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A Scavenger Hunt for Service Robots
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Abstract— Creating robots that can perform general-purpose
service tasks in a human-populated environment has been a
longstanding grand challenge for AI and Robotics research.
One particularly valuable skill that is relevant to a wide variety
of tasks is the ability to locate and retrieve objects upon
request. This paper models this skill as a Scavenger Hunt
(SH) game, which we formulate as a variation of the NP-
hard stochastic traveling purchaser problem. In this problem,
the goal is to find a set of objects as quickly as possible,
given probability distributions of where they may be found.
We investigate the performance of several solution algorithms
for the SH problem, both in simulation and on a real mobile
robot. We use Reinforcement Learning (RL) to train an agent
to plan a minimal cost path, and show that the RL agent
can outperform a range of heuristic algorithms, achieving
near optimal performance. In order to stimulate research on
this problem, we introduce a publicly available software stack
and associated website that enable users to upload scavenger
hunts which robots can download, perform, and learn from to
continually improve their performance on future hunts.

I. INTRODUCTION

The scavenger hunt problem is concerned with optimizing
the search for objects whose positions are uncertain. Given
a list of objects to find alongside a probability distribution
model describing where objects tend to be located, an
autonomous agent tries to minimize the distance traveled to
find all objects in the hunt. Objects may be located differently
in different hunts, and these differences are unknown to the
hunting agent.

This problem is difficult for a number of reasons, including
the fact that it involves probabilistic events. It is more com-
plex than the traveling salesman problem [11] because the
potential rewards for visiting locations change as a scavenger
hunt progresses and objects are found. Additionally, the
shortest path through unvisited locations does not necessarily
minimize the expected cost of hunt completion.

A solution to the scavenger hunt problem has many
applications for domestic service robots. Robots which can
quickly search for objects could remove tedium from day-to-
day activities. Examples of real life scavenger hunts include
grocery shopping, packing a suitcase, preparing a meal, or
delivering lunch boxes to workers in an office.

In this paper we introduce and evaluate several algorithms
for solving the scavenger hunt problem. The exhaustive
Bayesian search algorithm uses Bayesian search theory [15]
to identify the search path with the lowest expected cost
among all possible paths. It is however intractable for large
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instances, and not applicable for service robots that need to
react quickly. As a consequence, we devise three heuristic
algorithms: a proximity-based search, a probability-based
search, and a combined probability-proximity-based search
algorithm.

In addition, we extend this search under probabilistic
events to the context of Reinforcement Learning (RL).
We show that the problem can be modeled within the
framework of partially observable Markov decision process
(POMDP) [3], which treats the true locations of the objects
as latent states. Lizotte et al. [7] solved a similar problem
with missing data as latent states by maintaining a belief
state over the posterior distribution of latent states. Then a Q-
learning algorithm was used to learn a policy conditioned on
the belief state instead of an incomplete observation. Inspired
by this work, we represent a scavenger hunt as a fully observ-
able MDP which always maintains the state as a posterior
distribution over object locations. Then we solve the MDP
with the standard Deep Q-network (DQN) algorithm [9].
We demonstrate that a learning-based algorithm can learn
near-optimal solutions without requiring exponential runtime
when deployed.

These algorithms, as well as two bounding algorithms,
were implemented and tested in an abstract simulation of
the scavenger hunt problem, and their performances over
many randomized scavenger hunts were compared. Three
of our algorithms were also implemented on a physical
robot. The robot performed object location tasks around our
laboratory space using autonomous navigation, motion plan-
ning, computer vision software for object recognition [10],
and communication with our newly created scavenger hunt
webserver, as part of real life scavenger hunts.

One of our main goals is to present the Scavenger Hunt
(SH) as a testbed for robot development. To this end, we de-
veloped a publicly available website that allows users around
the world to compose hunts and validate their successful
completion. We also developed a publicly available software
stack that enables robots to download scavenger hunts and
upload proofs of completion to the website. 1

The contributions of this paper include: (i) the formulation
of the robot scavenger hunt problem, (ii) the development
and evaluation of optimal, heuristic, and learning-based
algorithms to solve the scavenger hunt problem, (iii) the
development of a publicly available website that forms the
infrastructure for running scavenger hunts on robots and
for providing feedback on their performance, and (iv) a

1The website url is: http://scavenger-hunt.cs.utexas.edu/
It contains a demo of our scavenger hunt system, the code for running the
robot, and the simulations.
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demonstration of the complete system on a real mobile
autonomous robot.

