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Abstract
Intelligent robots frequently need to understand re-
quests from naive users through natural language.
Previous approaches either cannot account for lan-
guage variation, e.g., keyword search, or require
gathering large annotated corpora, which can be ex-
pensive and cannot adapt to new variation. We in-
troduce a dialog agent for mobile robots that under-
stands human instructions through semantic pars-
ing, actively resolves ambiguities using a dialog
manager, and incrementally learns from human-
robot conversations by inducing training data from
user paraphrases. Our dialog agent is implemented
and tested both on a web interface with hundreds of
users via Mechanical Turk and on a mobile robot
over several days, tasked with understanding nav-
igation and delivery requests through natural lan-
guage in an office environment. In both contexts,
We observe significant improvements in user satis-
faction after learning from conversations.

1 Introduction
It is important for intelligent robots to be able to efficiently
and accurately understand instructions from naive users using
natural language. Many existing natural language instruction
approaches either use simple language understanding (e.g.,
keyword search), or large corpora of hand-annotated training
data to pair language with robot actions or action language.
The former cannot account for naive user language variation.
The latter requires gathering annotated corpora, which can
be expensive and can only account for variation observed in
the training data. This paper presents a dialog agent that com-
municates with users through natural language while learning
semantic meanings from conversations.

Our dialog agent integrates a semantic parser producing
logical form representations of user utterances with a dialog
manager that maintains a belief-state for the user’s goal. The
agent starts with a few training examples for the parser and
induces more during natural clarification dialogs with ordi-
nary users. When the agent understands a user goal, it pairs
the logical form representing that goal with previously mis-
understood utterances in the conversation to form new train-
ing examples for the semantic parser. This allows the agent

to incrementally learn new semantic meanings for previously
unseen words. This approach is more robust than keyword
search and requires little initial data. Further, it could be de-
ployed in any context where robots are given high-level goals
in natural language.

We demonstrate through hundreds of conversations from
human users through Mechanical Turk1 that the agent’s learn-
ing abilities help it to understand and not frustrate users while
converging to goals quickly. However, users interacting with
a live robot introduce lexical variations that may be user or
task-specific, and do not allow for the contextual control (e.g.
linguistic priming, detecting malicious users) afforded by a
web interface like Mechanical Turk. We embody the agent
in a robot in our office and find that, even from such un-
controlled in-person conversations, it improves understand-
ing and is less frustrating after a brief training period.

To the best of our knowledge, our agent is the first to em-
ploy incremental learning of a semantic parser from conver-
sations on a mobile robot. As a result, our robot may have the
most robust lexical acquisition capability of any to date.

2 Related Work
Researchers have explored using natural language to inform
and instruct robots. Meriçli et al. [2014] allow users to spec-
ify a task program to be stored and executed on the robot.
Like our dialog agent, their system prompts users to correct
its (mis)understandings. However, their natural language un-
derstanding is done by keyword search and assumes certain
words in a particular order. Our dialog agent uses a richer,
semantic understanding. Robot world knowledge can also be
updated, such as using semantic parsing to extract an action,
pre- and post-world conditions for that action, and the enti-
ties involved [Cantrell et al., 2012]. The goal of that work
is different from ours and its parser is trained on an existing
dataset (CReST [Eberhard et al., 2010]), in contrast to our
induced training data.

Natural language instruction can dictate a series of actions
to a robot. Some approaches pair robot actions with language
descriptions, then build models that map language instruc-
tions to action sequences [Misra et al., 2014; Tellex et al.,
2011]. We are concerned with interpreting high-level instruc-
tions rather than action sequences and don’t rely as they do

1https://www.mturk.com



on a well-trained initial parser [Klein and Manning, 2003].
Another approach enables a robot to learn a sequence of ac-
tions and the lexical items that refer to them from language
instruction and dialog [She et al., 2014]. We focus on acquir-
ing new lexical items to overcome linguistic variation, rather
than for referring to and teaching action sequences.

