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Abstract
In multiagent reinforcement learning scenarios, it is
often the case that independent agents must jointly
learn to perform a cooperative task. This paper fo-
cuses on such a scenario in which agents have indi-
vidual preferences regarding how to accomplish the
shared task. We consider a framework for this set-
ting which balances individual preferences against
task rewards using a linear mixing scheme. In our
theoretical analysis we establish that agents can
reach an equilibrium that leads to optimal shared
task reward even when they consider individual
preferences which are not fully aligned with this
task. We then empirically show, somewhat counter-
intuitively, that there exist mixing schemes that out-
perform a purely task-oriented baseline. We further
consider empirically how to optimize the mixing
scheme.

1 Introduction
When independent agents jointly learn to perform a cooper-
ative task, multiagent reinforcement learning (RL) methods
can be brought to bear [Busoniu et al., 2008; Hernandez-Leal
et al., 2019] . When they must do so without any prior co-
ordination, it is referred to as ad hoc teamwork [Barrett et
al., 2013; Stone et al., 2010]. Ad hoc teamwork typically
assumes that the participating agents have fully aligned pref-
erences – that they prioritize the shared task completely.

In contrast, in this paper we consider ad hoc teamwork in
which agents working together on a shared task have individ-
ual preferences regarding how to accomplish it. For exam-
ple, consider a (human) musical ensemble. Each musician
learns to play their instrument independently, and typically
has their own aesthetic preferences regarding what they’d like
the shared music to sound like. However, when performing
together, the musicians also have to harmonize and coordinate
so that they produce music that is pleasing to their audience,
who serve as a shared and extrinsic reward signal.

To incorporate the agents’ individual preferences, we as-
sume that each agent linearly blends their individual pref-
erence with the shared task reward. A natural assumption
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would be that the more weight the agents place on their in-
dividual preferences, i.e. the more selfishly they behave, the
worse the team will perform. On the contrary, we find that a
certain degree of selfishness can be beneficial to team perfor-
mance.

The main contribution of this paper is a detailed analysis
of this phenomenon, from both a theoretical and an empirical
perspective. In particular:

• We theoretically analyze the conditions in which indi-
vidual preferences can still lead to maximizing task re-
ward.
• We empirically study how different blending propor-

tions (mixing schemes) for individual and shared reward
impact learning of the shared task.
• For a given set of preferences, we show a practical

method to search over mixing schemes for the purpose
of optimizing joint task performance.

We observe this effect in two different multiagent domains,
the predator prey domain (a canonical multiagent RL environ-
ment also known as the Pursuit domain), and a novel music
generation environment motivated by human musical ensem-
bles. 1

2 Background
Reinforcement Learning (RL) considers an agent acting in
a Markov Decision Process (MDP), a mathematical frame-
work for modeling sequential decision-making [Sutton and
Barto, 2018]. An MDP is defined as a tuple 〈S,A,T, R, γ〉,
where S is the set of states, A is the set of actions, and T is
the transition probability, p(st+1|st, at), where st, st+1 ∈ S
and at ∈ A. R(st, at, st+1) ∈ R is the reward for taking
action at in state st and transitioning to state st+1. The dis-
count factor γ ∈ [0, 1) specifies how much to discount fu-
ture rewards. Reinforcement learning aims to maximize the
return, i.e. the sum of expected discounted future rewards
Eπ
∑∞
t=0 γ

tR(st, at, st+1).
π is a stochastic policy that specifies the probability of tak-

ing an action at ∈ A in state st ∈ S. To maximize the
expected returns, one possible technique is to optimize the
policy directly: π∗ = argmaxπ Eπ

∑∞
t=0 γ

tR(st, at, st+1)

1Appendix at https://tinyurl.com/yb8hzx73.
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In this study we use proximal policy gradient (PPO)
[Schulman et al., 2017], which is an algorithm to optimize
the policy directly using the policy gradient technique [Sut-
ton et al., 2000].

2.1 Multiagent Reinforcement Learning
In the multiagent setting, we consider a fully observable en-
vironment with K agents acting simultaneously. Most of the
MDP formulation for RL with a single agent carries over
to this setting without notational modifications. The action
space is modified to A ≡ AK . At each time step, all
agents take their actions, and the joint action vector at =
[a1,t, a2,t, . . . , aK,t] acts on the state to produce the transition
to the next state and reward, Re(st,at, st+1).