II. BACKGROUND AND RELATED WORK

Scavenger hunt is a challenging and fun way of testing
robot skills which are essential for long term autonomy
such as planning, navigation, continual lifelong learning,
perception, and human robot interaction. In AI conferences,
scavenger hunts have been used as a benchmark for au-
tonomous robot performance in public events where robots
were required to search a cluttered environment for a defined
list of objects [2], [13], [12].

The scavenger hunt task has also been proposed as a
standardized benchmark for autonomous robots by several
research labs [19]. We focus on a version of scavenger hunt
which is most similar to the target search task described
by Zhang et, al. [19], and present a website to coordinate
cooperation between academic labs.

We define the robot scavenger hunt problem as a variant of
the well-studied traveling purchaser problem (TPP) [8]. The
TPP is defined as follows. Consider a set O of products/items
to purchase, and a set N of geographically dispersed suppli-
ers to choose from. A solution is a path visiting a subset
of suppliers, and a decision of which items to purchase
from each supplier so as to minimize the traveling and
purchasing costs. The specific TPP variant we consider in
this paper, is in some sense more complex than the classic
TPP since the product availability is non-deterministic, and
only a distribution model is available. On the other hand, it
is simpler since we do not consider purchasing quantities or
costs. The SH problem is similar to the Multi-Object Search
problem considered by Wandzel et al. [17], except that
their proposed planning-based method does not generalize
to arbitrary object distributions.

In the general case of solving a NP-hard combinatorial
optimization problem, such as TSP, RL has been successfully
employed to learn a policy that achieved near-optimal perfor-
mance and generalized well to different graphs and sizes [?].
However, our problem considers a more complex setting
with stochasticity in object locations. In a similar problem
known as continual area sweeping [1], [14], an RL approach
allowed the robot to detect events and learn their distributions
simultaneously. The scavenger hunt problem differs in that
the agent has to plan over a known probability distribution
of object locations. Previous work using a similar method
explores problems with a limited amount of missing data
or data with small Gaussian noise [7], [18], while the SH
problem requires considering all the object locations under
uncertainty, and the probability distribution is arbitrary.

In the work by Lau et al. [6], a simulated agent searches
for objects whose locations vary according to a probability
distribution. The dynamic programming approach used by
their simulated agent is very similar to our Bayesian search
algorithm. The objects, however, had no distinct identities,
and their locations varied according to the same distribution,
unlike the SH problem, where each object has a unique
identity and probability distribution.

Other projects proposed efficient methods for modeling
and updating the distribution of moving object locations [16]
while our model considers stationary object locations which
are randomly sampled at the beginning of the search process.

III. PROBLEM FORMULATION

We denote a connected graph by G = {N,E}, where N =
{n1, n2, . . . , nl} is the node set and E = {en,n′}n,n′∈N is
the cost set with any en,n′ ∈ E representing the minimal
cost of traveling from node n to node n′. A scavenger hunt
problem consists of a graph G = {N,E}, an object set
O = {o1, . . . , ok}, a prior distribution D over Nk, and a
starting node n0 ∈ N .

A scavenger hunt problem first generates a vector of
object locations X = (Xo1 , . . . Xok) ∈ Nm from the prior
distribution D, where Xoi represents the location of object
i for i ∈ 1, . . . , k. The object locations X are unobservable
to the searching agent. We denote t as the timestep and let
Yt ∈ {0, 1}k be the task vector at timestep t , where Yt,i = 0
if oi has not been found and Yt,i = 1 otherwise. An algorithm
for solving a scavenger hunt problem starts from node n0 and
initial task vector Y0 = (0, 0, . . . , 0). At each timestep t ≥ 1,
the searching agent takes an action by moving to node nt,
and incurring a cost ent−1,nt .