Other researchers have used semantic parsing to facilitate
natural language instruction for robots. One approach learns
a parser to map natural-language instructions to control lan-
guage [Matuszek et al., 2013]. We build on such approaches
by augmenting our parser with new data in an incremental
fashion from dialog. We also use world knowledge to ground
natural language expressions. Other work uses restricted lan-
guage and a static, hand-crafted lexicon to map natural lan-
guage to action specifications [Matuszek et al., 2013].

Work closest to ours presents a dialog agent used together
with a knowledge base and semantic understanding compo-
nent to learn new referring expressions during conversations
that instruct a mobile robot [Kollar et al., 2013]. They use
semantic frames of actions and arguments extracted from
user utterances, while we use λ-calculus meaning represen-
tations. Our agent reasons about arguments like “Mallory
Morgan’s office”, by considering what location would sat-
isfy it, while semantic frames instead add a lexical entry for
the whole phrase explicitly mapping to the appropriate room.
Our method is more flexible for multi-entity reasoning (e.g.
“the person whose office is next to Mallory Morgan’s office”)
and changes to arguments (e.g. “George Green’s office”).
Additionally, this work did not evaluate how agent learning
affects user experience.

Our process of automatically inducing training examples
from conversations is partly inspired by Artzi and Zettle-
moyer [2011]. They used logs of conversations that users
had with an air-travel information system to train a seman-
tic parser for understanding user utterances. Our approach
to learning is similar, but done incrementally from conversa-
tions the agent has with users, and our training procedure is
integrated into a complete, interactive robot system.

3 Dialog Agent
The user first gives a command to our agent, then a dialog be-
gins in which the agent can ask clarification questions (Fig-
ure 1). The agent maintains a belief state about the user’s
goal. When it is confident in this state, the dialog ends and
the goal is passed on to the robot or other underlying system.

3.1 Semantic Parser
The agent produces a logical form representing what the user
said. We use the University of Washington Semantic Pars-
ing Framework (SPF) [Artzi and Zettlemoyer, 2013], a state-
of-the-art system for mapping natural language to meaning
representations using λ-calculus and combinatory categorial
grammar (CCG). λ-calculus is a formalism for representing
the meaning of lexical items. CCG [Steedman and Baldridge,
2011] tags each lexical item with a syntactic category. Given
a CCG tagged utterance where categories are paired with λ-
calculus expressions, a meaning representation for the whole
utterance can be derived (see Figure 2).

Figure 1: Dialog agent workflow. Dashed boxes show pro-
cessing of user command “go to the office”.

To get the system “off the ground” we initialize the parser
with a small seed lexicon—pairings of lexical items with
CCG categories and λ-calculus expressions—and then train
it on a small set of supervised utterance/logical-form pairs.
We use a seed lexicon of 105 entries (40 of which are named
entities) and a training set of only 5 pairs.

3.2 Grounding by Knowledge Base
Given a λ-calculus logical form, the agent can ground some
variables by querying a knowledge base of facts about the
environment. Given the expression derived in Figure 2 for
“Mallory Morgan’s office”, the agent can verify that y =
3508 satisfies the expression, since 3508 is an office belong-
ing to Mallory. If there are multiple satisfying objects, all are
returned, but the multiplicity decreases the agent’s confidence
in their correctness (Section 3.3).

3.3 Maintaining a Belief State and Responding
The agent’s belief state about the user goal has three compo-
nents: action, patient, and recipient. Each compo-
nent is a histogram of confidences over possible assignments.
The agent supports two actions: walking and bringing items,
so the belief state for action is two confidence values in
[0, 1]. recipient and patient can take values over the
space of entities (people, rooms, items) in the knowledge base
as well as a null value ∅. All confidences are initialized to
zero when a new conversation starts.