We consider a cooperative setting where the environment’s
reward Re is shared among all the agents. In this study we
focus on the decentralized learning scenario, in which each
agent’s policy πk (parameterized by θk) is learned and up-
dated separately by each individual agent. To learn in this
manner, we provide this shared reward to all the agents and
the agents individually use PPO to improve their policies,
with a small learning step to allow the PPO algorithm learn-
ing to proceed in a stable manner.

2.2 Individual Preferences
We consider an individual preference for agent k as the pol-
icy πpk that the agent prefers to execute while performing the
shared task. The agent can be initialized to this policy or can
use a dataset Dk of tuples (st, at) generated by executing πpk
and recover the maximum likelihood policy via Behavioral
Cloning. We then model this preference via an individual re-
ward Rk that most likely induces this preferred policy. The
individual reward can be inferred via inverse RL [Abbeel and
Ng, 2004]. Specifically, we use GAIL [Ho and Ermon, 2016]
(an adversarial form of inverse RL) to infer an individual re-
ward via the dataset Dk.

3 Balancing Preferences with Shared Task
Figure 1 illustrates the framework of individual preference
reward balanced with a shared objective. At each time step,
the environment presents a reward Re(st,at, st+1). But each
agent also receives its individual reward or preference signal
Rk, inferred according to Section 2.2. For each agent, we bal-
anceRe andRk using a mixing factor αk ∈ [0, 1]. We refer to
the combination of α values for all agents (〈α1, α2, . . . , αK〉)
as the mixing scheme. We train the agent policies to maxi-
mize this weighted joint rewardRk,e(st,at, st+1), calculated
for the kth agent as:

Rk,e(st,at, st+1) = αkRe(st,at, st+1)+

(1− αk)Rk(st, ak,t, st+1)
(1)

Both our theoretical analysis in Section 4 and our empirical
analysis in Section 5 lead to the somewhat counter-intuitive
conclusion that blending in individual preferences (i.e. setting
the αk’s to be < 1) can aid team learning.

Figure 1: Multiagent Preference Balancing. Each Agent k balanc-
ing individual reward function Rk with a joint environment reward
Re using weights αk.

4 Game-Theoretic Analysis
In this section we examine the interplay between individual
preferences and task rewards. For simplicity, we look at a
single step of a game, and show under which conditions indi-
vidual preferences lead to maximizing the shared task reward.
While we do not assume that the learning process converges
to a Nash equilibrium, we show that if individual and envi-
ronment returns are predicted correctly, they will lead to a
Nash equilibrium for a certain range of α coefficients (i.e.
mixing scheme). A priori, it seems intuitive that individual
preferences can be substantially harmful to team performance
if these preferences are not perfectly aligned with the shared
task. However, this analysis establishes that there is a range
of selfishness conditions under which the game does converge
to an equilibrium which maximizes task reward even if selfish
preferences are not perfectly aligned with the shared reward.

Let us assume there are two agents A and B interact-
ing in a game [Leyton-Brown and Shoham, 2008] in which
each agent can take one of two actions (this can be Bach-
Stravinsky or Matching Pennies or any other game of this
form). Agents A,B’s preferences are denoted with the fol-
lowing payoff matrices, respectively:

A =

[
a11 a12
a21 a22

]
B =

[
b11 b12
b21 b22

]
However, unlike a typical game, in this game there is also

an environment which gives both agents the following reward
according to their matching actions:

payoff(environment) =
[
e11 e12
e21 e22

]
Let αa, αb be the mixing scheme for agents A,B respec-

tively, determining their extent of blending environment and
individual reward signals. The resulting game payoff matri-
ces for A,B are then:

Ae =
[
(1− αa)a11 + αae11 (1− αa)a12 + αae12
(1− αa)a21 + αae21 (1− αa)a22 + αae22

]
Be =

[
(1− αb)b11 + αbe11 (1− αb)b12 + αbe12
(1− αb)b21 + αbe21 (1− αb)b22 + αbe22

]
Assume w.l.o.g. that e11 yields the highest environment

reward. Let us consider which α values could lead to e11



being an equilibrium.2 The combination of actions leading to
e11 is a Nash equilibrium [Osborne and Rubinstein, 1994] if:
(1 − αa) · a11 + αa · e11 > (1 − αa) · a21 + αa · e21 and
(1− αb) · b11 + αb · e11 > (1− αb) · b12 + αb · e12.

