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Abstract—We consider policy evaluation in infinite-horizon
discounted Markov decision problems (MDPs) with continuous
compact state and action spaces. We reformulate this task
as a compositional stochastic program with a function-valued
decision variable that belongs to a reproducing kernel Hilbert
space (RKHS). We approach this problem via a new functional
generalization of stochastic quasi-gradient methods operating in
tandem with stochastic sparse subspace projections. The result
is an extension of gradient temporal difference learning that
yields nonlinearly parameterized value function estimates of the
solution to the Bellman evaluation equation. We call this method
Parsimonious Kernel Gradient Temporal Difference (PKGTD)
Learning. Our main contribution is a memory-efficient non-
parametric stochastic method guaranteed to converge exactly to
the Bellman fixed point with probability 1 with attenuating step-
sizes under the hypothesis that it belongs to the RKHS. Further,
with constant step-sizes and compression budget, we establish
mean convergence to a neighborhood and that the value function
estimates have finite complexity. In the Mountain Car domain,
we observe faster convergence to lower Bellman error solutions
than existing approaches with a fraction of the required memory.

I. MARKOV DECISION PROCESSES

We consider an autonomous agent acting in an environ-
ment defined by a Markov decision process (MDP) [1] with
continuous spaces, which is increasingly relevant to emerging
technologies such as robotics [2], power systems [3], and
others. A MDP is a quintuple (X ,A,P, r, γ), where P is the
action-dependent transition probability of the process: when
the agent starts in state xt ∈ X ⊂ Rp at time t and takes an
action at ∈ A, a transition to next state yt ∈ X is distributed
according to yt ∼ P(·

∣∣xt,at). After transitioning to a particu-
lar yt, the MDP reveals an instantaneous reward r(xt,at,yt),
where the reward function is a map r : X ×A×X → R.

We focus on policy evaluation: control decisions at are
chosen according to a fixed stationary stochastic policy π :
X → ρ(A), where ρ(A) denotes the set of probability distri-
butions over A. Policy evaluation underlies methods that seek
optimal policies through repeated evaluation and improvement.
In policy evaluation, we seek to compute the value of a policy
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when starting in state x, quantified by the discounted expected
sum of rewards, or value function V π(x):1

V π(x)=Ey

[ ∞∑
t=0

γtr(xt,at,yt)
∣∣x0 =x,{at=π(xt)}∞t=0

]
. (1)

For a single trajectory through the state space X , yt = xt+1.
The value function (1) is parameterized by a discount factor
γ ∈ (0, 1) that determines farsightedness. Decomposing the
summand in (1) into its first and subsequent terms, and using
both the stationarity of the transition probability and the
Markov property yields the Bellman evaluation equation [4]:

V π(x) =

∫
X

[r(x, π(x),y) + γV π(y)]P(dy
∣∣x, π(x)) (2)

for all x ∈ X . The right-hand side of (2) defines a Bellman
evaluation operator Bπ : B(X )→ B(X ) over B(X ), the space
of bounded continuous value functions V : X → R:

(BπV )(x)=

∫
X
[r(x, π(x),y)+γV (y)]P(dy

∣∣x, π(x)) (3)

for all x ∈ X . Proposition 4.2(b) in [5] establishes that the
stationary point of (3) is V π , i.e., (BπV π)(x) = V π(x). As
a stepping stone to finding optimal policies in infinite MDPs,
we seek here to find the fixed point of (3). Specifically, the
goal of this work is stable value function estimation in infinite
MDPs, with nonlinear parameterizations that are allowed to
be infinite, but are nonetheless memory-efficient.

Challenges To solve (3), fixed point methods, i.e., value
iteration (Vk+1 = BπVk), have been proposed [5], but can
only be implemented in a memory-affordable manner when
the value function can be represented by a vector whose length
is defined by the number of states and the state space is
small enough that the expectation2 in B can be computed. For
large spaces, stochastic approximations of value iteration, i.e.,
temporal difference (TD) learning [6], circumvent computing
expectations. Incremental methods (least-squares TD) are an
alternative when V (x) is vector-valued [7], but extensions to
infinite representations require infinite memory [8].

Solving the fixed point problem defined by (3) requires
surmounting the fact that this expression is defined for each
x ∈ X , which for continuous X ⊂ Rp has infinitely many
unknowns. This phenomenon is one example of Bellman’s
curse of dimensionality [4], and it is frequently sidestepped

1In MDPs more generally, we choose actions {at}∞t=1 to maximize
the reward accumulation starting from state x, i.e., V (x, {at}∞t=0) =

Ey

[∑∞
t=0 γ

tr(xt,at,yt)
∣∣x0 = x, {at}∞t=0

]
. For a fixed policy π, the

setting of this work, this simplifies to (1).
2Observe that the integral in (2) defines a conditional expectation: V π(x) =
Ey[r(x, π(x),y) + γV π(y)]

∣∣x, π(x)].
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by parameterizing the value function using a finite linear [9],
[10] or nonlinear [11] basis expansion. Such methods have
paved the way for the recent success of neural networks in
value function-based approaches to MDPs, but combining TD
learning with different parameterizations may cause diver-
gence [12]: in general, the representation must be tied to the
stochastic update [13] to ensure both are stable.

Contributions Our main result is a memory-efficient, non-
parametric, stochastic method that converges to the Bellman
fixed point almost surely when it belongs to a reproducing
kernel Hilbert space (RKHS). The hypothesis that the value
function belongs to a RKHS restricts the relationship between
rewards and value to be smooth (see Assumption 4 [cf. (34)]
), i.e., large changes in rewards yield large changes in value.,
which holds, for instance, when the reward is a potential or
navigation function [14], [15]. Such specifications are known
to interact favorably in controller design from a dynamical
systems perspective. We reformulate (2) as a compositional
stochastic program (Section II), a topic studied in operations
research [16] and probability [17]. These problems motivate
stochastic quasi-gradient (SQG) methods, i.e., two time-scale
approaches, to mitigate the fact that the objective’s stochastic
gradient requires evaluating an expectation [18].

Two time-scale stochastic methods have a significant history
in reinforcement learning in the context of a class of policy
learning algorithms called actor-critic [19], which mix together
gradient ascent on the value function [20] with value function
estimation through temporal differences [6]. Alternatively,
their utility also has been established for policy evaluation in
[11], [21] for finite MDPs or value functions that have finite
vector-valued parameterizations. Our work is more closely
related to this later context; however, a key point of departure
is that we propose to operate directly in a function space,
motivated by the fact that policy evaluation in a continuous
MDP defines a functional fixed point problem. Specifically,
we use SQG in infinite MDPs.

In (2), the decision variable is a continuous function,
which we address by hypothesizing the Bellman fixed point
belongs to a RKHS [22]. However, a function in a RKHS
has comparable complexity to the number of training samples
processed, which could be infinite (an issue ignored in many
kernel methods for MDPs [23]–[27]). Specifically, it’s well
known that for a kernelized interpolator defined by a training
set of N samples, the complexity is O(N). Thus, to solve the
population problem defined by Bellman’s equations, N →∞,
and thus so is the complexity of the function estimate. We
propose to tackle this memory bottleneck by requiring memory
efficiency in both the function sample path and in its limit,
whose complexity in the worst case is defined by the metric
entropy of the state space (Corollary 1).

To find a memory-efficient sample path in the function
space, we generalize SQG to RKHSs (Section III), and
combine this generalization with greedily-constructed sparse
subspace projections (Section III-A). These subspaces are
constructed via matching pursuit [28], [29], a procedure mo-
tivated by the facts that kernel matrices induced by arbitrary
data streams likely violate requirements for convex-relaxation-
based sparsity [30]. Rather than unsupervised forgetting [31],

we tie the projection-induced error to ensure the stochastic
gradient still satisfies a descent property [32], thus keeping
only those dictionary points needed to converge (Section IV).

Whereas in [32], compressed kernel methods are analyzed
for supervised learning and a tunable tradeoff between memory
and sub-optimality is provided, here we study compressed
kernel methods in the context of policy evaluation in rein-
forcement learning. This later context requires surmounting
the technical challenges associated with nested expectations,
specifically, that SQG is defined by coupled supermartingales,
rather than standard stochastic descent arguments in [32], and
hence has fundamental qualitative and quantitative departures
from existing works on RKHS learning.

We note that this hard-thresholding projection could be
applied to other stochastic algorithms in RKHS for reinforce-
ment learning such as [23]–[25], [27], but applying them to
incremental methods (LSTD) [8], [26] remains elusive since
relating the per-step bias caused by sparsification to ensure
valid descent directions is elusive.

As a result, we conduct functional SQG descent via sparse
projections of the SQG. This maintains a moderate-complexity
sample path exactly towards V ∗, which may be made ar-
bitrarily close to the Bellman fixed point by decreasing the
regularizer. By generalizing the relationship between SQG and
supermartingales in [33] to Hilbert spaces, we establish that
the sparse projected SQG sequence converges almost surely
to the Bellman fixed point with decreasing learning rates, and
converges in mean while maintaining finite complexity when
constant learning rates are used (Section IV). We then em-
pirically evaluate the proposed value function approximation
method on the discrete Mountain Car domain in Section V
and summarize our findings in Section VI.

We would like to point out that convergence of two time-
scale methods is well-understood [33], [34]; however, applying
these methods as is requires decision variables to be vectors,
not functions. This parameterization, however, causes an ap-
proximation error which is difficult to characterize (see [26]).
In contrast, the RKHS parameterization, operating with the
combination of projections and SQG, attains solutions that are
close to the minimizer of the true Bellman evaluation error,
where closeness is controlled by regularization introduced in
the next section. This is due to the fact that RKHS possesses
universal approximation under judicious choice of the kernel
[35], thus circumventing approximation error.

Recently, in companion work, an optimization-based variant
of Q learning in RKHS is developed [36]; however, a number
of essential points distinguish that thread from methods devel-
oped here. Specifically, the optimization-based reformulation
of Bellman’s evaluation equation yields a convex program
for which i.i.d. assumptions are close-to-valid. By contrast,
Bellman’s optimality equation yields a non-convex reformu-
lation. While the convergence of Q learning requires i.i.d.
assumptions, typically in practice these are violated. These
statistical dependencies make policy learning a challenging
domain to study Bayesian exploration, whereas policy eval-
uation is suitable [37]. Additionally, policy evaluation is just
one component of reinforcement learning algorithms based
upon policy search such as policy gradient method [20] or
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actor-critic [38], [39], whereas Q learning is a standalone
procedure. Other recent work focuses on policy search, a form
of stochastic gradient with respect to a parameterized family
of policies [40], [41], which is categorically different from
fixed point iterations derived from Bellman’s equations [4].

II. POLICY EVALUATION

We reformulate the fixed point problem (3) defined by
Bellman’s equation so that it may be identified with a nested
stochastic program. Since the resulting domain of this problem
is intractable, we hypothesize that the Bellman fixed point
belongs to a RKHS. Then, to apply the Representer Theorem,
we require the introduction of regularization.