Updating the Belief State: Multiple meaning hypotheses
may be generated from a user utterance. Consider:

expression go to the office
logical form action(walk) ∧ recipient(walk,

the(λy.(office(y))))
For n offices, this logical form has n groundings producing
different meanings (see Figure 1). The agent can be confident
that walking is the task, but its confidence in the n mean-
ings for recipient is weakened. We use a simple confi-
dence update based on the number k of hypotheses generated
to track the agent’s confidence in its understanding of each



NP : the(λy.(office(y) ∧ possesses(mallory, y) ∧ person(mallory)))

N : office

office

NP/N : λP.(the(λy.(P (y) ∧ possesses(mallory, y) ∧ person(mallory))))

(NP/N)\NP : λx.λP.(the(λy.(P (y) ∧ possesses(x, y) ∧ person(x))))

’s

NP : mallory

Mallory Morgan

Figure 2: A CCG-driven λ-calculus parse of the expression “Mallory Morgan’s office”.

component of the request. For a user-initiative (open-ended)
statement like this one, the agent updates all components of
the belief state. For each candidate hypothesis Hi,c, with
0 ≤ i < k, c ∈ {action,patient,recipient}, the
agent updates:

conf(c = Hi,c)← conf(c = Hi,c)
(

1− α

k

)
+
α

k

Where 0 < α < 1 is the threshold of confidence above which
the candidate is accepted without further clarification. The
confidence in unmentioned arguments is decayed to wash out
previous misunderstandings when the user has been asked to
re-word the goal. For Ac, the set of all candidates of com-
ponent c, Āc = Ac \ ∪i{Hi,c} are unmentioned. For each
H̄j,c ∈ Āc, the agent updates:

conf(c = H̄j,c)← γconf(c = H̄j,c)

where 0 ≤ γ ≤ 1 is a decay parameter.
System-initiative responses are associated with a particular

requested component. These can take the form of confirma-
tions or prompts for components. For the former, user affir-
mation will update the confidence of all mentioned values to
1. For the latter, the positive and negative updates described
above operate only on the requested component.

Responding: The agent uses a static dialog policy π op-
erating over a discrete set of states composed of action,
patient, recipient tuples together with the role to be
clarified. The agent’s continuous belief state S is reduced to a
discrete state S′ by considering the top candidate arguments
Tc for each component c:

Tc = argmaxt∈Ac
(conf(c = t))

Each component c of S′ is selected by choosing either Tc
or “unknown” with probability conf(c = Tc). The compo-
nent c with the minimum confidence is chosen as the role to
request. If “unknown” is chosen for every component, the
role requested is “all”. If “unknown” is chosen for no com-
ponent, the role requested is “confirmation”. Some policy
responses are given in Table 1. If each of the confidence val-
ues inspected during this process exceeds α, the conversation
concludes. In all experiments, parameters α = 0.95, γ = 0.5
were used.

3.4 Learning from Conversations
The parser uses a template-based lexical generation proce-
dure (GENLEX), described fully in [Zettlemoyer and Collins,

2005; 2007], to add new lexical items with CCG and logical
forms derived from existing entries. For each utterance paired
with a logical form seen during training, GENLEX generates
lexical items (utterance n-grams) and pairs them with all n-
gram combinations of logical constants. Pairs that lead to suc-
cessful parses are added to the parser’s lexicon. Training also
re-weights the parser parameters, affecting the likelihoods of
particular assignments of lexical items to logical forms. So,
if the parser internalizes an incorrect pair, there will be user
misunderstandings initially, but the pair will be discredited as
correct contexts are seen.

Our agent induces parsing training examples from conver-
sations with users to learn new lexical items. It uses dialog
conclusions and explicit confirmations from users as super-
vision. The semantic parser in Figure 3 does not know the
misspelling “calender”, the word “planner”, or number “5”.
When the user requests “item in slot 5” be delivered, it only
confidently detects the action, “bring”, of the user’s goal.
The recipient, “Dave Daniel”, is clarified by a system-
initiative question. When the agent asks for confirmation of
the action, the user does not deny it, increasing the agent’s
confidence. While clarifying the patient, the user implic-
itly provides evidence that “calender”, “planner”, and “cal-
endar” are the same. When two or more phrases are used in
the same sub-dialog to clarify an argument, the eventual log-
ical form selected is paired with the earlier surface forms for
retraining.