Simplifying the math leads to: αa > a21−a11
e11−e21+a21−a11 , and

analogously, αb > b12−b11
e11−e12+b12−b11 .

Let us define δ(a) = a21−a11 and δ(e) = e21−e11. Then
δ(a) and δ(e) denote the utility in defecting from action a11
to action a21 in terms of selfish reward and environment re-
ward, respectively. Observe that δ(e) ≤ 0 since by definition
∀eij , e11 ≥ eij . Then αa >

δ(a)
δ(a)−δ(e) .

If we consider δ(a) as the selfish improvement by defect-
ing to the suboptimal action, and δ(a) − δ(e) as the impact
of defecting combined with the global relative payoff of not
defecting, then this means that α needs to be greater than the
ratio between the agent’s selfish improvement and this com-
bined global payoff impact.

If we also consider that 1 ≥ αa ≥ 0 and 1 ≥ αb ≥ 0,
we get a simple set of linear inequalities – if it has a feasi-
ble solution, then there exists a mixing scheme for the agents
that would lead to the environment-wise ideal solution be-
coming a game-theoretic equilibrium. Observe that this anal-
ysis holds even for arbitrary values of eij , which implies that
we can exhaustively study how multiple mixing schemes can
lead to multiple equilibria. This observation can be straight-
forwardly generalized to k agents, leading to this set of in-
equalities:

∀i∀j 6= l.αi >
aij 6=l − ail

eil − eij 6=l + aij 6=l − ail
With action l to be the best response for agent Ai.
Let us denote δ(aij) = aij 6=l − ail and δ(eij) = ej 6=l − eil

(recall ail and eil are assuming the other agents’ actions are
fixed). Then we obtain a generalized set of inequalities:

∀i∀j.αi >
δ(aij)

δ(aij)− δ(eij)

These inequalities, combined with the constraints that
∀i.1 ≥ αi ≥ 0, can all be solved efficiently, and if satis-
fied, it means the vector of αi values again leads to a Nash
equilibrium. Refer to Appendix D for a detailed derivation.
Interestingly, this result bears some resemblance to the find-
ings of Peterson [Peterson, 2009], who studied cooperation in
a generalization of coalition games.

We note that it is straightforward to extend this analysis to
a multi-step scenario as a repeated stage game with the above
conditions repeated at each step.

While this analysis is conducted for a single step k-agent
game, it nonetheless provides formal support for the idea that
optimal shared task performance can be reached as a stable
equilibrium when taking individual preferences into account,
even when these preferences are not aligned perfectly with

2There may be other equilibria as well. The purpose of this anal-
ysis is to show that there are non-trivial α values (i.e. α < 1) that
lead to some equilibrium

the shared task reward. This analysis also specifies the con-
crete conditions the mixing scheme needs to satisfy in order
to maximize environment reward.

5 Experimental Analysis
In this section we investigate empirically whether the above
conclusion holds in more realistic, more complex set-
tings.The experimental methodology is detailed in Algorithm
1. In Section 5.1 we detail two domains set in the multia-
gent MDP framework from section 2.1. In our first experi-
ment (Section 5.2), we vary the different preference signals
and the mixing schemes and compare the effect on learning
the shared task. Somewhat surprisingly, we find that prefer-
ences accelerate improvement in the task performance in both
these environments. Further, in Section 5.3 we demonstrate
a method to find a mixing scheme that outperforms purely
task-reward-based learning in both domains.

5.1 Environments
We study the above framework on two multiagent cooperative
domains: the well known predator prey domain [Barrett et
al., 2013], and a new chord generation domain. We consider
these domains as they are suited to different policy combina-
tions by the agents (homogeneous policies for predator prey
and heterogeneous for chord generation).

The first domain, predator prey, has 4 predators and one
prey in a 10 × 10 toroidal grid world (i.e. wrapped around
on all sides), and they prey is caught only if the predators
surround the prey on all four sides. Episodes are 100 steps
long with a reward of −1 at the end if the prey is not caught.
If the prey is caught, the episode terminates with a reward of
+1. All other steps have a reward of 0 and we use a discount
factor γ = 0.99. The evaluation metric used is the number
of steps it takes to capture the prey (lower is better). For
preferences, we use three policies from the literature that can
catch the prey and one policy that cannot (random actions).
These policies also form the baselines we compare to. Refer
to Appendix A.1 for further details.

