as a descriptive noun now polysemous with
can as a verb—can you...) without corresponding parsing up-
dates. None of these differences are statistically significant,
possibly because comparatively few users completed tasks
correctly, necessary to use this metricﬂ

Table gives measures of the agents’ performance in
terms of qualitative survey prompt responses from workers.
Prompts were: I would use a robot like this to help navigate
a new building, I would use a robot like this to get items
for myself or others, and I would use a robot like this to
move items from place to place. Across tasks, the Trained
(Parsing+Perception) agent novel to this work is rated as
more usable than both the Inifial agent and the Trained

9 Across agents, an average of 42%, 39%, and 9.5% workers completed
navigation, delivery, and relocation tasks correctly, respectively. A necessary
step in future studies is to improve worker success rates, possibly through
easier interfaces, faster HITs, and higher payouts.

Learned Concept Model for can

[ATR AT

0.13

VﬂVKfYPY

0.07 0.03 0.03

Fig. 4: Confidence distribution for the can concept model on
the unseen test set objects after training.

(Perception) agent that updated only its concept models from
training conversations.

The agent acquired new perceptual concept models (25
in total), and synonym words for existing concepts during
training. Figure ] shows the learned model for can on unseen
test objects. The agent’s ordering of test objects’ can-ness
qualitatively matches intuition.

C. Physical Robot Implementation

The browser-interfaced, Mechanical Turk agent enabled
us to collect controlled training data, but our end goal is a
human-robot interface in a physically shared environment.
To establish that the agent and learning pipeline are robust
and efficient enough to operate on real hardware in a live
setting, we complement our Mechanical Turk evaluation with
a demonstration of an embodied robot agent (Figure [5).

We use the BWIBot [39], [40], which can perceive
and manipulate objects (Xtion ASUS Pro camera, Kinova
MICO arm), navigate autonomously (Hokuyo lidar), record
and transcribe human speech (Blue Snowball microphone,
Google Speech AP]FE]) and verbalize audio responses (Fes-
tival Speech Synthesis Systenﬂ) Tabletop perception is
implemented with RANSAC [41] plane fitting and Euclidean
clustering as provided by the Point Cloud Library [42].

The agent is trained on Mechanical Turk conversations,
transferring learned linguistic (e.g., lounge by the conference
room) and perceptual (e.g., object classes like can) knowl-
edge across platforms from simple simulation to real world
application. In a live human-robot dialog, an experimenter
tells the agent to move a rattling container from the lounge
by the conference room to bob’s office, requiring the agent
to select correct rooms and to learn the new, audio-grounded
word rattling from the human user|”|

V. CONCLUSION

This paper proposes a robotic agent that leverages conver-
sations with humans to expand small, hand-crafted language
understanding resources both for translating natural language
commands to abstract semantic forms and for grounding
those abstractions to physical object properties. We make

Ohttps://cloud.google.com/speech/
Uhttp://www.cstr.ed.ac.uk/projects/festival/
2Demonstration video: https://youtu.be/PbOftez_CJc?t=>5
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R:  What should I do?

H: Move a rattling container from the
lounge by the conference room to
Bob’s office.

R: Does rattling refer to a property of
an object?

H: Yes.

R: Does rattling mean the same thing
as empty?

H: No.

R: I am still learning the meanings of
some words.

R: Show me an object you could use
the word rattling when describing,
or say “none of them.”

H: Watch.

R: I am getting the objects on the table

into focus. .. Okay, I see them.
H: This one. The human picks up a
~small, full pill jar

I see.

Show me an object you could not

use the word rattling when

describing, or say “all of them.”

H: Watch. This one. The human picks
up a red water bottle.

R: I see.

R: Show me an object you could use
the word rattling when describing,
or say “none of them.”

H: Watch. This one. The human picks

up a container half-full of beans.

I see.

Thanks. Now back to business.

You want me to move an item

from 3.514 to somewhere?

H: Yes.

R: I should move something from
3.514 to 3.510? [room numbers]

H: Yes.

7

rRR

(a) The human says move a rat- (b) The robot asks questions about (c) The robot moves to the speci-
tling container.

local items to learn rartling.

fied location.

(d) The robot infers and grasps a (e) The robot navigates to the spec- (f) The robot hands over the item

rattling container.

ified destination room.

at the specified destination.

Fig. 5: The Trained (Parsing+Perception) agent continues learning on the fly to achieve the specified goal.

several key assumptions, and promising areas of future work
involve removing or weakening those assumptions. In this
work, the actions the robot can perform can be broken down
into tuples of discrete semantic roles (e.g., patient, source),
but, in general, robot agents need to reason about more
continuous action spaces, and to acquire new, previously
unseen actions from conversations with humans [15]. When
learning from conversations, we also assume the human user
is cooperative and truthful, but detecting and dealing with
combative users is necessary for real world deployment,
and would improve learning quality from Mechanical Turk
dialogs. Making a closed world assumption, our agent has
explored all available objects in the environment, but detect-
ing and exploring objects on the fly using only task relevant
behaviors [43], [44] would remove this restriction. Finally,
dealing with complex adjective-noun dependencies (e.g., a

fake gun is fake but is not a gun) and graded adjectives (e.g.,
a heavy mug weighs less than a light suitcase) is necessary to
move beyond simple, categorical object properties like can.

We hope that our agent and learning strategies for an
end-to-end dialog system with perceptual connections to the
real world inspire further research on grounded human-robot
dialog for command understanding.
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