We proceed with reformulating (3): subtract the value
function V π(x) that satisfies the fixed point relation from both
sides, and then pull it inside the expectation:

0 = Ey[r(x, π(x),y) + γV π(y)− V π(x)
∣∣x, π(x)] (4)

for all x ∈ X . Value functions satisfying (4) are equiv-
alent to those which satisfy the quadratic expression 0 =
1
2 (Ey[r(x, π(x),y) +γV π(y)−V π(x)

∣∣x, π(x)])2 , which is
null for all x ∈ X , the starting point of the trajectory defining
the value function (1). To solve this expression for every x,
rather than solving it for a fixed x separately, we may integrate
it out, which we do together with integrating over policy π(x)
to yield the compositional stochastic program:

V π = argmin
V ∈B(X )

J(V ) (5)

:=argmin
V ∈B(X )

Ex,π(x)

{1
2
(Ey[r(x,π(x),y)+γV(y)−V(x)

∣∣x,π(x)])2
}

whose solutions coincide exactly with the fixed points of (3).
The equivalence of (4) and (5) is not in general true, but only
true when the probability distribution µ over x is ergodic. That
is, for fixed policy π, µ is non-vanishing over the entire state
space X : for each x ∈ X , µ(x) > 0. Henceforth, we require
µ, the prior distribution over states x ∈ X , to be ergodic. See
[11], [42] for a discussions of transforming Bellman equations
into objective functions, and the necessity of ergodicity.

(5) defines a functional optimization problem which is
intractable when we search over all bounded continuous func-
tions B(X ). However, when we restrict B(X ) to a Hilbert
space H equipped with a unique reproducing kernel, i.e., an
inner product-like map κ : X × X → R such that for f ∈ H,

(i) 〈f, κ(x, ·)〉H=f(x) (ii) H = span{κ(x, ·)} , (6)

for all x ∈ X . We may apply the Representer Theorem
to transform (5) into a semi-parametric one [22], [43]. In a
RKHS, the optimal function f ∈ H of (5) then takes the form

f(x) =

N∑
n=1

wnκ(xn,x) , (7)

where xn is a realization of the random variable x. Thus, f ∈
H is a kernel expansion only at training samples. We define
the upper summand index N in (7) in the kernel expansion of
f ∈ H as the model order, which here coincides with the train-
ing sample size. Common kernel choices are polynomials and

radial basis (Gaussian) functions, i.e., κ(x,x′) =
(
xTx′ + b

)c
and κ(x,x′) = exp{−‖x− x′‖22/2c2}, respectively. In (6),
property (i) is called the reproducing property, which follows
from Riesz Representation Theorem [44]. Replacing f by
κ(x′, ·) in (6) (i) yields 〈κ(x′, ·), κ(x, ·)〉H = κ(x,x′), the
origin of the term “reproducing kernel.” Moreover, property
(6) (ii) states that functions f ∈ H admit a basis expansion
in terms of kernels (7). Such spaces are called reproducing
kernel Hilbert spaces (RKHSs). When the kernel is universal
[35], e.g., a Gaussian, a continuous function over a compact
set may be approximated uniformly by one in a RKHS.

Subsequently, we seek to solve (5) with V ∈ H, and
independent and identically distributed samples (xt, π(xt),yt)
from the triple (x, π(x),y) are sequentially available, yielding

V ∗ = argmin
V ∈H

Ex,π(x)

{1

2
(Ey[r(x, π(x),y) (8)

+ V (y)− V (x)
∣∣x, π(x)])2

}
+
λ

2
‖V ‖2H

Hereafter, define L(V ) := Ex,π(x){ 12 (Ey[r(x, π(x),y) +
γV (y)−V (x)

∣∣x, π(x)])2} and J(V ) = L(V )+(λ/2)‖V ‖2H.
The regularization term (λ/2)‖V ‖2H in (8) is needed to apply
the Representer Theorem (7) [22]. Thus, policy evaluation in
infinite MDPs (8) is both a specialization of compositional
stochastic programming [33] to an objective defined by dy-
namic programming, and a generalization to the case where the
decision variable is not vector-valued but is instead a function.

III. FUNCTIONAL STOCHASTIC QUASI-GRADIENT

To apply functional SQG to (8), we differentiate the com-
positional objective L(V ), which is of the form L = g ◦ h,
with g(u) = Ex,π(x)[(1/2)u2] and h(V ) = Ey[r(x, π(x),y)+
γV (y) − V (x)

∣∣x, π(x)], and then consider its stochastic
estimate. Consider the Frechét derivative of L(V ):

∇VL(V ) = Ex,π(x)

{
Ey[γκ(y, ·)− κ(x, ·)

∣∣x, π(x)] (9)

× Ey[r(x,π(x),y)+γV(y)−V(x)
∣∣x,π(x)]

}
Here we pull the differential operator inside the expectation
and use both the chain rule and reproducing property of the
kernel (6)(i). For future reference, we define the expression
Ey[r(x, π(x),y) + γV (y) − V (x)

∣∣x, π(x)] = δ̄ as the
average temporal difference [6]. To perform stochastic descent
in function space H, we need a stochastic approximate of
(9) evaluated at a state-action-state triple (x, π(x),y), which
together with the regularizer yields

∇V J(V, δ;x, π(x),y) (10)
=[γκ(y,·)−κ(x,·)][r(x, π(x),y)+γV(y)−V(x)]+λV

where δ := r(x, π(x),y) + γV (y) − V (x) is defined as the
(instantaneous) temporal difference. Observe that we cannot
obtain samples of ∇V J(V, δ;x, π(x),y) with a single query
to a simulation oracle: stochastic gradient method would
estimate one of the expected gradients by its instantaneous
approximation, but would still leave a second expected value
that depends on infinitely many realizations of either prior
distribution and policy (x, π(x)) or MDP transition dynamics
y, a problem first identified in [21] for finite MDPs where
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it is called the double sampling problem. Double sampling
aside, an equally significant challenge associated with using
(10) as a candidate descent direction is that classically we
would compute its expectation conditional on the algorithm
history, but due to the dependence of the factors, this does not
yield (9). In particular, the stochastic gradient is biased with
respect to (9) due to the inner conditional expectation in (9).

To mitigate these issues, we require a method that con-
structs a coupled stochastic descent procedure by considering
noisy estimates of both factors in the product-of-expectations
expression in (9). The first factor [γκ(y, ·)− κ(x, ·)] in (10)
is a difference of kernel maps, so estimating its expectation
is parameterized by infinitely many samples of x and y [45],
[46]. Instead, we propose a sequence based on samples of the
second scalar factor to estimate its expected value. Specifically,
from samples of δ, consider a recursion zt that estimates δ̄ as

δt = r(xt, π(xt),yt) + γVt(yt)− Vt(xt)
zt+1 = (1− βt)zt + βtδt (11)

where we define δt [6] as the temporal difference at time t in
(11). Thus, (11) averages the TD sequence δt: zt estimates δ̄t,
and βt ∈ (0, 1) is a learning rate.

To define a stochastic descent step, we replace the first
factor inside the outer expectation in (9) with its instan-
taneous approximate, i.e., [γκ(yt, ·)− κ(xt, ·)], at sample
(xt, π(xt),yt), which yields the stochastic quasi-gradient step

V̂t+1 = (1− αtλ)V̂t − αt(γκ(yt, ·)− κ(xt, ·))zt+1 . (12)

where the coefficient (1 − αtλ) comes from the regularizer,
and αt is a positive scalar learning rate. This update is
a stochastic quasi-gradient step because the true stochastic
gradient of J(V ) is (γκ(yt, ·)−κ(xt, ·))δt, but this estimator
is unavailable with a single trajectory of the MDP since the
factors in this product are dependent. By replacing δt by
auxiliary variable zt+1 this issue may be circumvented in the
construction of coupled supermartingales (Section IV).

Kernel Parameterization Suppose V0 = 0 ∈ H. Then, (12)
at time t, making use of the Representer Theorem (7), implies
the function Ṽt is a kernel expansion of past states (xt,yt) as

V̂t(x) =

2(t−1)∑
n=1

wnκ(vn,x) = wT
t κXt(x) . (13)

On the right-hand side of (13) we introduce the nota-
tion vn = xn/2 for n even and vn = yn/2+1 for n odd,
and: wt = [w1, · · · , w2(t−1)] ∈ R2(t−1) , Xt =
[x1,y1, . . . ,xt−1,yt−1] ∈ Rp×2(t−1) , and κXt

(·) =
[κ(x1, ·), κ(y1, ·), . . . , κ(xt−1, ·), κ(yt−1, ·)]T . The kernel
expansion in (13), together with the functional update (12),
yields the fact that functional SQG in H amounts to the
following updates on the data matrix X, henceforth referred
to as a kernel dictionary, and coefficient vector w:

Xt+1 = [Xt , xt , yt],

wt+1 = [(1− αtλ)wt , αtzt+1 , −αtγzt+1] , (14)

Observe that this update causes Xt+1 to have two more
columns than Xt. We define the model order as number of
data points Mt in the dictionary at time t, which for functional

stochastic quasi-gradient descent is Mt = 2(t−1). Asymptot-
ically, then, the complexity of storing V̂t(x) is infinite.

A. Sparse Stochastic Subspace Projections

Since the update (12) has complexity O(t) due to the RKHS
parameterization [32], [45], it is impractical in settings with
streaming data or arbitrarily large training sets. We address
this issue by replacing the stochastic descent step (12) with
an orthogonally projected variant [32], where the projection is
onto a low-dimensional functional subspace HDt+1 of H, i.e.,

Vt+1=PHDt+1
[(1−αtλ)Vt−αt(γκ(yt,·)−κ(xt, ·))zt+1], (15)

where αt again is a scalar step-size, and HDt+1 =

span{κ(dn, ·)}Mt
n=1 for some collection of sample instances

{dn} ⊂ {xu}u≤t. Note that the un-projected function SQG
method (12) may be interpreted as conducting a sequence of
orthogonal projections, which motivates the design of (15).
Specifically, rewrite (12) as the quadratic minimization

V̂t+1=argmin
V ∈H

∥∥∥V−((1−αtλ)V̂t−αt(γκ(yt,·)−κ(xt,·))zt+1

)∥∥∥2
H

= argmin
V ∈HXt+1

∥∥∥V−((1−αtλ)V̂t−αt(γκ(yt,·)−κ(xt,·))zt+1

)∥∥∥2
H
,

(16)

where the first equality in (16) comes from ignoring constant
terms which vanish upon differentiation with respect to V ,
and the second comes from observing that Vt+1 can be
represented using only the points Xt+1, using (14). Notice (16)
expresses Vt+1 as the projection (1−αtλ)Vt−αt(γκ(yt, ·)−
κ(xt, ·))zt+1 onto the subspace defined by dictionary Xt+1.

Rather than selecting dictionary D = Xt+1, we propose
instead to select a different dictionary, D = Dt+1, which
is extracted from the data points observed thus far, at each
iteration. The process by which we select Dt+1 is delayed
for now, but is of dimension p×Mt+1. We design a scheme
such that Mt+1 is independent of t, and instead determined
by fundamental topological properties of state space X , i.e.,
a generalization of the Nyquist rate [47]. As a result, the
sequence Vt differs from the functional stochastic quasi-
gradient method V̂t presented at the outset of this section.