An agent’s performance is evaluated by the total cost
before all Y ’s are set to 1. Formally, the objective of a SH
problem is to minimize the cost as defined by Equation 1:

min

t1∑
t=1

ent−1,nt , for t1 = inf{t > 0 : Yt,i = 1,∀i ∈ [k]}

given G,D,O, n0

(1)
Algorithm 1 describes a general framework for all

the heuristic scavenger hunt algorithms in section 4.
The algorithms differ in the their implementation of the
choose next node() function on line 3. On line 5, the
agent updates the task vector Yt and a trajectory τt =
(n0, Y0, en0,n1 , n1, Y1, en1,n2 , . . . , nt−1, Yt−1) up to time
t after each timestep. A Bayesian posterior distribution
D(X|τt) based on the prior distribution D = D(X|τ0 = ∅)
and the trajectory τt is computed for the algorithm to make
a decision.

Algorithm 1 A General Framework for SH Algorithms

Require: A graph G = (N,E), a set of Objects O, a
distribution D, start location node n0

1: Initialize n0, Y0 and τ0 = ∅ with t = 0
2: while Yt,i 6= 0,∀i ∈ [k] do
3: nt+1 ←− choose next node(G,D,O,nt,τt)
4: Travel to nt+1

5: Update D, Yt+1 and τt+1 based on the occurrence of
objects at nt+1

6: t = t+ 1
7: end while



IV. SOLUTION ALGORITHMS

In this section we present seven scavenger hunt-solving
algorithms: one RL algorithm (DQN), one exhaustive
search algorithm (Bayesian), three heuristic algorithms
(Proximity, Probability, and Probability-Proximity), and
two bounding algorithms (Offline Optimal, and Salesman).
Complete pseudocode for all the algorithms is available at:
https://github.com/utexas-bwi/scavenger_hunt_

api/blob/master/PseudoCode.pdf

A. DQN Algorithm (RL)

While the system is originally partially observable to the
agent due to the unknown object locations, maintaining
a dynamically updated Bayesian posterior distribution of
the object positions as the state, leads to a regular MDP.
Therefore, the algorithm considers the SH problem as an
MDP represented as a tuple (S,A, P, r, γ), with state-space
s ∈ S: a state s is a set {D, n}, which includes the
probability distribution D, combined with agent’s current
node n. The probability distribution is represented by a l×k
matrix with element pnto representing the probability of object
o being located at node n; action-space a ∈ A: A is the same
as the node set N with an action a = n representing an
action of travelling to node n; transition probability of states
P := p(st+1|st, at): a probability of transitioning from state
st to the next state st+1 given the action at; reward function
r := r(s, a): the negative distance of travelling from the
agent’s current node to the node specified by the action;
a discount factor γ = 0.95 is set only for the purpose of
training.

DQN with experience replay is implemented to train
an agent with respect to just one specific hunt instance
at a time. The Q-network is represented as a multi-layer
perceptron with two 16-unit layers. Each of the layers is
followed by a rectified linear unit (ReLu) activation function.
The network takes as input a vector of probabilities of
finding at least one object at each node, together with the
shortest path costs between nodes. As we defined before,
pnt is the probability of finding at least one object at
node n and time step t with n ∈ {nj} for index j =
1, 2, . . . , l and we denote nt as agent’s current node, a
vector (pn1

t , pn2
t , . . . , pnl

t , en1,nt , en2,nt , . . . , enl,nt) of length
2l is sent to the network as input. The agent’s current
node is apparent as being the only node with 0 travel cost.
The network outputs the expected Q-values for each of
the actions. The policy π(a|s) := argmaxa∈AQ(s, a) is
extracted by selecting the action that returns the highest Q
value.

The hyper-parameters used for the training are specified as
follows. The weights of the network are optimized by Adam
optimizer [5] a linearly decaying learning rate starting from
0.05 and reaching 0 after 40 epochs. The agent is trained for
2000 steps per epoch with a batch size of 64 and is tested
for 200 episodes after each epoch. A buffer size of 20000 is
used for the experience replay and a epsilon-greedy policy is
introduced to do exploration during the training with epsilon
linearly decaying at a rate of 0.1 per epoch and staying at

0.02 after 10 epochs. Decaying the learning rate and epsilon
help encourage convergence to a near optimal policy. The
policy with the best test result is reported as the result of the
algorithm.