User-initiative responses generate similar alignments. One
users’ conversation began “please report to room 3418”,
which the agent could not parse because of the new word
“report”. The agent understood the re-worded request “go
to room 3418”, and the former sentence was paired with the
logical form of this latter for training. When the GENLEX
procedure explored possible semantic meanings for “report”,
it found a valid parse with the meaning of “go”, “S/PP :
λP.(action(walk) ∧ P (walk))”, and added it to the parser’s
lexicon. This meaning says that “report” should be followed
by a prepositional phrase specifying a target for the walking
action.

4 Overview of Experiments
We evaluated the learning agent in two contexts. We used
Mechanical Turk to gather data from many diverse users
asked to give the agent goals for an office environment. These
users interacted with the agent through a web browser, but



Table 1: Representative subset of our policy π for mapping discrete states S′ to actions (questions to ask the user).

S′ π(S′)
(action,patient,recipient) Role Request Text Initiative
(unknown,unknown,unknown) all Sorry I couldn’t understand that. Could you user

reword your original request?
(unknown,Tpatient, Trecipient) action What action did you want me to take involving system

Tpatient and Trecipient?
(walk,∅,unknown) recipient Where should I walk? system
(bring,unknown,Trecipient) patient What should I bring to Trecipient? system
(walk,∅, Trecipient) confirmation You want me to walk to Trecipient? system
(bring, Tpatient, Trecipient) confirmation You want me to bring Tpatient to Trecipient? system

user expectations, frustrations, and lexical choices with a web
browser versus a physical robot will likely differ. Thus, we
also implemented an interface for the agent on a Segway-
based robot platform (Segbot) operating on a floor of our uni-
versity’s computer science building.

We split the possible task goals into train and test sets. In
both contexts, users performed a navigation (send robot to
a room) and a delivery (have an item delivered to a person)
task. For the 10 possible navigation goals (10 rooms), we
randomly selected 2 for testing. For the 50 possible delivery
goals (10 people× 5 items), we randomly selected 10 for test-
ing (80%/20% train/test split). The test goals for Mechanical
Turk and the Segbot were the same, except in the former we
anonymized the names of the people on our building’s floor.

We ended all user sessions with a survey: “The tasks were
easy to understand” (Tasks Easy); “The robot understood me”
(Understood); and “The robot frustrated me” (Frustrated).
For the Segbot experiment, we also prompted “I would use
the robot to find a place unfamiliar to me in the building”
(Use Navigation) and “I would use the robot to get items
for myself or others” (Use Delivery). Users answered on
a 5-point Likert scale: “Strongly Disagree”(0), “Somewhat
Disagree”(1), “Neutral”(2), “Somewhat Agree”(3), “Strongly
Agree”(4). Users could also provide open comments.

5 Mechanical Turk Experiments
The web interface shown in Figure 3 was used to test the
agent with many users through Mechanical Turk.

5.1 Methodology
Each user participated in navigation, delivery, and validation
tasks, then filled out the survey. We performed incremental
learning in batches to facilitate simultaneous user access. We
assigned roughly half of users to the test condition and the
other half to the train condition per batch. After gathering
train and test results from a batch, we retrained the parser
using the train conversation data. We repeated this for 3
batches of users, then we gathered results from a final test-
ing batch in which there was no need to gather more training
data. We used user conversations for retraining only when
they achieved correct goals.

Navigation: Users were asked to send the robot to a ran-
dom room from the appropriate train or test goals with the
prompt “[person] needs the robot. Send it to the office where

[s]he works”. The referring expression for each person was
chosen from: full names, first names, nicknames, and titles
(“Dr. Parker”, “the Director”). In this task, the corresponding
office number was listed next to each name, and the “items
available” were not shown.