Specifically, suppose the function Vt+1 is parameterized
dictionary Dt+1 and weight vector wt+1. We denote columns
of Dt+1 as dn for n = 1, . . . ,Mt+1, where the time index
is dropped for notational clarity but may be inferred from the
context. Setting aside how Dt+1 is chosen for now, we replace
the update (16) in which the dictionary grows at each iteration
by the functional stochastic quasi-gradient sequence projected
onto the subspace HDt+1

= span{κ(dn, ·)}Mt+1

n=1 as

Vt+1 = argmin
V ∈HDt+1

∥∥∥V−((1−αtλ)V̂t−αt(γκ(yt,·)−κ(xt,·))zt+1

)∥∥∥2
H
,

:=PHDt+1

[
(1−αtλ)Vt−αt(γκ(yt, ·)−κ(xt, ·))zt+1

]
.

(17)

where we define the projection operator P onto subspace
HDt+1

⊂ H by the update (17). This orthogonal projection
is the modification of the functional SQG iterate [cf. (12)]
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Algorithm 1 PKGTD: Parsimonious Kernel Gradient Tempo-
ral Difference
Require: {xt, π(xt),yt, αt, βt, εt}t=0,1,2,...

initialize V0(·) = 0,D0 = [],w0 = [], z0 = 0, i.e. initial
dict., coeffs., and aux. variable null
for t = 0, 1, 2, . . . do

Obtain trajectory realization (xt, π(xt),yt)
Compute the TD and auxiliary sequence zt+1 [cf. (11)]:

δt = r(xt, π(xt),yt) + γVt(yt)− Vt(xt),

zt+1 = (1− βt)zt + βtδt

Compute unconstrained functional SQG step [cf. (12)]
Ṽt+1(·) = (1− αtλ)Ṽt(·)− αt(γκ(yt, ·)− κ(xt, ·))zt+1

Revise dict. D̃t+1 = [Dt, xt ,yt], weights w̃t+1 ←
[(1− αtλ)wt, αtzt+1,−αtγzt+1]
Compress dictionary via Alg. 2, obtain coeffs. via (24)

(Vt+1,Dt+1,wt+1) = KOMP(Ṽt+1, D̃t+1, w̃t+1, εt)

end for

defined at the beginning of this subsection (15). Next we
discuss how this update amounts to modifications of the
parametric updates (14) defined by functional SQG. These sub-
space projections may be computed efficiently by exploiting
the kernel parameterization described in Appendix A operating
together with destructive matching pursuit [48].

We summarize the overall method, Parsimonious Kernel
Gradient Temporal Difference (PKGTD) in Algorithm 1:
we execute the stochastic projection of the functional SQG
iterates onto sparse subspaces HDt+1 stated in (17). With
initial function null V0 = 0 (empty dictionary D0 = [] and
coefficients w0 = []),at each step, given an i.i.d. sample
(xt, π(xt),yt) and step-sizes αt, βt, we compute the uncon-
strained functional SQG iterate Ṽt+1(·) = (1 − αtλ)Ṽt(·) −
αt(γκ(yt, ·)−κ(xt, ·))zt+1 parameterized by D̃t+1 and w̃t+1

as stated in (23), which are fed into KOMP (Algorithm 2
in Appendix A) with budget εt, i.e., (Vt+1,Dt+1,wt+1) =
KOMP(Ṽt+1, D̃t+1, w̃t+1, εt).

Remark 1. While two time-scale stochastic approximation
originally appeared in the 1980s [17], [18] for compositional
stochastic programming with asymptotic stability established,
their role in RL, namely, to form the foundation of actor-critic
algorithms [19], [38] was more recent.

A separate but related line of research in RL identifies their
use not in actor-critic (which is at its core a policy search
method), but instead in order to solve Bellman equations
(approximate dynamic programming), beginning with [21].
In [21] the authors hypothesize that one possible reason
for instability of temporal difference learning under func-
tion approximation (as detailed in [9]), is that these are
not gradient algorithms but instead stochastic fixed point
iterations. Thus, their stability interacts in a more intricate
manner with the function parameterization. By reformulating
Bellman equations as optimization problems, these problems
are identified as possessing compositional structure, and thus

are amenable to two time-scale algorithms, yielding gradient
temporal difference learning (GTD). The derivation of PKGTD
is structurally aligned with GTD in that its derivation general-
izes the derivation of GTD, rather than actor-critic, although
two time-scale methods are at the core of both approaches.

IV. CONVERGENCE ANALYSIS

We now analyze the stability and memory requirements
of Algorithm 1 developed in Section III. In stochastic fixed-
point methods such as TD learning, the interplay between the
Bellman operator contraction [5] and expectations prevents the
construction of supermartingales underlying stochastic descent
stability [49]. Attempts to overcome this challenge based on
stochastic backward-differences require the state space to be
completely explored in the limit per step (intractable when
|X | = ∞) [50], or stipulate that data dependent matrices be
non-singular [21], respectively. Thus these methods must be
analyzed using ideas from dynamical systems [51]. In contrast,
we establish that Algorithm 1 belongs to the family of descent
algorithms, and hence its behavior can be connected to that
of supermartingales [52] – to the best of our knowledge, this
is the first time supermartingales have been used in analyzing
stochastic methods for MDPs. This is also true of GTD [21],
although it is analyzed using ODEs [51].

Under the assumptions stated in Appendix C, it is possible
to derive the fact that the auxiliary variable zt and value
function estimate Vt satisfy supermartingale-type relation-
ships, but their behavior is intrinsically coupled. We generalize
recently developed coupled supermartingale tools in [52], i.e.,
Lemma 2 in Appendix D, to RKHSs in order to establish the
following almost sure convergence result when the step-sizes
and compression budget are diminishing.

Theorem 1. Consider the sequence zt [cf. (11)] and {Vt} [cf.
15] as stated in Algorithm 1. Assume the regularizer is positive
λ > 0, Assumptions 2 - 4 hold, with the step-size conditions:
∞∑
t=1

αt=∞ ,

∞∑
t=1

βt=∞,
∞∑
t=1

α2
t +β2

t +
α2
t

βt
<∞ , εt=α2

t (18)

Then Vt → V ∗ [cf. (8)] with probability 1, and thus achieves
the regularized Bellman fixed point (4) restricted to the RKHS.

The proof is given in Appendix E. Theorem 1 states that
the value functions generated by Algorithm 1 converge a.s.
to the optimal V ∗ defined by (8). With regularizer λ made
small but nonzero, using a universal kernel (e.g., a Gaussian),
Vt converges close to a function satisfying Bellman’s equation
in infinite MDPs (3). By decreasing the regularizer, limiting
solutions close in on those which satisfy Bellman’s equation,
though precise notions of closeness require continuity which
is difficult to verify, given an arbitrary bounded reward. This
is the first guarantee w.p.1 for a true stochastic descent
method with an infinitely and nonlinearly parameterized value
function. Theorem 1 requires attenuating step-sizes such that
the stochastic approximation error approaches null. In con-
trast, constant learning rates allow for maintaining algorithm
adaptivity, motivating the following result.

One step-size sequence which satisfies the attenua-
tion conditions (18) is αt = O(t−(3/4+ζ/2)) , βt =
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O(t−(1+ζ)/2) , εt = O(α2
t ) = O(t−(3/2+ζ)), where ζ > 0

is an arbitrarily small constant so that series
∑
t αt and

∑
t βt

diverge. Generally, satisfying (18), requires: αt = O(t−pα),
βt = O(t−pβ ) with pα ∈ (3/4, 1) and pβ ∈ (1/2, 2pα − 1).

Theorem 2. Suppose Algorithm 1 is run with constant positive
learning rates αt = α and βt = β and constant compression
budget εt = ε with sufficiently large regularization, i.e.

0 < β < 1 , α = β, ε = Cα2, λ = G2
V + λ0 (19)

where C > 0 is a scalar, and 0 < λ0 < 1. Then, under
Assumptions 2 - 4, the sub-optimality sequence ‖Vt − V ∗‖2H
converges in mean to a neighborhood:

lim inf
t→∞

E
[
‖Vt−V ∗‖2H

]
= O (α) . (20)

Theorem 2 (proof in Appendix F) establishes that the value
function estimates generated by Algorithm 1 converge in
expectation to a neighborhood when constant step-sizes α
and β and sparsification budget ε in Algorithm 2 are small
constants. In particular, the bias ε induced by sparsification
does not cause instability even when it is not going to null.
Moreover, this result only holds when the regularizer λ is
chosen large enough, which numerically induces a forgetting
factor on past kernel dictionary weights (23). We may make
the learning rates α and β arbitrarily small, which yield
a proportional decrease in the radius of convergence to a
neighborhood of the Bellman fixed point (3).

In general, Theorem 2 does not imply the sequence actually
converges, but only that its lim inf converges. To establish
that the entire sequence converges, even in expectation, when
used with constant step-sizes, one must recursively average
the functions and apply convexity of the objective function to
establish the error bound decreases with the final iteration, as
in Polyak-Ruppert averaging [53]. Averaging, however, will
be afflicted by the fact that different functions in the RKHS
do not belong to the same subspace, and therefore their kernel
dictionaries will need to be pooled, causing the model order
to spike. Thus, averaging is a technique of theoretical interest
only in establishing limiting genuine behavior in RKHSs, and
cannot be used unless parsimony is not a consideration. By
contrast, under constant step-sizes selection, the value function
estimates have moderate complexity in the worst case.

As noted in Section III, the complexity of functional
stochastic quasi-gradient method in a RKHS is of order
O(2(t − 1)) which grows without bound. To surmount this
challenge, we propose subspace projections in Section III-A.
We formalize here that this projection indeed controls com-
plexity when constant learning rates and compression budget
are used. This result is a corollary, as it extends Theorem 3 in
[32]. To obtain this result (proof in Appendix G), we require
the reward function to be bounded, as we state next.

Assumption 1. The reward r : X ×A×X → R is bounded:

r(xt, π(xt),yt) ≤ Rmax for all t,x,a,y (21)

Assumption 1 holds whenever the reward function is con-
tinuous and the state and action spaces are compact, and thus
holds for many popular RL problems. In this setting, the
complexity of Algorithm 1 is finite, as is formalized next.

Corollary 1. Denote Vt as the value function of Algorithm
1 with constant step-sizes αt = α and βt = β ∈ (0, 1) with
compression budget εt = ε = Cα2 and regularization λ =
(α/β)G2

V + λ0 = O(αβ−1 + 1) as in Remark 2. Let Mt be
its associated model order, i.e., the number of columns in its
dictionary. Then there exists a finite upper bound M∞ such
that, for all t ≥ 0, the model order is bounded Mt ≤M∞.

Under specific selections (19), the algorithm converges to
a neighborhood of the optimal value function, whose radius
depends on the step-sizes, and may be made small by de-
creasing α at the cost of a decreasing learning rate. More
importantly, the use of constant step-sizes and compression
budget with large enough regularization yields a value function
parameterized by a dictionary whose model order is always
bounded (Corollary 1). Thus, we may converge to an optimal
neighborhood while ensuring the memory of the function
parameterization is under control, and in the worst-case related
to the covering number (metric entropy) of the state space.