B. Exhaustive Bayesian Search (Exhaustive)

This algorithm considers all possible paths, which are
the sequences that contains all the unvisited nodes, and
computes the expected cost of each path over all possible
object locations X ∈ Nk. The path with the lowest expected
cost over the distribution D is selected and the first node in
the path is returned as the next node to visit.

C. Proximity-Based Search (Heuristic)

This algorithm chooses the next node to visit by searching
for the closest node that may potentially contain any unfound
object. The number of objects that may appear at a node
and probability of appearance are disregarded. We denote
pt

n
o := D(Xo = n|τt) as the posterior probability of object

o located at node n based on the trajectory τt. The posterior
probability incorporates past observations, including whether
an object has already been found. Given the robot’s current
node nt, the next node nt+1 is computed by the following
equation:

nt+1 = argmin
n∈N

{ent,n|∃ o ∈ O, ptno > 0} (2)

D. Probability-Based Search (Heuristic)

This algorithm chooses the node with the greatest proba-
bility of finding at least one unfound object. The proximity
of the location is disregarded, resulting in essentially the
opposite of the proximity-based heuristic. If we denote pnt
as the probability of finding at least one object at node n,
the next node is computed by:

nt+1 = argmax
n∈N

{pnt } and pnt = 1−
∏
o∈O

(1− ptno ) (3)

E. Probability-Proximity Search (Heuristic)

This algorithm is a combination of the proximity-based
and probability-based heuristics. Each location node is
scored according to the ratio of the probability of finding
at least one object at that node to the distance from the
current node to that node. Given the current node nt and
the probability of finding at least one object pnt , the next
node is computed by the following equation:

nt+1 = argmax
n∈N

pnt
ent,n

(4)

The algorithm visits the node with the highest ratio. The
rationale behind this scaling is to prioritize visiting nodes if
the cost of traveling to them is worth the expected reward.

https://github.com/utexas-bwi/scavenger_hunt_api/blob/master/PseudoCode.pdf
https://github.com/utexas-bwi/scavenger_hunt_api/blob/master/PseudoCode.pdf


F. Salesman Search (Bounding)

Serving as a naive baseline indicator on performance is a
traveling salesman algorithm which visits all nodes that may
contain objects, along the shortest path, while disregarding
occupancy distributions [11]. The path is calculated once and
not reevaluated during the search. This algorithm is intended
as a lower bound on the performance of other heuristics,
however, it is not a strict lower bound since for specific
locations of objects, it can outperform other heuristics.

G. Offline Optimal Search (Bounding)

The offline optimal search is informed offline of the
objects locations X . It takes the shortest path between
these locations. This is an (unachievable without omniscient
knowledge of the object locations) upper bound on the
performance of other algorithms, as it represents the fastest
a scavenger hunt could possibly be completed.

V. EVALUATION

In this section we describe the simulation and real-
robot experiments we conducted to evaluate the algorithms
presented in Section IV. The algorithms’ performance is
evaluated in terms of travel distance and runtime.

A. Simulation Setup

To compare the algorithms, we implemented all seven
algorithms along with a simulator which allows us to define
a graph world, set of objects, and distribution model for
the objects. Each simulated scavenger hunt randomizes the
object arrangement according to the distribution model. 2.
Scavenger hunts were randomly generated according to the
following rules.
1) Hunts contain 4 objects.
2) An object may be located at between 1 and 3 locations,

with the probability of appearing at each location parti-
tioned randomly between locations.

3) Node locations are generated uniformly at random in an
environment of size m by m, where m is 100 times the
number of nodes, and the edge distances are calculated
as Euclidean distances based on the node locations.

The error bars in the figures indicate the 95% confidence
interval.

B. RL Simulation Results

In this set of experiments, we generated 10 random 8-node
environments, and the DQN algorithms were trained and
tested on each one separately. Note that the object locations
within each environment change from trial to trial.