For the second domain, we introduce the chord domain to
learn how to generate a sequence of chords. A motivation for
this setting is the musical ensemble scenario from Section 1.

Algorithm 1 Experimental Methodology
Input: K, preferences R1, R2, . . . RK , dataset

D1,D2, . . .DK , mixing values α1, α2, . . . , αk,
shared reward Re, number of training episodes H ,
episode length T

Initialize policies π1, π2, . . . πK
for i← 0 to K do

pretrain(πi, Di) using Behavioral Cloning
for h = 0; h < H; h+ = 1 do

for t = 0; t < T ; t+ = 1 do
get joint action at
act in environment
compute mixed reward Rk,e (Equation 1)
optimize policies



In this setting each agent plays a single note at each time step
out of the 12 possible pitch classes, simply denoted with in-
teger values {0, . . . , 11}. 3 The agents must generate a valid
chord (which is a possible 4 ·12 = 48 note configurations out
of 124 = 20736 possible 4-note configurations), as well as
valid transitions (no repetitions or inversions).

The reward signal is designed to reward generating valid
note configurations, and penalizing repetitions and inver-
sions, and repeated intervals (same chord configuration with
base note changed). We model different reward functions
by changing the relative weighting between these two penal-
ties (w1) and between the above penalties and the rewards
for valid chords (w2). These criteria are heuristics designed
by us, but with solid grounding in music theory, as surprise
and novelty are basic driving forces in Western music [Cook,
1994]. It is important to note that while musical performance
is subjective, we have designed this particular domain to fo-
cus on chord generation, which can be evaluated objectively
through our reward function. The task is trained in a con-
tinuing manner (with no termination), over 30000 steps, with
γ = 0.99. The individual preferences are policies that prefer
certain chord sets, and are further differentiated with varia-
tions on the actual reward function they maximize (by setting
w1 and w2 to {0.2, 0.8} and {0.8, 0.2}).

5.2 Varying Mixing Schemes and Agent
Configurations

As we’ve established in Section 4, under reasonable condi-
tions there exists a mixing scheme, i.e. a blend of selfishness
and selflessness for all agents, which ensures that the individ-
ual preferences do not take precedence over the shared task.
To verify this effect in practice, in this section we study the
performance of agents with different preferences and mixing
schemes in the two aforementioned environments.

Given 4 possible agent preference models in each domain,
we considered 23 different mixes of different agent types,
sampled from the overall 44 = 256 possible agent configu-
rations. Similarly, to better study the trade offs between dif-
ferent agent configurations and different mixing schemes, we
canvased a wide range of configurations. A technical discus-
sion on how preferences were constructed in each environ-
ment is presented in Appendices A.1 and A.3.

Figure 2 presents the effects of different preferences and
different mixing schemes at the end of training in the predator
prey domain. Figure 3 presents the effects of different pref-
erences and different mixing schemes at the end of training
in the chord generation domain. Scores for these configura-
tions are averaged over 8 independent runs. The red asterisk
in each column marks the mixing scheme that works best for
those preferences at that time step.

A surprising observation arising from Figures 2 and 3 is
that the optimal configuration is not the baseline (four selfless
agents attempting to maximize their reward w.r.t. shared task
reward only). Rather, in each environment a mixing scheme
exists which performs the best on a variety of agent mixes.
Interestingly, even in the case of random preferences (pref-

3Relating the scale to actual notes, 0 denotes C, 1 denotes C#,
2 denotes D and so forth up to 11 = B.

Figure 2: Heatmap of average score in the predator prey domain,
smoothed using a 100 episode window. Score is number of steps
taken by predators to catch the prey. The brighter the color, the bet-
ter the score. X axis represents αmixing schemes. Y axis represents
agent configurations. Results are averaged over n = 9 repetitions
per agent mixture and αmixing scheme. A red star denotes the max-
imum over α mixing schemes for each given agent configuration.

Figure 3: Heatmap of average rewards at the 29500-th step,
smoothed using a 500 step window. The brighter the color, the
higher the reward. X axis represents αmixing schemes, ordered lex-
ically. Y axis represents agent configurations. Results are averaged
over n = 8 repetitions per agent mixture and α mixing schemes.
A red star denotes the maximum over α mixing schemes for each
given agent configuration.

erence #0 in Figure 2) in the predator-prey domain, despite
overall reduced performance, an intermediate mixing scheme
still does better than a selfless mixing scheme (α = 1).