V. EXPERIMENTS

Our experiments aim to compare PKGTD to other pol-
icy evaluation techniques in this domain. Because it seeks
memory-efficient solutions over an RKHS, we expect PKGTD
to obtain accurate estimates of the value function using
only a fraction of the memory required by the other meth-
ods. We perform experiments on the classical Mountain
Car domain [1]: an agent applies discrete actions A =
{reverse,coast,forward} to a car that starts at the
bottom of a valley and attempts to climb up to a goal at
the top of one of the mountain sides. The state space is
continuous, consisting of the car’s scalar position and velocity,
i.e., X ⊂ R2. The reward function r(xt,at,yt) is −1 unless
yt is the goal state at the mountain top, in which case it is 0
and the episode terminates.

Now we describe the configuration of the algorithms used
for comparison. The Mountain Car environment has a two-
dimensional state space (position and velocity) with bounds of
[−1.2, 0.6] in position, and [−0.07, 0.07] in velocity. We chose
not to normalize this state space to [0, 1] intervals, choosing
instead to handle the scale difference by using non-isotropic
kernels. The ratio of the kernel variances is equal to the ratio
of the lengths of their corresponding bounds, so they would
be isotropic kernels if we normalized the state space.

We used a fixed non-isotropic kernel bandwidth of σ1 =
0.2, σ2 = 0.0156 in all cases. By fixing the kernel bandwidth
across all algorithms, we are basically enforcing that the
learned functions all belong to the same Kernel Hilbert Space.

For PKGTD, the relevant parameters are the step size, α,
the rate of expectation update, β, the regularizer, λ, and the
approximation error, K. For GPTD, the relevant parameters
are the gaussian process noise standard deviation, σ0, the linear
independence test bound, ν, and the regularizer, λ. For the
RBF grids fit using GTD, the relevant parameters are the grid
spacing in the position and velocity directions, h1 and h2, re-
spectively, the step size, α, and the rate of expectation update,
β. Our values are summarized in Table 1. While theoretically
the selection of λ is sensitive, experimentally we find it to
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Fig. 1. Experimental comparison of PKGTD to existing kernel methods for policy evaluation on the Mountain Car task. Test set error (left), and the
parameterization complexity (center) vs. iterations. PKGTD learns fastest and most stably with the least complexity (best viewed in color). We plot the
contour of the learned value function (right): its minimal value is in the valley, and states near the goal are close to null. Bold black dots are kernel dictionary
elements, or retained instances. Sample means and standard deviations of performance metrics (left and center) are generated via 100 individual training runs.

have little impact, and thus fix it as a small value λ = 10−6.
α β λ K σ0 ν h1 h2

PKGTD 8.0 0.2 1e-6 0.02
GPTD 1e-6 0.01 0.2
RBF-25 10.0 0.25 0.44 0.0343
RBF-49 1.5 0.35 0.26 0.0203

Table 1: Experimental Parameters

Theoretically and experimentally, we require that β ∈ (0, 1).
Selection of β ≈ 1/4 was done by consulting values con-
sidered in the original GTD experiments, and α = 8 or
α = 10 was based on the fact that larger step-sizes yield
faster learning, so it is advantageous to use step-sizes α an
order of magnitude larger than β.

To obtain a benchmark policy for this task, we make
use of trust region policy optimization [54]. To evaluate
value function estimates, we form an offline training set
of state transitions and associated rewards by running this
policy through consecutive episodes until we had one train-
ing trajectory of 5000 steps and then repeat this for 100
training trajectories to generate sample statistics. For ground
truth, we generate one long trajectory of 10000 steps and
randomly sample 2000 states from it. From each of these
2000 states, we apply the policy until episode termination
and use the observed discounted return as V̂π(x). Since
our policy was deterministic, we only performed this pro-
cedure once per sampled state. For value function V , we
define the percentage error metric: Percentage Error(V ) =
(1/2000)

∑2000
i=1 |(V (xi)− V̂π(xi))/V̂π(xi)|

We compared PKGTD with a Gaussian kernel to two other
techniques for policy evaluation that also use kernel-based
value function representations: (1) Gaussian process temporal
difference (GPTD) [31], and (2) gradient temporal difference
(GTD) [21] using radial basis function (RBF) network fea-
tures. We fix a kernel bandwidth across all techniques, and
select parameter values that yield the best results for each
method (see Table 1). For RBF feature generation, we use
two fixed grids with different spacing. The first was one for
which GTD yielded a value function estimate with percentage
error similar to that which we obtained using PKGTD (RBF-

49), and the second was one which yielded a number of basis
functions that was similar to what PKGTD selected (RBF-25).

Figure 1 displays these results: on the left we show per-
centage error, a surrogate for Bellman evaluation error, versus
training example, in which we observe that PKGTD yields
fast and reliable learning. In the center figure, we show the
number of points in the kernel dictionary (model size) over
samples, which demonstrates that PKGTD only keeps past
states needed to estimate the value function well, rather than
statistically insignificant points. Overall, we note that GTD
with fixed RBF features requires a much denser grid in order
to reach the same Percentage Error as Algorithm 1, and that
adaptive instance selection results in both faster initial learning
and smaller error. Compared to GPTD, which chooses model
points online according to a fixed linear-dependence criterion,
PKGTD requires fewer model points and converges to a better
estimate of the value function more quickly and stably.

Fig. 1 (right) displays a contour plot of the value function
– the x-axis denotes position, the y-axis denotes velocity, and
bold black dots denote kernel dictionary elements, i.e., past
visited states that are essential for representing the estimate
of V π . The contour plot suggests that low value states are
when one has small velocity near position −0.6 (the bottom
of the hill). Moreover, value progressively increases as speed
increases away from the bottom of the hill towards the top.

VI. CONCLUSION

In this paper, we considered the problem of policy evalu-
ation in infinite MDPs with value functions that belong to a
RKHS. To solve this problem, we extended recent SQG meth-
ods for compositional stochastic programming to a RKHS, and
used the result, combined with greedy sparse subspace pro-
jection, in a new policy-evaluation procedure called PKGTD
(Algorithm 1). Under diminishing step sizes, PKGTD solves
Bellman’s evaluation equation exactly under the hypothesis
that its fixed point belongs to a RKHS (Theorem 1). Under
constant step sizes, we can further guarantee finite-memory ap-
proximations (Corollary 1) that still exhibit mean convergence
to a neighborhood of the optimal value function (Theorem 2).
In our Mountain Car experiments, PKGTD yields excellent
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sample efficiency and model complexity, and therefore holds
promise for large state space problems common in robotics
where fixed state-action space tiling may prove impractical.
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Algorithm 2 Destructive Kernel Orthogonal Matching Pursuit
(KOMP)

Require: function Ṽ defined by dict. D̃ ∈ Rp×M̃ , coeffs.
w̃ ∈ RM̃ , approx. budget εt > 0
initialize V = Ṽ , dict. D = D̃ with indices I, model order
M = M̃ , coeffs. w = w̃.
while candidate dictionary is non-empty I 6= ∅ do

for j = 1, . . . , M̃ do
Find minimal approx. error without dict. element dj
γj = min

wI\{j}∈RM−1
‖Ṽ (·)−

∑
k∈I\{j}

wkκ(dk, ·)‖H .

end for
Find index minimizing error: j∗ = argminj∈I γj

if minimal error exceeds threshold γj∗ > εt
stop

else
Prune dictionary D← DI\{j∗}
Revise set I ← I \ {j∗}, model order M ←M − 1.

Compute updated weights w defined by dict. D
w = argmin

w∈RM
‖Ṽ (·)−wTκD(·)‖H

end
end while
return V,D,w of model order M ≤ M̃ s.t. ‖V−Ṽ ‖H ≤ εt

APPENDIX

A. Kernel Parameterization

Coefficient update The update (15), for a fixed dictionary
Dt+1 ∈ Rp×Mt+1 , may be expressed in terms of the parameter
space of coefficients only. To do so, first define the stochastic
quasi-gradient update without projection, given function Vt
parameterized by dictionary Dt and coefficients wt, as

Ṽt+1 = (1− αtλ)Vt − αt(γκ(yt, ·)− κ(xt, ·))zt+1 . (22)

This update may be represented using dictionary and weights

D̃t+1 = [Dt , xt , yt]

w̃t+1 = [(1− αtλ)wt , αtzt+1 , −αtγzt+1] , (23)

Here we drop the time index for notational clarity but note that
it can be easily inferred from the context. Vt+1 denotes the
projected SQG iterates [cf. (15)] and whereas Ṽt+1 denotes
the un-projected iterate [cf. (22)] in Sec. III-A. The later is
parameterized by dictionary D̃t+1 and weights w̃t+1 (23).

When the dictionary defining Vt+1 is assumed fixed, we
use the Representer Theorem to rewrite (17) as a kernel
expansions, where the coefficients are the only free parameter:

argmin
w∈RMt+1

1

2ηt

∥∥∥Mt+1∑
n=1

wnκ(dn, ·)−
M̃∑
m=1

w̃mκ(d̃m, ·)
∥∥∥2
H

(24)

:= wt+1 .

In (24), the first equality comes from expanding the square,
and the second comes from defining the cross-kernel matrix
KDt+1,D̃t+1

whose (n,m)th entry is κ(dn, d̃m). Kernel matri-
ces KD̃t+1,D̃t+1

and KDt+1,Dt+1
are similarly defined. Here

Mt+1 is the number of columns in Dt+1, while M̃t+1 =
Mt + 2 is that of in D̃t+1 [cf. (23)]. Observe that D̃t+1 has
M̃t+1 = Mt + 2 columns, which is the length of w̃t+1. For
a fixed dictionary Dt+1, the stochastic projection in (17) is a
least-squares problem on the coefficient vector, i.e.,

wt+1 = K−1Dt+1Dt+1
KDt+1D̃t+1

w̃t+1 , (25)

The explicit solution of (24) may be obtained by noting that
the last factor is independent of w, and thus by computing
gradients and solving for wt+1 we obtain (25). Now we turn to
dictionary selection Dt+1 from trajectory {xu, π(xu),yu}u≤t.

Dictionary Update We select dictionary Dt+1 via greedy
compression, a topic studied in compressive sensing [55]. The
function Ṽt+1 = (1 − αt)Vt − αt(γκ(yt, ·) − κ(xt, ·))zt+1

defined by SQG method without projection (22) is parameter-
ized by dictionary D̃t+1 [cf. (23)]. We form Dt+1 by selecting
a subset of Mt+1 columns from D̃t+1 that best approximate
Ṽt+1 in terms of Hilbert norm error. This specification may be
met via kernel orthogonal matching pursuit (KOMP) [48] with
error tolerance εt, which yields a dictionary Dt+1 comprised
of a subset of columns of D̃t+1. We tune εt to ensure both
descent (Lemma 1(ii)) and finite memory (Corollary 1).