We tested two versions of the DQN algorithm. The first,
DQN, received the distribution as part of its observation,
along with the robot’s location, and the list of objects that
remain to be found, while the second, DQN+Map received
both the distribution and the map edge costs as part of the
observation.

2The simulator code is available at: https://github.com/
utexas-bwi/scavenger_hunt_api/tree/master/bwi_
scavenger

Figure 1 presents the ratio between the average travel dis-
tance by each algorithm to the average travel distance of the
optimal solution for performing 100 hunts in each of the 10
environments. The results indicate that the DQN algorithm
can outperform all other heuristics, even without knowing the
edge costs. When provided with information about edge costs
it can perform as well as Bayesian search with no statistical
difference in performance between DQN+Map and Bayesian
search with p − value > 0.05. Moreover, the difference
between DQN and the next best heuristic, i.e. Prob-Prox,
is statistically significant with p−value = 0.006 in a paired
two sample T-test.
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Fig. 1: Comparison of algorithms on 10 environments. The
DQN algorithms were trained on each environment sepa-
rately and outperforms all other heuristics.

C. Increasing Environment Complexity Simulation Results

In this section we examine the performance of the algo-
rithms in increasingly larger environment with more nodes.
We ran sets of trials on eight graph sizes of 3 through 10
nodes. For each graph size, each algorithm completed 100
trials of 100 scavenger hunts each, for a total of 80,000 scav-
enger hunts per algorithm (with the exception of exhaustive
Bayesian search, which could not be run on maps of sizes
9 or 10 nodes in reasonable time due to its computational
complexity. We estimate it would take approximately 8 days
to run 80000 experiments on a 9 node graph). Each algorithm
was given the same graph, distribution model, and object
arrangement for each trial.

Figure 2 shows the performance of each algorithm in terms
of its average distance traveled across various map sizes. As
expected, the results are bounded by the Traveling Salesman
and Offline Optimal searches. The Probability-based and
Proximity-based heuristics performed almost identically, and
were outperformed by the Probability-Proximity algorithm.
They are all outperformed by the exhaustive Bayesian search.

The average traveled distance for all the algorithms in-
creases as the map grows in size. Note that the Exhaustive
Bayesian search performance curve in Figure 2 is cut off at
8 nodes. For maps larger than 8 nodes, the intractable time
complexity of the algorithm precludes timely completion of
a full experiment of 80,000 trials, i.e., the time to calculate
the path becomes greater than 5 seconds, as seen in Figure
3. There are no statistically significant differences between

https://github.com/utexas-bwi/scavenger_hunt_api/tree/master/bwi_scavenger
https://github.com/utexas-bwi/scavenger_hunt_api/tree/master/bwi_scavenger
https://github.com/utexas-bwi/scavenger_hunt_api/tree/master/bwi_scavenger


the mean travel distances of Offline Optimal, Exhaustive
Bayesian, and Probability-Proximity searches for environ-
ments smaller than 5 nodes, according to a two sample
T-Test (p − value > 0.05). For environments larger than
5 nodes, there is a statistically significant difference be-
tween Offline Optimal, and both Exhaustive Bayesian and
Probability-Proximity searches (p−value < 0.05). For envi-
ronments larger that 6 nodes, there is a statistically significant
difference between Exhaustive Bayesian and Probability-
Proximity searches (p − value < 0.05). Figure 3 indicates
that the runtime of the heuristic approaches increases linearly
with the number of nodes, but the runtime of the Exhaustive
Bayesian search increases exponentially (appears linear on
the logarithmic scale).
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Fig. 2: Simulation results comparing traveled distance, in
environments with increasing complexity.
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D. Robot Experiment Setup

The Probability-Proximity, Exhaustive Bayesian, and Of-
fline Optimal search algorithms were also tested on a real
mobile robot, which is part of the Building-Wide Intelligence
project at the University of Texas at Austin [4]. The robot is
custom built on a Segway base, with a 2D Hokuyo Lidar used
for localization, and a Kinect RGBD camera for perception.
A picture of the robot can be seen in Figure 5.