Delivery: Users were asked to tell the robot to assist a per-
son with the prompt “[person] wants the item in slot [num-
ber]”. The (person, item) pairs were selected at random
from the appropriate train or test goals. To avoid linguistic
priming, the items were given pictorially (Figure 3).

Validation: To detect users who were not taking the tasks
seriously, we selected a random office and asked them to
“Give only the first and last name of the person in office num-
ber [number]”. Incorrect responses were hand-inspected and
either validated or marked invalid. Validated users made in-
nocuous errors like misspellings. Only 17 of 353 users were
marked invalid after hand-inspection and were left out of fur-
ther analysis.

5.2 Results
For each train/test condition, we gathered responses from an
average of 48 users per batch. Figure 4 (Left) shows the mean
survey-question responses across test batches. We used an
unpaired Welch’s two-tailed t-test to determine whether these
means differed significantly. By batch 2, users felt that the
agent understood them more than in batch 0. By batch 3, they
felt that it frustrated them less. The dialog agent became more
understandable and likable as a result of the semantic parser’s
learning, even though it had never seen the test-batch users’
goals.

To determine whether learning reduced the number of ut-
terances (turns) a user had to provide for the system to under-
stand their goal, we counted user turns for dialogs where the
user and agent agreed on the correct goal (Figure 4 (Right)).
Learning successfully reduced the turns needed to understand
multi-argument delivery goals.

With respect to users’ free-form feedback, in testing batch
0, several enjoyed their conversations (“This was fun!! Wish
it were longer!”). Several also commented on the small initial
lexicon (“It was fun to try and learn how to talk to the robot in
a way it would understand”). The responses by testing batch
3 had similarly excited-sounding users (“I had so much fun
doing this hit!”). At least one user commented on the lexical
variation they observed (“The robot fixed my grammatical er-
ror when I misspelled ‘calender’ Which was neat”). In ad-



Figure 3: The Mechanical Turk interface for the delivery task. This abridged conversation is from a Turker in training batch
0, when the system had access to only the seed lexicon. Because of this conversation, the agent learned that “calender” and
“planner” mean “calendar” during retraining.

Figure 4: Left: Average Mechanical Turk survey responses across the four test batches. Right: Mean user turns in Mechanical
Turk dialogs where the correct goal was reached. Means in underlined bold differ significantly (p < 0.05) from the batch 0
mean.

dition to learning misspelling corrections and new referring
expressions, the agent learned to parse things like “item in
slot n” by matching n to the corresponding item and collaps-
ing the whole phrase to this meaning.

6 Segbot Experiments
The agent was integrated into a Segway-based robot platform
(Segbot) as shown in Figure 5 (Left) using the Robot Operat-
ing System (ROS) [Quigley et al., 2009].

6.1 Implementation
The robot architecture is shown in Figure 5 (Right). Users in-
teracted with the agent through a graphical user interface by
typing in natural language. The agent generated queries to a
symbolic planner formalized using action language BC [Lee
et al., 2013] from user goals. Action languages are used for
representing and reasoning with the preconditions, effects,
and executability of actions, and BC is good at reasoning with

domain knowledge. The sensor readings were converted to
logical facts provided to the symbolic planner. For instance,
we used laser sensors to detect whether office doors were
open. The Segbot learned action costs from experience us-
ing an existing approach [Khandelwal et al., 2014], and the
symbolic planner generated lowest-cost plans. The action
executor used a manually-created semantic map to translate
symbolic actions into path-planner executions. We used ex-
isting ROS packages for path planning (e.g. A* search for
global path planning and Elastic Band for local path plan-
ning). The sensor readings from the RGB-D camera (Kinect),
laser, and sonar array were projected onto a 2D costmap so
that the robot could safely avoid obstacles such as high tables
and glass windows.