With respect to the KOMP procedure above, we specifically
use a variant called destructive KOMP with pre-fitting (see
[48], Section 2.3). This flavor of KOMP takes as an input
a candidate function Ṽ of model order M̃ parameterized by
its dictionary D̃ ∈ Rp×M̃ and coefficients w̃ ∈ RM̃ . The
method then approximates Ṽ by V ∈ H with a lower model
order. Initially, the candidate is the original V = Ṽ so that its
dictionary is initialized with D = D̃, with coefficients w = w̃.
Then, we sequentially and greedily remove model points from
initial dictionary D̃ until threshold ‖V −Ṽ ‖H ≤ εt is violated.
The result is a sparse approximation V of Ṽ . Moreover, we
also assume that the Vt+1 output from KOMP has bounded
Hilbert norm, which is often required in the analysis of
stochastic optimization algorithms. This assumption can be
explicitly enforced by adding a bounded norm constraint
into the the optimization problem for finding the best set of
bases in the matching pursuit algorithm, which attainable by
thresholding the coefficient sequence during compression.

This process is executed via destructive KOMP. At each
stage, a single dictionary element j of D is selected to
be removed which contributes the least to the Hilbert-norm
approximation error minV ∈HD\{j} ‖Ṽ − V ‖H of the original
function Ṽ , when dictionary D is used. Since at each stage
the kernel dictionary is fixed, this amounts to a computa-
tion involving weights w ∈ RM−1 only; that is, the error
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of removing dictionary point dj is computed for each j
as γj = minwI\{j}∈RM−1 ‖Ṽ (·) −

∑
k∈I\{j} wkκ(dk, ·)‖.

wI\{j} denotes the entries of w ∈ RM restricted to the
sub-vector associated with indices I \ {j}. Then, we define
the dictionary element which contributes the least to the
approximation error as j∗ = argminj γj . If the error asso-
ciated with removing this kernel dictionary element exceeds
the given approximation budget γj∗ > εt, the algorithm
terminates. Otherwise, this dictionary element dj∗ is removed,
the weights w are revised based on the pruned dictionary
as w = argminw∈RM ‖f̃(·) − wTκD(·)‖H, and the process
repeats as long as the current function approximation is defined
by a nonempty dictionary. See Algorithm 2 for a summary.

B. Extended Discussion

Remark 2. (Aggressive Constant Learning Rates) In practice,
one may obtain better performance by using larger constant
step-sizes. To do so, the criterion (19) may be relaxed: we
require 0 < β < 1 but α > 0 may be any positive scalar. Then,
with regularizer chosen as λ = G2

V
α
β + λ0 for 0 < λ0 < 1,

the radius of convergence is (see Appendix F)

lim inf
t→∞

E
[
‖Vt − V ∗‖2H

]
= O

(
α2 + β2 +

α2

β

[
1 + α2 +

α

β
+
α2

β2

])
. (26)

The ratios α2/β and α2/β2 dominate (26) and must be made
small to obtain accurate solutions.

Remark 3. (Regularization Path) In Theorem 1, we establish
convergence for any λ > 0 when step-sizes attenuate. That
regularizer λ may not be null means that we do not extract
the exact Bellman fixed point restricted to the RKHS, but only
a function that is close. In related work the minimizer V ∗λ
continuously depends on λ. It’s beyond the scope of this work
to extend these results to this setting, but on the hypothesis
that they generalize to (8), we may claim that decreasing λ
causes V ∗λ to be closer to fixed point stated in (3).

On the other hand, for Theorem 2 with given regularizer
λ, imposes explicit restrictions on the choice of constant
algorithm step-sizes. That is, we require λ = G2

V
α
β + λ0 for

0 < λ0 < 1, where α > 0 and 0 < β < 1. It is possible to
derive the fact that larger regularization means faster learning
rates but to less accurate solutions, in either diminishing or
constant step-size settings, but these facts, which depend on
rate analyses, are left to future work.

C. Technical Assumptions and Definitions

Before continuing, we introduce a few key assumptions
and definitions which are required to establish convergence.
In particular, for further reference, we define the functional
stochastic quasi-gradient of the regularized objective as

∇̂V J(Vt, zt+1;xt, π(xt),yt) =

(γκ(yt, ·)− κ(xt, ·))zt+1 + λVt , (27)

and its sparse-subspace projected variant as

∇̃V J(Vt, zt+1;xt, π(xt),yt) (28)

=
1

αt

(
Vt−PHDt+1

[
Vt−αt∇̂V J(Vt, zt+1;xt, π(xt),yt)

])
,

Note that the update (15), using (28), may be rewritten as a
stochastic projected quasi-gradient step rather than a stochastic
quasi-gradient step followed by set projection, i.e.,

Vt+1 = Vt − αt∇̃V J(Vt, zt+1;xt, π(xt),yt) , (29)

Further, define the time-dependent sigma algebra, i.e., filtra-
tion, as Ft ⊃ ({Vs, zs,xs, π(xs),ys}t−1s=0). Now we are ready
to state the technical conditions required for convergence.
All statements involving conditional expectations are imposed
with probability 1, unless otherwise stated.

Assumption 2. The state space X ⊂ Rp and action space
A ⊂ Rq are compact, and the reproducing kernel map may
be bounded as

sup
x∈X

√
κ(x,x) = X <∞ (30)

Assumption 3. The temporal difference δ and auxiliary se-
quence z [cf. (11)] satisfy the zero-mean and finite conditional
variance conditions, respectively,

E
[
δ
∣∣x, π(x)

]
= δ̄ , E

[
(δ − δ̄)2

∣∣Ft] ≤ σ2
δ ,

E
[
z2
∣∣x, π(x)

]
≤ G2

δ . (31)

where σδ and Gδ are positive scalars.

Assumption 4. The stochastic quasi-gradient, when evaluated
at δ̄, is an unbiased estimate for the true gradient ∇V J(V ).
Moreover, the difference of reproducing kernels expression (the
first factor in (10)) has finite conditional variance:

E
[
(γκ(y, ·)− κ(x, ·))δ̄

]
= ∇V J(V ) ,

E
[
‖γκ(yt, ·)− κ(xt, ·)‖2H

∣∣Ft] ≤ G2
V . (32)

Additionally, the projected stochastic gradient of the objective
[cf. (28)] has finite second conditional moment as

E
[
‖∇̃V J(Vt, zt+1;xt, π(xt),yt)‖2H

∣∣Ft] ≤ σ2
V , (33)

and the conditional mean of the temporal difference δ̄ is
Lipschitz continuous with respect to the value function V , i.e
for any two distinct δ and δ̃, we have

|δ̄ − ¯̃
δ| ≤ LV ‖V − Ṽ ‖H (34)

where V, Ṽ ∈ H are distinct RKHS elements, LV > 0 is a
scalar, and δ̄ = Ey[r(x, π(x),y) + γV (y)− V (x)

∣∣x, π(x)].

Assumption 2 regarding the compactness of the state and
action spaces of the Markov Decision Process intrinsically
hold for most application settings and limit the radius of
the set from which the MDP trajectory is sampled. Similar
boundedness conditions on the reproducing kernel map have
been considered in supervised learning applications [45]. The
mean and variance properties of the temporal difference stated
in Assumption 3 to bound the error in the descent direction
associated with stochastic approximations, and are necessary
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to establish stability of stochastic methods. Assumption 4 is
similar to Assumption 3 but instead of establishing bounds on
the stochastic approximation error of the temporal difference,
limits stochastic error variance in the reproducing kernel
Hilbert space. These are natural extensions of the conditions
needed for convergence of stochastic compositional gradient
methods with vector-valued decision variables [33]. However,
we note that (34), in the context of MDPs, restricts the class
of reward functions to be those which may be smoothly
interpolated in a RKHS. This condition holds, for instance,
when the reward is a potential or navigation-like function [14],
[15], which are well-known to interact favorably in the design
of controllers from a dynamical systems perspective.

The stipulation that the KOMP projection explicitly thresh-
olds the norm of the value functions allows us to write

‖Vt‖H ≤ K , ‖V ∗‖H ≤ K , for all t (35)

where K > 0 is some constant. The boundedness of V ∗

follows from the fact that since X is compact and J(V ) is a
continuous convex function over a compact set, its minimizer
is achieved over this compact set [56][Corrolary 3.23].

D. Auxiliary Results and Technical Lemmas

Next we turn to establishing some technical results which
are necessary precursors to the main stability results.

Proposition 1. Given independent identical realizations
(xt, π(xt),yt) of the random triple (x, π(x),y), the difference
between the projected stochastic functional quasi-gradient and
the stochastic functional quasi-gradient of the instantaneous
cost instantaneous risk defined by (27) and (28), respectively,
is bounded for all t as

‖∇̃VJ(Vt, zt+1;xt, π(xt),yt)−∇̂V J(Vt, zt+1;xt, π(xt),yt)‖H≤
εt
αt

(36)

where αt > 0 denotes the algorithm step-size and εt > 0 is
the compression budget parameter of Algorithm 2.

Proof: As in Proposition 6 of [32], consider the square-Hilbert-
norm difference of ∇̃V J(Vt, zt+1;xt, π(xt),yt) [cf. (27)] and
∇̂V J(Vt, zt+1;xt, π(xt),yt) [cf. (28)]

‖∇̃VJ(Vt, zt+1;xt, π(xt),yt)−∇̂V J(Vt, zt+1;xt, π(xt),yt)‖H

=
∥∥∥1

α

(
Vt−PHDt+1

[
Vt−αt∇̂V J(Vt, zt+1;xt, π(xt),yt)

])
− ∇̂V J(Vt, zt+1;xt, π(xt),yt)

∥∥∥2
H

(37)

Multiply and divide ∇̂V J(Vt, zt+1;xt, π(xt),yt), the last
term, by αt, and reorder terms to write∥∥∥∥∥
(
Vt − αt∇̂V J(Vt, zt+1;xt, π(xt),yt)

)
αt

−
PHDt+1

[
Vt − αt∇̂V J(Vt, zt+1;xt, π(xt),yt)

])
αt

∥∥∥∥∥
2

H

=
1

α2
t

∥∥∥(Vt−αt∇̂V J(Vt, zt+1;xt, π(xt),yt)

− PHDt+1

[
Vt−αt∇̂V J(Vt, zt+1;xt, π(xt),yt)

])∥∥∥2
H

=
1

α2
t

‖Ṽt+1 − Vt+1‖2H ≤
ε2t
α2
t

(38)

where we have pulled the nonnegative scalar αt outside the
norm on the second line and substituted the definition of Ṽt+1

and Vt+1 in (12) and (15), respectively, in the last one. These
facts combined with the KOMP residual stopping criterion in
Algorithm 2 is ‖Ṽt+1 − Vt+1‖H ≤ εt applied to the last term
on the right-hand side of (38) yields (36).