The limited computation resources on the robot resulted
in long processing times by the computer vision software.
To resolve that, we offboarded the object recognition pro-
cess and had the robot send the feed from its Kinect V1

RGBD camera, to be processed on a separate machine. This
workaround enabled the robots to scan as it was moving
without having to stop and wait. Scavenger hunts provided
to the robot, as shown in Figure 4 (a), consisted of 7 location
nodes and the following distribution model:

• Object A occurs at node 2 10%, node 3 80%, and node
7 10% of the time.

• Object B occurs at node 1 20%, node 3 50%, and node
7 30% of the time.

• Object C occurs at node 1 20%, node 2 30%, node 4
20% and node 5 30% of the time.

• Object D occurs at node 4 50%, and node 5 50% of
the time.

The experiment used a potted plant, teddy bear, umbrella,
and soccer ball for objects A, B, C, and D, respectively.
These objects were used because they were unique within
the lab area and already recognized by the robot’s computer
vision system. It was beneficial to use uncommon items
so that the robot did not accidentally find instances of
the object besides those controlled by the experiment. In
each experiment, the robot started with the same probability
distribution knowledge and location as input to the algorithm.
The robot determined the next best location and traveled
to it. At the location, it surveyed the area and determined
what objects were there. The robot updated the current
probabilities to match new knowledge. It repeated these
steps, until all objects were found

Ten arrangements of objects were sampled according to
the probabilities in the distribution model. The arrangements
were replicated in the real world and the three algorithms
were tested on each arrangement.

Figure 4 (b) shows the actual path that was generated by
each algorithm for an example trial that was conducted on
the real robot. In this specific case, Exhaustive Bayesian
produced the same path as the Offline Optimal algorithm,
which resulted in approximately 60 meters in length. The
Probability-Proximity path was much longer with 104.63
meters in length.

E. Robot Experiment Results

Figure 6 summarizes the results of the scavenger hunts
that were tested on the robot. Each reported result is the
average of ten trials. Like in simulation, Exhaustive Bayesian
search outperformed the Probability-Proximity algorithm and
was outperformed by Offline Optimal. Due to COVID-19 we
were unable to complete the real robot experiments of the
DQN algorithm. However, we ran simulated SH experiments
with DQN in the simulator we created, on an environment
similar to the one where the real robot experiments were
run. The edge lengths in the simulated environment were
exactly the lengths measured by the real robot’s odometer
sensor when traversing the same edges in our lab. The results
indicate that DQN performs similarly to the Exhaustive
Bayesian search algorithm.



(a) Occurrence model distribution

(b) Path trajectories of different algorithms

Fig. 4: (a) Map of the lab space used for real-world ex-
periments. The percentages shown are representative of the
occurrence model provided to the agent. (b) Examples of the
paths generated by each algorithm in a real world experiment.

Fig. 5: The robot used for the experiments.

VI. SCAVENGER HUNT WEBSITE

In order to broaden the impact of this project, and
especially to allow researchers in other labs with other
robots to participate in scavenger hunts, we also developed
a website (scavenger-hunt.cs.utexas.edu) which
enables users to define tasks, compose hunts, and verify
proofs of completion which the robot uploads as images
once it finds an object. The verification process enables the
robot to maintain and update a database with object locations
which it can use to plan future hunts more effectively.

VII. CONCLUSION

This paper defines the robot scavenger hunt problem,
a stochastic traveling agent problem that involves finding
objects whose appearances are probabilistic across locations.
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Fig. 6: The average distance traveled by each algorithm in
the robot experiments.

We implemented and analyzed the performance of three
heuristic search algorithms for completing scavenger hunts,
as well as an exhaustive Bayesian search algorithm that
is optimal in expectation. All the algorithms were tested
in a custom built simulated environment, while the top
performing three were also tested on real world scavenger
hunts. The real world hunts were conducted using a mobile
robot with autonomous navigation capabilities for which we
developed perception capabilities that enable it to perform
scavenger hunts.