6.2 Methodology
For testing, users were given one goal from the navigation and
delivery tasks, then filled out the survey. The task prompts



Figure 5: Left: Robot platform (Segbot) used in experi-
ments. Right: Segbot architecture, implemented using Robot
Operating System (ROS).

included the directory panels used in the Mechanical Turk
experiments pairing names and office numbers and showing
items available to the robot for delivery (Figure 3).

We evaluated our agent’s initial performance by giving 10
users one of each of these goals (so each delivery test goal was
seen once and each navigation test goal was seen 5 times).
Users were allowed to skip goals they felt they could not con-
vey. We refer to this group as Init Test.

We then allowed the agent to perform incremental learning
for four days in our office space. Students working here were
encouraged to chat with it, but were not instructed on how to
do so beyond a panel displaying the directory information and
a brief prompt saying the robot could only perform “naviga-
tion and delivery tasks”. Users in test conditions did not in-
teract with the robot during training. After understanding and
carrying out a goal, the robot prompted the user for whether
the actions taken were correct. If they answered “yes” and the
goal was not in the test set, the agent retrained its semantic
parser with new training examples aligned from the conver-
sation. View a video demonstrating the learning process on
the Segbot at: https://youtu.be/FL9IhJQOzb8.

We evaluated the retrained agent as before. The same test-
ing goal pairs were used with 10 new users. We refer to this
latter set as Trained Test.

6.3 Results
During training, the robot understood and carried out 35
goals, learning incrementally from these conversations. Ta-
ble 2 compares the survey responses of users and the num-
ber of goals users completed of each task type in the Init
Test and Trained Test groups. Because only two users
completed delivery goals in Init Test, we use the pro-
portion of users having completed goals in each task, rather
than conversation length, as a metric for dialog efficiency. For
navigation goals, Init Test had an average dialog length
of 3.89, slightly longer than the 3.33 for Train Test.

We note that there is significant improvement in user per-
ception of the robot’s understanding, and trends towards less
user frustration and higher delivery-goal correctness. Though
users did not significantly favor using the robot for tasks af-
ter training, several users in both groups commented that they
would not use guidance only because the Segbot moved too

Table 2: Average Segbot survey responses from the two test
groups and the proportion of task goals completed. Means in
bold differ significantly (p < 0.05). Means in italics trend
different (p < 0.1).

Init Test Trained Test

Survey Question Likert [0-4]
Tasks Easy 3.8 3.7
Robot Understood 1.6 2.9
Robot Frustrated 2.5 1.5
Use Navigation 2.8 2.5
Use Delivery 1.6 2.5
Goals Completed Percent
Navigation 90 90
Delivery 20 60

slowly.

7 Conclusions and Future Work
We implemented an agent that expands its natural language
understanding incrementally from conversations with users
by combining semantic parsing and dialog management. We
demonstrated that this learning yields significant improve-
ments in user experience and dialog efficiency through Me-
chanical Turk experiments with hundreds of users. A proof-
of-concept experiment on a Segbot platform showed similar
improvements when learning was restricted to natural conver-
sations the agent had over a few days’ time.

This work provides initial steps towards expanding natural-
language understanding for robot commands using natural
conversations with users as training data. Our agent improves
its language understanding without requiring a large corpus
of annotated data.

We intend to replace our static dialog policy with a
POMDP-based policy [Young et al., 2013] that considers the
continuous belief state about the user goal. Incremental learn-
ing will then involve updating the dialog policy through rein-
forcement learning based on parser confidence and conver-
sation success. We will also explore whether our approach
can automatically learn to correct consistent speech recogni-
tion errors. As the robot platform gains access to more tasks,
such as manipulation of items, doors, and light-switches via
an arm attachment, we will scale the agent to learn the lan-
guage users employ in that larger goal space. We also plan to
add agent perception, so that some predicates can be associ-
ated with perceptual classifiers [Matuszek et al., 2012], and
new predicates can be discovered for new words.
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