�

Lemma 1. Let Assumptions 2 - 4 hold true and consider the
sequence of iterates defined by Algorithm 1. Then:

i) The conditional expectation of the Hilbert-norm differ-
ence of value functions at the next and current iteration
satisfies the relationship

E
[
‖Vt+1−Vt‖2H

∣∣Ft]≤2α2
t (G

2
δG

2
V +λ2K2)+2ε2t (39)

ii) The conditional expectation of the Hilbert-norm differ-
ence of value functions at the next and current iteration
satisfies the relationship

E
[
‖Vt+1−V ∗‖2H

∣∣Ft]≤(1+α2
t

βt
G2
V

)
‖Vt−V ∗‖2H (40)

+2εt‖Vt−V∗‖H−2αt[J(Vt)−J(V∗)]

+α2
tσ

2
V + βtE

[
(zt+1 − δ̄t)2

∣∣Ft] .
iii) Define the expected value of the temporal difference

given the state variable x and policy π as δ̄t =
E[δt

∣∣xt, π(xt)]. Then the evolution of the auxiliary
sequence zt with respect to δ̄t satisfies

E
[
(zt+1−δ̄t)2

∣∣Ft] ≤(1−βt)(zt−δ̄t−1)2+
LV
βt
‖Vt−Vt−1‖2H

+ 2β2
t σ

2
δ (41)

Proof of Lemma 1(i): Consider the Hilbert-norm difference
of value functions at the next and current iteration, and use
the definition of Vt+1 in (29), i.e.,

‖Vt+1 − Vt‖2H = α2
t ‖∇̃V J(Vt, zt+1;xt, π(xt),yt)‖2H

≤ 2α2
t ‖∇̂V J(Vt, zt+1;xt, π(xt),yt)‖2H

+ 2α2
t ‖∇̂V J(Vt, zt+1;xt, π(xt),yt)

− ∇̃V J(Vt, zt+1;xt, π(xt),yt)‖2H , (42)

where we add and subtract the functional stochastic quasi-
gradient ∇̂V J(Vt, zt+1;xt, π(xt),yt) on the first line of (42)
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and the fact that the square of a sum is less than the sum of
squares, due to Cauchy-Schwartz, i.e., (a+b)2 ≤ 2a2+2b2 for
any a, b > 0. Now, we may apply Proposition 1 to the second
term and compute the conditional expectation to obtain

E[‖Vt+1 − Vt‖2H
∣∣Ft] (43)

= 2α2
tE[‖∇̂V J(Vt, zt+1;xt, π(xt),yt)‖2H

∣∣Ft] + 2ε2t .
(44)

Use the Cauchy-Schwartz inequality together with Law of To-
tal Expectation and the definition of the functional stochastic
quasi-gradient (27) to upper-estimate (43) as

E[‖Vt+1−Vt‖2H
∣∣Ft]

≤ 2α2
tE
{
‖γκ(yt,·)−κ(xt,·))‖2H

× E[z2t+1

∣∣xt, π(xt)]
∣∣Ft}+2α2

tλ‖Vt‖2H + 2ε2t , (45)

which together with equation 31 (Assumption 3) regarding fact
that zt+1 has a finite second conditional moment, yields

E[‖Vt+1−Vt‖2H
∣∣Ft] ≤ 2α2

tG
2
δE
[
‖γκ(yt, ·)−κ(xt, ·))‖2H

∣∣Ft]
+ 2α2

tλ‖Vt‖+ 2ε2t

≤ 2α2
t (G

2
δG

2
V + λ2K2)+2ε2t , (46)

where we have also applied the fact that the functional
gradient of the temporal difference γκ(yt, ·) − κ(xt, ·)) has
a finite second conditional moment and the bound on the
function sequence [cf. (35)], allowing us to conclude (39). �

Proof of Lemma 1(ii): This proof is a generalization
of Lemma 3 in Appendix G.2 in the Supplementary Material
of [33] to a function-valued stochastic quasi-gradient
step combined with bias induced by the sparse subspace
projections PHDt+1

[·] in (15). Begin by considering the
square-Hilbert norm sub-optimality of Vt+1, i.e.,

‖Vt+1 − V ∗‖2H
= ‖Vt − αt∇̃V J(Vt, zt+1;xt, π(xt),yt)− V ∗‖2H
= ‖Vt−V ∗‖2H−2αt〈∇̃V J(Vt, zt+1;xt, π(xt),yt),Vt−V ∗〉H

+ α2
t ‖∇̃V J(Vt, zt+1;xt, π(xt),yt)‖2H , (47)

where we use the reformulation of the projected functional
stochastic quasi-gradient step defined in (29) for the first
equality, and expand the square in the second. Now, adding and
subtracting ∇̂V J(Vt, zt+1;xt, π(xt),yt) the (un-projected)
functional stochastic quasi-gradient (27) yields

‖Vt+1 − V ∗‖2H
=‖Vt−V ∗‖2H−2αt〈∇̂V J(Vt,zt+1;xt,π(xt),yt),Vt−V ∗〉H

+ 2αt〈∇̂V J(Vt,zt+1;xt, π(xt),yt)

− ∇̃V J(Vt, zt+1;xt, π(xt),yt), Vt−V ∗〉H
+ α2

t ‖∇̃V J(Vt, zt+1;xt, π(xt),yt)‖2H . (48)

Apply the Cauchy-Schwartz inequality to the third term on
the right-hand side of (48) together with the bound on the

difference between unprojected and projected stochastic quasi-
gradients in Proposition 1 to obtain

‖Vt+1 − V ∗‖2H (49)

= ‖Vt−V ∗‖2H−2αt〈∇̂V J(Vt, zt+1;xt, π(xt),yt),Vt−V ∗〉H
+ 2εt‖Vt − V ∗‖H + α2

t ‖∇̃V J(Vt, zt+1;xt, π(xt),yt)‖2H .

Now, with δ̄t = E[δt
∣∣xt, π(xt)], add and subtract

∇̂V J(Vt, δ̄t;xt, π(xt),yt), the stochastic quasi-gradient eval-
uated at (Vt, δ̄t) rather than (Vt, zt+1), inside the inner-product
term on the right-hand side of (49), to write

‖Vt+1 − V ∗‖2H
= ‖Vt − V ∗‖2H − 2αt〈∇̂V J(Vt, δt;xt, π(xt),yt), Vt − V ∗〉H

+ 2εt‖Vt − V ∗‖H + 2αt〈(γκ(yt, ·)− κ(xt, ·))(δ̄t − zt+1),

Vt − V ∗〉H + α2
t ‖∇̃V J(Vt, zt+1;xt, π(xt),yt)‖2H , (50)

where we substitute in the definitions of
∇̂V J(Vt, δ̄t;xt, π(xt),yt) and ∇̂V J(Vt, zt+1;xt, π(xt),yt)
[cf. (10), (27), respectively] in (50), and cancel out the
common regularization term λVt. We define the directional
error associated with difference between the stochastic
quasi-gradient and the stochastic gradient as

vt = 2αt〈(γκ(yt, ·)− κ(xt, ·))(δ̄t − zt+1), Vt − V ∗〉H (51)

From here, compute the expectation conditional on Ft:

E
[
‖Vt+1 − V ∗‖2H

∣∣Ft]
=‖Vt−V ∗‖2H−2αt

〈
E
[
∇̂VJ(Vt,δ̄t;xt, π(xt),yt)

∣∣Ft],Vt−V ∗〉H
+ 2εt‖Vt − V ∗‖H + E

[
vt
∣∣Ft]

+ α2
tE
[
‖∇̃V J(Vt, zt+1;xt, π(xt),yt)‖2H

∣∣Ft] . (52)

Note that the compositional objective J(V ) is convex with
respect to V , which allows us to write〈
E
[
∇̂VJ(Vt, δ̄t;xt, π(xt),yt)

∣∣Ft],Vt−V ∗〉
H
≥J(Vt)−J(V ∗).(53)

Now, we may use Assumption 3 [cf. (33)] regarding the finite
conditional moments of the projected stochastic quasi-gradient
to the last term in (52) so that it may be replaced by its upper-
estimate, which together with (53) simplifies to

E
[
‖Vt+1−V ∗‖2H

∣∣Ft]=‖Vt−V ∗‖2H−2αt [J(Vt)−J(V ∗)] (54)

+2εt‖Vt−V ∗‖H+α2
tσ

2
V +E

[
vt
∣∣Ft] .

We need to analyze vt, the directional error associated with
using stochastic quasi-gradients rather than stochastic gradi-
ents. In doing so, we derive the fact that the sub-optimality
‖Vt − V ∗‖ is intrinsically coupled to the auxiliary sequence
(zt+1 − δ̄t), the focus of Lemma 1(iii). Proceed by applying
Cauchy-Schwartz to (51), which allows us to write

vt ≤ 2αt‖γκ(yt, ·)−κ(xt, ·)‖2H|zt+1−δ̄t|‖Vt−V ∗‖H (55)

Note that 2ab ≤ ρa2 +b2/ρ for ρ, a, b > 0, which we apply to
(55) with a = |zt+1− δ̄t|, b = αt‖γκ(yt, ·)−κ(xt, ·)‖H‖Vt−
V ∗‖H, and ρ = βt so that (55) becomes

vt ≤ βt(zt+1−δ̄t)2+
α2
t

βt
‖γκ(yt,·)−κ(xt,·)‖2H‖Vt−V ∗‖2H. (56)
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The conditional mean of vt [cf. (51)], using (56), is then

E
[
vt
∣∣Ft] ≤ βtE [(zt+1 − δ̄t)2

∣∣Ft] (57)

+
α2
t

βt
E
[
‖γκ(yt,·)−κ(xt,·)‖2H

∣∣Ft] ‖Vt−V ∗‖2H
≤ βtE

[
(zt+1−δ̄t)2

∣∣Ft]+α2
t

βt
G2
V ‖Vt − V ∗‖2H ,

where we apply the finite variance property of the functional
component of the stochastic gradient [cf. (32)] for the final
inequality (57). Substitute (57) into (54) and gather terms:

E
[
‖Vt+1 − V ∗‖2H

∣∣Ft] (58)

≤
(

1 +
α2
t

βt
G2
V

)
‖Vt − V ∗‖2H + 2εt‖Vt − V ∗‖H

−2αt[J(Vt)−J(V ∗)]+α2
tσ

2
V +βtE

[
(zt+1−δ̄t)2

∣∣Ft] ,
which is as stated in Lemma 1(ii). �

Proof of Lemma 1(iii): This proof is an adaptation of Lemma
2 in Appendix G.1 in the Supplementary Material of [33]
to the recursively averaged temporal difference sequence zt
defined in (11). Begin by defining the scalar quantity et as
the difference of mean temporal differences scaled by the
forgetting factor βt, i.e. et = (1 − βt)(δ̄t − δ̄t−1). Then
we consider the difference of the evolution of the auxiliary
variable zt+1 with respect to the conditional mean temporal
difference δ̄t, plus the difference of mean temporal differences:

zt+1 − δ̄t + et

= (1−βt)zt+βtδt−[(1−βt)δ̄t+βtδ̄t]+(1−βt)(δ̄t−δ̄t−1)

= (1− βt)
(
zt − δ̄t−1

)
+ βt(δt − δ̄t) (59)

where we make use of the definition of zt+1 in (11), the
fact that δ̄t = [(1 − βt)δ̄t + βtδ̄t], and the definition of et
on the first line of (59), and in the second we gather terms
with respect to coefficients (1 − βt) and βt, and cancel the
redundant δ̄t term. Now, consider the square of the expression
(59), using it’s simplification on the right-hand side of the
preceding expression

(zt+1−δ̄t + et)
2 = [(1−βt)

(
zt−δ̄t−1

)
+βt(δt − δ̄t)]2 (60)