Results from both simulated and real world experiments
show that the Exhaustive Bayesian search algorithm outper-
forms all heuristic algorithms. However, it does not scale
well, and is not applicable for large environments, or hunts
that contain a large number of objects. The heuristic algo-
rithms are better suited for application in large environments.
A key contribution of this work is in demonstrating that
an RL agent trained using a standard DQN algorithm with
a probability distribution model can outperform all other
heuristic algorithms on the specific environment on which it
was trained, and matches the performance of the exhaustive
Bayesian search algorithm, without requiring much compu-
tational effort online. A natural direction for future work is
to develop a learning based approach that can generalize to
arbitrary environments.

Another interesting direction for future work to examine
a variation of the scavenger hunt problem in which the
distribution model is not known to the agent. This introduces
an exploration aspect to the problem, as the agent must
now explore its environment to build a distribution model
while searching for objects simultaneously. This represents
an exploration-exploitation tradeoff and is thus well suited
for reinforcement learning.
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APPENDIX

A. Website
In order to facilitate the definition of scavenger hunts,

the verification of proofs of completion (”proofs” is short),
and especially to allow researchers in other labs with other
robots to participate in scavenger hunts, we also developed a
website which enables users to define tasks, compose hunts
and verify proofs. The verification process enables the robot
to maintain and update a database with object locations
which it can use to plan future hunts more effectively. The
framework we developed is publicly available and our goal
is to have other research labs join and run scavenger hunts
on their robots using this framework.

The workflow of a scavenger hunt as depicted in figure 7
contains 10 stages:
(A) User can define tasks such as ”Find an object and take

a picture of it”.
(B) The user can then compose scavenger hunts containing

a set of tasks.
(C) The robot downloads the hunt.
(D) The robot starts searching for the objects in the hunt

(chair , keyboard, and bottle).
(E) The robot identifies a chair.
(F) The robot logs the location of the object in its database

- currently unverified (colored blue).
(G) The robot uploads proof of finding the object to the

website, in this case a picture of the item it had found,
and continues searching for the rest of the objects.

(H) The user verifies that the proof is correct.
(I) The robot updates its database by changing the color of

the object location to green to indicate that it is verified.
(J) The robot maintains the database of previous object lo-

cations and uses it to plan its next hunts more efficiently.
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Fig. 7: This figure displays the workflow of a scavenger hunt.



B. Algorithm Pseudocode
The pseudocode for all the solution algorithms described

in Section 4 are presented in this section to fully specify our
algorithms and to aid replicability.

Algorithm 2 Proximity-Based Search

Require: A graph G = (N,E), a set of objects O, a
distribution D, start location node n0

1: Initialize n0, Y0 and τ0 with t = 0
2: while Yt,i 6= 0,∀i ∈ [k] do
3: nt+1 ←− argmin

n∈N
{ent,n|∃ o ∈ O, ptno > 0}

4: Travel to nt+1

5: Update D, Yt+1 and τt+1 based on the occurrence of
objects at nt+1

6: t = t+ 1
7: end while

Algorithm 3 Probability-Based Search

Require: A graph G = (N,E), a set of objects O, a
distribution D, start location node n0

1: Initialize n0, Y0 and τ0 with t = 0
2: while Yt,i 6= 0,∀i ∈ [k] do
3: nt+1 ←− argmax

n∈N
{1−

∏
o∈O

(1− pno )}

4: Travel to nt+1

5: Update D, Yt+1 and τt+1 based on the occurrence of
objects at nt+1

6: t = t+ 1
7: end while

Algorithm 4 Probability-Proximity Search

Require: A graph G = (N,E), a set of objects O, a
distribution D, start location node n0

1: Initialize n0, Y0 and τ0 with t = 0
2: while Yt,i 6= 0,∀i ∈ [k] do

3: nt+1 ←− argmax
n∈N

1−
∏

o∈O
(1−pn

o )

ent,n

4: Travel to nt+1

5: Update D, Yt+1 and τt+1 based on the occurrence of
objects at nt+1

6: t = t+ 1
7: end while

Algorithm 5 DQN Algorithm

Require: A graph G = (N,E), a set of objects O, a
distribution D, start location node n0, a trained policy
π(a|s)

1: Initialize n0, Y0 and τ0 with t = 0
2: while Yt,i 6= 0,∀i ∈ [k] do
3: s ←− build observation(G,D)
4: nt+1 ←− argmax

a∈N
π(a|s)

