Learning to Order Objects using Haptic and Proprioceptive Exploratory Behaviors

Jivko Sinapov, Priyanka Khante, Maxwell Svetlik, and Peter Stone

Department of Computer Science University of Texas at Austin, Austin TX 78712, USA {jsinapov,pkhante,maxwell, pstone}@cs.utexas.edu

Building-Wide Intelligence Project: http://www.cs.utexas.edu/~larg/bwi_web/

Building-Wide Intelligence Project: http://www.cs.utexas.edu/~larg/bwi_web/

Building-Wide Intelligence Project: http://www.cs.utexas.edu/~larg/bwi_web/

Motivation: Grounded Language Learning

Object Category Recognition in Robotics

Sridharan et al. 2008

Collet et al. 2009

Rusu et al. 2009

Lai *et al*. 2011

Object Category Learning in Robotics

Thomason, J., Sinapov, J., Svetlik, M., Stone, P., and Mooney, R. (2016). Learning Multi-Modal Grounded Linguistic Semantics by Playing I, Spy **Robotics and Vision 3 Session**

Now, when and where does this fail...

Consider the word, "weight" - how should it be grounded?

How do humans ground such words?

Sample Montessori toys designed to teach children about the ordinal properties of object weight, height, and size

Object Ordering in Psychology

stage I series

Object Orderings in Human Environments

Problem Formulation

• Order Recognition: what property is a given series of objects ordered by?

Problem Formulation (2)

• Order Insertion: given an object series, insert a new object into the correct position

Three-Stage Approach

Stage 1: Object Exploration

32 common household and office items

The objects vary along three ordinal properties:

Weight
 Width
 Height

Exploratory Behaviors

grasp

lower

drop

press

Video

Video

Video

Haptic and Proprioceptive Feature Extraction

Haptic and Proprioceptive Feature Extraction

Haptic and Proprioceptive Feature Extraction

Stage 2: Unsupervised Order Discovery

Sensory Modalities

		haptics	proprioception
DELIGATIONS	grasp		
	lift		
	hold		
	lower		
	drop		
	push		
	press		

Unsupervised Order Discovery Example with Synthetic Data

Input Relational Count Matrix Object order with highest likelihood using the method of [Kemp and Tennenbam, 2008]

Example Relational Count Matrix with the *Press* action and *Haptic* features

Resulting Order (Press behavior and Haptic modality)

The number corresponds to the object's height in millimeters

Stage 2: Unsupervised Order Discovery

Sensory Modalities

		haptics	proprioception
Behaviors	grasp	0,000	0000
	lift	0-0-0-0	0,0,0,0
	hold	0000	0-000
	lower	0000	0.000
	drop	0-0-0-0	0-0-0-0
	push		0,0,0,0
	press	0,000	0000

Stage 3: Order Grounding Stage

Order Grounding Example: "height"

Negative Examples:

Training Example:

. . . . $\mathbf{O}\mathbf{O}_{\mathbf{C}}$

Object Orders Discovered During Stage 2

Training Example:

X₁

. . . .

Training Example:

X
2

D-O

Training Example:

Results: Order Recognition

 Table 1: Order Recognition Rates (% Accuracy)

	k-NN	SVM	Decision Tree
concept			
weight	89.48	92.42	96.67
width	78.82	82.49	91.70
height	86.44	90.18	98.42

Sample Learned Decision Trees

When does the robot make mistakes?

When does the robot make mistakes?

When does the robot make mistakes?

Remainder Object:

Conclusion

- A behavior-grounded framework for learning object ordering concepts
- The robot grounded three ordering concepts, "weight", "height", and "width"
- Future Work:
 - Active action selection
 - Learn object ordering concepts in conjunction with object categories, pairwise object relations, etc.
 - Learn from humans (for a preview, see our next talk at Robotics and Vision III)

Thank you!

Jivko Sinapov

Priyanka Khante

Maxwell Svetlik

Peter Stone

http://www.cs.utexas.edu/~larg/bwi_web/