= (1− βt)2
(
zt − δ̄t−1

)2
+ β2

t (δt − δ̄t)2

+ 2(1− βt)βt
(
zt − δ̄t−1

)
(δt − δ̄t).

where we expand the square to obtain the second line in the
previous expression. Now, compute the expectation of (60)
conditional on the filtration Ft, which yields

E[(zt+1 − δ̄t + et)
2
∣∣Ft]

= (1− βt)2
(
zt − δ̄t−1

)2
+ β2

tE[(δt − δ̄t)2
∣∣Ft]

+ 2(1− βt)βt
(
zt − δ̄t−1

)
E[(δt − δ̄t)

∣∣Ft] . (61)

Now we apply the assumption [cf. (31)] that the fact that
the temporal difference δt is an unbiased estimator for its
conditional mean δ̄t (so that the last term in the previous
expression is null), with finite variance E[(δt− δ̄t)2

∣∣Ft] ≤ σ2
δ

(Assumption 3), to write

E[(zt+1−δ̄t + et)
2
∣∣Ft]=(1−βt)2

(
zt−δ̄t−1

)2
+β2

t σ
2
δ . (62)

We may use the relationship in (62) to obtain an upper estimate
on the conditional mean square of zt+1 − δ̄t by using the
inequality ‖a + b‖2 ≤ (1 + ρ)‖a‖2 + (1 + 1/ρ)‖b‖2 which
holds for any ρ > 0: set a = zt+1 − δ̄t + et, b = −et, and
ρ = βt. Therefore, we obtain

(zt+1−δ̄t)2≤(1+βt)(zt+1−δ̄t+et)2+

(
1+

1

βt

)
e2t . (63)

Now, we use the expected value of (63) in lieu of (62), while
gaining a multiplicative factor of (1 + βt) on the right-hand
side of (62) plus the error term (1 + 1/βt)et, yielding

E[(zt+1 − δ̄t)2
∣∣Ft] (64)

= (1+βt)
[
(1−βt)2

(
zt − δ̄t−1

)2
+ β2

t σ
2
δ

]
+

(
1 + βt
βt

)
e2t .

Apply the fact that (1−β2
t )(1−βt) ≤ (1−βt) to the first term

in (64) and (1+βt)β
2
t ≤ 2β2

t to the second (since βt ∈ (0, 1))
to simplify (64) as

E[(zt+1 − δ̄t)2
∣∣Ft] (65)

= (1− βt)
(
zt − δ̄t−1

)2
+ 2β2

t σ
2
δ +

(
1 + βt
βt

)
e2t .

Now we analyze the term involving et, which represents the
difference of mean temporal differences. By definition,

|et| = (1−βt)|(δ̄t−δ̄t−1)|≤(1−βt)LV ‖Vt−Vt−1‖H (66)

where we apply the Lipschitz continuity of the conditional
average temporal difference δ̄t = Eyt [r(xt, π(xt),yt) +
γV (yt)−V (xt)

∣∣xt, π(xt)] with respect to the value function
[cf. (34)] stated in Assumption 4. Substitute the right-hand
side of (66) into (65), and simplify the expression in the last
term as (1− β2

t )/βt ≤ 1/βt to conclude (41). �

Lemma 2. (Coupled Supermartingale Theorem [52][Lemma
6]) Let {ξk}, {ζk}, {uk}, {ūk}, {ηk}, {θk}, {εk}, {µk}, {νk}
be sequences of nonnegative random variables such that

E[ξk+1

∣∣Gk] ≤ (1 + ηk)ξk − uk + cθkζk + µk , (67)

E[ζk+1

∣∣Gk] ≤ (1− θk)ζk − ūk + εkξk + νk , (68)

where Gk = {ξs, ζs, us, ūs, ηs, θs, εs, µs, νs}ks=0 is the filtra-
tion, and c > 0 is a scalar. Assume the following conditions:

∞∑
k=0

ηk <∞ ,

∞∑
k=0

εk <∞ ,

∞∑
k=0

µk <∞ ,

∞∑
k=0

νk <∞ , (69)

almost surely. Then ξk and ζk converge almost surely to two
nonnegative random variables, and we may conclude that
∞∑
k=0

uk <∞ ,

∞∑
k=0

ūk <∞ ,

∞∑
k=0

θkζk <∞ a. s. (70)

We use Lemma 2 to establish convergence w.p.1 of Algo-
rithm 1 through the expressions derived in Lemma 1.
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E. Proof of Theorem 1

We use the relations established in Lemma 1 to construct a
coupled supermartingale of the form in Lemma 2 as follows.
First, consider the expression (40) for the value function sub-
optimality, using approximation budget εt = α2

t and the fact
that the value function is bounded in Hilbert norm [cf. (35)]
to obtain ‖Vt − V ∗‖H ≤ 2K :

E
[
‖Vt+1 − V ∗‖2H

∣∣Ft]
≤
(

1+
α2
t

βt
G2
V

)
‖Vt−V ∗‖2H−2αt [J(Vt)−J(V ∗)]

+ α2
t (σ

2
V + 4K) + βtE

[
(zt+1 − δ̄t)2

∣∣Ft] . (71)

and then substitute (41) regarding the evolution of zt with
respect to its conditional expectation into (71) to obtain :

E
[
‖Vt+1 − V ∗‖2H

∣∣Ft]
≤
(

1 +
α2
t

βt
G2
V

)
‖Vt − V ∗‖2H − 2αt [J(Vt)− J(V ∗)]

+ α2
t (σ

2
V + 4K)+βt(1− βt)(zt − δ̄t−1)2

+LV ‖Vt − Vt−1‖2H+2β3
t σ

2
δ . (72)

Assume βt ∈ (0, 1). Thus, the right-hand side of (72) yields

E
[
‖Vt+1 − V ∗‖2H

∣∣Ft]
≤
(

1 +
α2
t

βt
G2
V

)
‖Vt − V ∗‖2H − 2αt [J(Vt)− J(V ∗)]

+ βt(zt − δ̄t−1)2 + α2
t (σ

2
V + 4K)

+ LV ‖Vt − Vt−1‖2H + 2β2
t σ

2
δ . (73)

We may identify (73) with the first supermartingale relation-
ship in Lemma 2 [cf. (67)] via the identifications

ξt = ‖Vt − V ∗‖2H , ηt=
α2
t

βt
G2
V , ut=2αt[J(Vt)−J(V ∗)] ,

c = 1 , ζt = (zt − δ̄t−1)2 , θt = βt ,

µt = α2
t (σ

2
V + 4K) + LV ‖Vt − Vt−1‖2H + 2β2

t σ
2
δ , (74)

where ut ≥ 0 by the definition of the optimal objective J(V ∗).
To establish the summability of µt, consider Lemma 1(i),
which establishes that t ‖Vt − Vt−1‖H ≤ O(α2

t−1). Since∑
t α

2
t < ∞ [cf. (18)], we can sum both sides over all t

to conclude the series is finite in conditional expectation:∑
E[‖Vt − Vt−1‖H

∣∣Ft] ≤ α2
t−1 <∞. (75)

Now, rewrite (75) with total expectation by selecting F0. Note
that since the individual terms ‖Vt−Vt−1‖2H are finite due to
the stipulation that the output of KOMP yields finite Hilbert
norm value functions, and non-negative by the definition of a
norm, we can interchange the expectation (integral) and sum
using the Monotone Convergence Theorem to conclude that

E
[∑

‖Vt − Vt−1‖H
]
<∞. (76)

Thus,
∑∞
t=0 ‖Vt−Vt−1‖2H <∞ w.p.1, implying

∑
t µt <∞.

Now, let’s connect the evolution of the auxiliary temporal
difference sequence zt (11) in Lemma 1(iii). In particular, (41)
is related to (68) via the identifications:

ūt = 0 , εt = 0 , νt =
LV
βt
‖Vt − Vt−1‖2H + 2β2

t σ
2
δ , (77)

with ζt = (zt−δ̄t−1)2 and θt = βt as in (74). The summability
of νt follows the following logic: consider the expression ‖Vt−
Vt−1‖2H/βt of order O(α2

t /βt) in conditional expectation by
Lemma 1(i). Sum the resulting conditional expectation for all
t, which by the summability of the sequence

∑
t α

2
t /βt <∞

is finite. Therefore,
∑
t ‖Vt− Vt−1‖2H/βt <∞ almost surely.

Together with the conditions on the step-size sequences αt
and βt (18), the summability conditions (69) of Lemma 2,
the Coupled Supermartingale Theorem, are satisfied, which
implies that ξt = ‖Vt−V ∗‖2H and ζt = (zt− δ̄t−1)2 converge
to two nonnegative random variables almost surely, and that:∑

t

αt[J(Vt)−J(V ∗)]<∞ ,
∑
t

βt(zt+1−δ̄t)2<∞ , (78)

almost surely. The non-summability of the step-size sequences
αt and βt (18) allows us to conclude that:

lim inf
t→∞

J(Vt) = J(V ∗) , lim inf
t→∞

(zt+1 − δ̄t)2 = 0 , (79)

almost surely, and that ‖Vt−V ∗‖2H converges to a nonnegative
random variable with probability 1, as does (zt+1 − δ̄t)2. We
proceed to show that the entire sequence must converge. The
rest of this proof is analogous to [33], but is repeated here for
completeness. Let ΩV ∗ be the collection of sample paths such
that ΩV ∗ = {y : limt ‖Vt(y)−V ∗‖ exists }. Here we use the
notation not that the value function is evaluated at state y but
instead is a function of random variable y. We just established
above that P(ΩV ∗) = 1 for any V ∗ ∈ H. To prove that any
limiting value function is optimal, we need to establish that
∩V ∗∈HΩV ∗ is measurable and P(∩V ∗∈HΩV ∗) = 1.

To do so, note that since J is convex, the set of minimizers
of J , denoted as H∗ ⊂ H, is separable, and has a countably
dense subset H∗Q. Thus the probability of divergence for some
V ∗ ∈ H∗Q is the probability of a union of countably many sets,
each having null probability. Therefore, we may write

P
(
∩H∗QΩV ∗

)
= 1−P

(
∪H∗QΩcV ∗

)
≥ 1−

∑
V ∗∈H∗Q

P (ΩcV ∗) = 1

(80)
by simple application of De Morgan’s Law and Boole’s
inequality. Then consider any Ṽ ∈ H? which is the limit
of a sequence of optimal value functions {Ṽk}∞k=1 ⊂ H?.
We can prove that ‖Ṽt(y) − Ṽ ‖ is convergent provided that
‖Ṽt(y)− Ṽk‖ is convergent for all k. Note that

‖Vt(y)− Ṽk‖H − ‖Ṽk − Ṽ ‖H
≤ ‖Vt(y)− Ṽ ‖H
≤ ‖Vt(ω)− Ṽk‖H + ‖Ṽk − Ṽ ‖H . (81)
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Since ‖Vt(y)−Ṽk‖H has a limit, take t→∞ in (81), yielding:

lim
t→∞

‖Vt(y)− Ṽk‖H − ‖Ṽk − Ṽ ‖H ≤ lim inf
t→∞

‖Vt(y)− Ṽ ‖H

≤ lim sup
t→∞

‖Vt(y)− Ṽ ‖H (82)

≤ lim
t→∞

‖Vt(y)−Ṽk‖H + ‖Ṽk − Ṽ ‖H ,

which, by subtracting lim inft→∞ ‖Vt(y) − Ṽ ‖H from both
sides in (82), cancelling the common limt→∞ ‖Vt(y)− Ṽk‖H,
and combining terms, allows us to write

lim sup
t→∞

‖Vt(y)−Ṽ ‖H−lim inf
t→∞

‖Vt(y)−Ṽ ‖H≤ 2‖Ṽk−Ṽ ‖H.