5: Travel to nt+1

6: Update D, Yt+1 and τt+1 based on the occurrence of
objects at nt+1

7: t = t+ 1
8: end while

Algorithm 6 Exhaustive Bayesian Search

Require: A graph G = (N,E), a set of objects O, a
distribution D, start location node n0

1: Initialize n0, Y0 and τ0 with t = 0
2: while Yt,i 6= 0,∀i ∈ [k] do
3: best path=∅
4: best cost=∅
5: for path in all the possible paths do
6: expected cost =

∑
X∈Nm

D(X|τt)∗ com-

pute cost(path, X)
7: if expected cost < best cost then
8: best path=path
9: best cost=expected cost

10: end if
11: end for
12: nt+1 ←− first node in best path
13: Travel to node nt+1

14: Update D, Yt+1 and τt+1 based on the occurrence of
objects at nt+1

15: t = t+ 1
16: end while

C. Learning Curve of DQN See figure 8.



Algorithm 7 Salesman Search

Require: A graph G = (N,E), a set of objects O, a
distribution D, start location node n0

1: Initialize n0, Y0 and τ0 with t = 0
2: shortest path ←− compute shortest path(N , E) {shortest

path that visits all the nodes in N}
3: while Yt,i 6= 0,∀i ∈ [k] do
4: nt+1 ←− next node in path(shortest path, nt)
5: Travel to nt+1

6: Update D, Yt+1 and τt+1 based on the occurrence of
objects at nt+1

7: t = t+ 1
8: end while

Algorithm 8 Offline Optimal Search

Require: A graph G = (N,E), a set of objects O, objects
locations X , a distribution D, start location node n0

1: Initialize n0, Y0 and τ0 with t = 0
2: shortest path ←− compute shortest path(X , E) {shortest

path that visits all the nodes in X}
3: while Yt,i 6= 0,∀i ∈ [k] do
4: nt+1 ←− next node in path(shortest path, nt)
5: Travel to nt+1

6: Update D, Yt+1 and τt+1 based on the occurrence of
objects at nt+1

7: t = t+ 1
8: end while

D. Robot Experiments Additional Data
Due to the COVID-19 lock-down in our university, we

were unable to complete all the real robot experiments
we intended to perform. Specifically, the DQN algorithm’s
performance was not evaluated on a real robot. However,
we ran simulation experiments on the same environment as
the other robot evaluations for DQN. In this supplementary
material we present this estimated result of the RL agent,
as we expect it to be on a real robot. Figure 9 presents the
DQN+map algorithms performance on a simulated robot as
compared to the other three algorithms which were tested on
the robot. The results indicate that the DQN agent performs
similarly to the Exhaustive Bayesian search algorithm. The
results of the Optimal, Bayesian ans Prob-Prox algorithms
were generated from the real robot’s paths as presented in
Figure 4(b) in the main paper.

A preliminary stage to solving a scavenger hunt problem
is acquiring the object distribution The acquisition process is
done in the following way. The robot starts with a uniform
distribution for all the objects over all the nodes. With
every visit to a node, the probability is updated based on
the observation in that location: found objects will have
0 probability at all other locations, and objects that were
not found will have their probability for all other possible
locations redistributed to sum to 1. At the end of the hunt,
the robot uploads the proofs to the website. Once those
proofs are validated, the robot updates its knowledge base,

Fig. 8: Learning curve of DQN on one of the environment
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Fig. 9: Estimated performance of DQN on real-world exper-
iments.

incrementing the number of observations of found objects at
the locations where they were found. In this paper we only
focus on the evaluating the algorithms’ ability to plan given
a distribution, and leave the acquisition process for future
work.

The reason that the experiments in the simulator had fully
connected graphs is as follows. When the robot chooses
a node to visit next, the assumption is that it does not
take observations from the nodes along the path to the
chosen node. Under this assumption, a path between non-
neighboring nodes in a partially connected graph can be
represented as a pseudo edge with length equal to the
minimum distance path between the two nodes. Hence,
under this assumption, any partially connected graph can be
represented as a fully connected graph, and that is the reason
we only simulated fully connected graphs.
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