(83)

Take k →∞ in (83), for which ‖Ṽt − Ṽ ‖H → 0, hence

lim sup
t→∞

‖Vt(y)− Ṽ ‖H = lim inf
t→∞

‖Vt(y)− Ṽ ‖H , (84)

and therefore ‖Vt(y) − Ṽ ‖H has a limit, so y ∈ ΩṼ ∗ , and
therefore ∩H∗QΩV ∗ ⊂ ΩṼ . Consequently, P

(
∩H∗QΩV ∗

)
=

1. As a result, we have (∩H∗ΩV ∗)c ⊂
(
∩H∗QΩV ∗

)c
,

both of which are measurable and have null probability:
P ((∩H∗ΩV ∗)c) ≤ P

(
(∩H∗QΩV ∗)

c
)

= 0. Thus, (∩H∗ΩV ∗)
is measurable and occurs with probability 1. Put another way,
‖Vt − Ṽ ‖H is convergent for all Ṽ ∈ H∗ with probability 1.

Now, we can use this fact together with (79), namely,
lim inft→∞ J(Vt) = J(V ∗), to establish that Vt converges
to the minimizer of J(V ) a.s. To do so, let V ∗ ∈ H∗ the
set of optimizers of J . Since ‖Vt(y) − V ∗‖H converges,
it is bounded. Then, {Vt(y)} must have a limit point Ṽ
being an optimal solution, J(Ṽ ) = J∗ with Ṽ ∈ H∗,
by the continuity of J . Since ω ∈ ∩H∗ΩV ∗ ⊂ ΩṼ ,
{‖Vt(y) − Ṽ ‖H} is a convergent sequence whose limit is
null. Thus, ‖Vt(y)− Ṽ ‖H → 0, so Vt(y)→ Ṽ on this sample
path. Ṽ is a random variable dependent on the sample path,
parameterized by y. The set of all such sample paths has
prob. 1, so that Vt converges to a random point in H∗. �

F. Proof of Theorem 2

Before analyzing the mean convergence behavior of the
value function, we consider the mean sub-optimality of the
auxiliary variable zt with respect to the conditional mean of the
temporal difference δ̄t. To do so, compute the total expectation
of Lemma 1(iii), stated as

E
[
(zt+1 − δ̄t)2

]
(85)

≤(1−β)E
[
(zt−δ̄t−1)2

]
+
LV
β

E
[
‖Vt−Vt−1‖2H

]
+2β2σ2

δ ,

where we have substituted in constant learning rate βt =
β in (85). The total expectation of Lemma 1(i) regarding
‖Vt − Vt−1‖2H, the difference of value functions in Hilbert-

norm, may be substituted into (85), with constant step-size
αt = α and compression budgets εt = ε to obtain

E
[
(zt+1 − δ̄t)2

]
≤ (1− β)E

[
(zt − δ̄t−1)2

]
+

2LV
β

[
α2(G2

δG
2
V + λ2K2) + ε2

]
+ 2β2σ2

δ , (86)

Observe that (86) gives a relationship between the sequence
E
[
(zt+1 − δ̄t)2

]
and its value at the previous iterate. We can

substitute t+ 1 by t in (86) to write

E
[
(zt − δ̄t−1)2

]
≤ (1− β)E

[
(zt−1 − δ̄t−2)2

]
+

2LV
β

(87)

×
[
α2(G2

δG
2
V + λ2K2) + ε2

]
+ 2β2σ2

δ ,

Substituting (87) into the right-hand side of (86) yields

E
[
(zt+1−δ̄t)2

]
≤(1−β)2E

[
(zt−1−δ̄t−2)2

]
+[1+(1−β)] (88)

×
{2LV
β

[
α2(G2

δG
2
V +λ2K2)+ε2

]
+2β2σ2

δ

}
.

We can recursively apply the previous two steps backwards in
time to the initialization to obtain

E
[
(zt+1 − δ̄t)2

]
≤ (1− β)t+1(z0−δ̄−1)2 +

t∑
u=0

(1−β)u
{2LV
β

×
[
α2(G2

δG
2
V+λ2K2)+ε2

]
+2β2σ2

δ

}
, (89)

In (89), the first term on the left-hand side vanishes due to the
initialization z0 = 0 and the convention δ−1 = 0. Moreover,
the finite geometric sum may be evaluated, provided β < 1,
as
∑t
u=0(1− β)u = [1− (1− β)t]/β. The numerator in this

simplification is strictly less than unit, which means that the
right-hand side of (89) simplifies to

E
[
(zt+1 − δ̄t)2

]
≤ 2LV

β2

[
α2(G2

δG
2
V + λ2K2)+ε2

]
+2βσ2

δ

= O
(
α2 + ε2

β2
+ β

)
(90)

With this relationship established for the auxiliary sequence
zt, we shift gears to addressing the evolution of the value
function sub-optimality ‖Vt− V ∗‖H in expectation. Begin by
using the fact that the Hilbert-norm regularizer (λ/2)‖V ‖2H in
(8) implies the objective J(V ) is strongly convex, i.e.

λ

2
‖Vt − V ∗‖2H ≤ J(Vt)− V (V ∗) , (91)

together with the expression in Lemma 1(ii) regarding the
value function sub-optimality, assuming constant learning rates
and compression budget, i.e. αt = α, βt = β, εt = ε, to write

E
[
‖Vt+1 − V ∗‖2H

∣∣Ft]
≤
(

1 +
α2

β
G2
V − αλ

)
‖Vt − V ∗‖2H + 2ε‖Vt − V ∗‖H

+ α2σ2
V + βE

[
(zt+1 − δ̄t)2

∣∣Ft] . (92)

Consider the total expectation of (92) with choice of com-
pression budget ε = Cα2 for some arbitrary constant C > 0,
the fact that ‖Vt − V ∗‖H ≤ 2K, apply (90) to the last term
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on the right-hand side of (92), and substitute in regularizer
λ = G2

V α/β + λ0 for λ0 < 1 to obtain:

E
[
‖Vt+1 − V ∗‖2H

]
≤ (1− λ0)E

[
‖Vt − V ∗‖2H

]
+ α2(σ2

V + 4CK) + 2β2σ2
δ (93)

+
2LV
β

[
α2(G2

δG
2
V+λ2K2)+C2α4

]
.

To establish that lim inf ‖Vt − V ∗‖2H is a finite constant
determined by λ0 and the constant terms on the right-hand
side of (93), which we define as R := α2(σ2

V + 4CK) +
2β2σ2

δ + 2LV
β

[
α2(G2

δG
2
V+λ2K2)+C2α4

]
, suppose that it is

not, i.e., that the following holds true:

lim inf
t

E
[
‖Vt − V ∗‖2H

]
>

R

λ0
(94)

Then there exists some time index t0 < ∞ and some δ > 0
such that

E
[
‖Vt − V ∗‖2H

]
>

R

λ0
+ δ (95)

for all t ≥ t0. Note that (95) may be rearranged to equivalently
be stated as

λ0E
[
‖Vt − V ∗‖2H

]
− λ0δ > R (96)

Let’s substitute upper-bound for R stated in (96) into (93):

E
[
‖Vt+1 − V ∗‖2H

]
≤ (1− λ0)E

[
‖Vt − V ∗‖2H

]
+R

< E
[
‖Vt − V ∗‖2H

]
− λ0δ

≤ E
[
‖Vt − V ∗‖2H

]
(97)

where we have cancelled a common factor of
λ0E

[
‖Vt − V ∗‖2H

]
from the right-hand side, and upper-

estimated −λ0δ by null. Therefore, under the hypothesis that
lim inft E

[
‖Vt − V ∗‖2H

]
> R/λ0, by (97), E

[
‖Vt − V ∗‖2H

]
decreases monotonically to null. This is a contradiction.
Therefore, we must have that the hypothesis (94) is false, and
hence

lim inf
t→∞

E
[
‖Vt−V ∗‖2H

]
= R

= O
(
α2 + β2 +

α2

β

[
1 + α2 +

α

β
+
α2

β2

])
. (98)

When α = β, the posynomial of the learning rates on the
right-hand side of (98) simplifies to be O(α+α2+α3)= O(α)
for α ∈ (0, 1) as stated in (20) (Theorem 2).

G. Proof of Corollary 1

We prove Corollary 1: In Theorem 3 of [32][Appendix
D.1], it is established for a nonparametric stochastic program
without any compositional structure that the effect of sparse
subspace projections on the functional stochastic gradient
sequence in an RKHS is to yield a function sequence of
finite model order, provided a constant algorithm step-size
and compression budget are used. The proof of Corollary
1 is nearly identical: the same projection operator is used
and the same compactness properties of the state and action
spaces apply. The only point of departure is that a distinct
deterministic bound is needed on the functional stochastic

quasi-gradient for all {xt, π(xt),yt}, i.e., to apply the rea-
soning following equations (74) in [32][Appendix D.1], we
require the existence of a deterministic constant D such that
|[γκ(yt, ·) − κ(xt, ·)]zt+1| ≤ D for all {xt, π(xt),yt}. We
establish such an upper-estimate. To do so, we first establish
that the auxiliary sequence zt stated in (11) is bounded, i.e.

Proposition 2. The auxiliary sequence zt [cf. (11)] is upper-
bounded when used with constant step-size βt = β:

|zt| = (γ + 1)K +Rmax for all t (99)

Proof: We pursue a proof by induction. First, the base case:
with V0 = 0, we have |z1| ≤ βRmax ≤ (γ + 1)K + Rmax

making use of the bound on Vt for all t in (35) and the fact
that the step-size is less than unit. Now, the induction step:
assume the prior bound holds for zu for u ≤ t. Write for zt+1

|zt+1| = (1− β)|zt|+ β|δt| ≤ (γ + 1)K +Rmax (100)

where in the last inequality we apply the induction hypothesis
together with the upper-estimate on the temporal difference
δt ≤ (γ + 1)K +Rmax. �

By making use of Proposition 2 together with the bound
on the reproducing kernel map (Assumption 2), we have the
following uniform deterministic bound:

|[γκ(yt, ·)−κ(xt, ·)]zt+1| ≤ X(γ+1)[(γ + 1)K+Rmax]

:= D for all {xt, π(xt),yt} (101)

Then, we may apply the same reasoning as that of Appendix
D.1 of [32] to conclude that the number of Euclidean balls of
radius d = ε/D needed to cover the space φ(X ) = κ(X , ·)
is finite, where ε is a constant as in (19). See [57] for further
details. Therefore, for Algorithm 1, there exists a finite M∞ <
∞ such that the model order Mt ≤M∞ for all t.
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