On a side note, we verify that this effect is not due to the
reduced search space induced due to more directed policies
(Appendix C).

5.3 Optimizing the Mixing Scheme
In the previous section we have established that some mixing
schemes lead to accelerated improvement and better asymp-
totic performance on the shared task under certain conditions.
This observation raises the question of how difficult it is to di-
rectly optimize these values in order to find a mixing scheme
which leads to maximization of task performance. We find
below that given a set of reasonable preferences, it is possi-
ble to find a mixing scheme that outperforms the purely task-
reward-based approach rather handily.

In order to optimize the mixing scheme, we frame the prob-
lem as a constrained global Bayesian optimization task using
Gaussian processes as described in [Snoek et al., 2012]. Sub-
sequently, we use the gradual posterior inference procedure
to guide the optimization towards increasingly more bene-
ficial mixing schemes. The actual evaluation of each mix-
ing scheme sampled is done by running a trial on the shared
task with these values and observing the resultant team per-
formance. To evaluate the utility of a given mixing scheme,
we run a trial with that scheme and consider the evaluation
score.

The results for such a procedure in the predator-prey do-
main are presented in Figure 4. As can be observed, with a
total of only 34 samples (i.e.runs) in total, we were able to
find a configuration that outperforms the “preference-free”
default of α = 〈1, 1, 1, 1〉 (i.e., completely selfless agents
with no previous preferences). More precisely, the mixing
scheme in the neighborhood of α = 〈0.15, 0.09, 0.19, 0.35〉
does best, leaning more towards preferences than the shared
task reward. This mixing scheme resulted in a joint policy
with an average 100 episode score of 17.68, more than twice
as good as our strongest baseline in this domain.

Similarly, the optimization results in the chord generation
domain (Figure 5) are based on 29 samples (trials) and radial
basis function interpolation. The best mixing scheme found
through the optimization procedure (〈0.98, 0.69, 0.95, 0.49〉)
leads to results more than three times better than the default
values of pure selflessness (α = {1, 1, 1, 1}). The above mix-
ing scheme is interesting, indicating that two agents that are
mostly selfless and two agents that balance selflessness and
selfishness perform best in this domain. Such a result is some-
what reflective of observations made by Colman et al. [Col-
man et al., 2008] and Sugden et al. [Sugden, 2008], who
analyzed empirically observed team behaviors as a decompo-
sition of selfish actors vs. team-reasoners.

These encouraging outcomes suggest a practical method to
efficiently tune mixing schemes, making the framework pro-
posed in this paper more immediately useful in cases in which
adjusting the mixing scheme or selecting the agent configura-
tion is feasible.

6 Related Work
Multiagent RL has been studied and applied in a variety of
settings [Busoniu et al., 2008], whereas the issue of coopera-
tion and selfishness in team games has been of interest in the

Figure 4: Results for optimizing the mixing scheme in predator
prey domain. The search over 4 values is shown by comparing the
heatmap of performance over groups of two mixing factors at a time.
The asterisk indicates the optimal configuration found. It is demon-
strably better than the baseline value of completely selfless agents.

Figure 5: Results for optimizing the mixing scheme in the chord
generation domain. The search over 4 values is shown by comparing
the heatmap of performance over groups of two mixing factors at a
time. The asterisk indicates the optimal configuration found. It is
demonstrably better than the baseline value of completely selfless
agents.

game theory literature for several decades [Aumann, 1961;
Peterson, 2009]. There has been considerable work in scal-
ing multiagent RL to more complex domains and study-
ing multiagent behavior using Deep Reinforcement Learn-
ing [Tampuu et al., 2017; Hernandez-Leal et al., 2019;
Foerster et al., 2017], including human-level performance in
multiplayer games [Jaderberg et al., 2019]. In multiagent RL,
MADDPG [Lowe et al., 2017], QMIX [Rashid et al., 2018]
and COMA [Foerster et al., 2018] have been recently pro-
posed as algorithms to train agents. However, they assume
a strong coordinating structure in learning, such as a central
critic, while our approach considers completely decentralized
policies.



Ad hoc teamwork [Barrett et al., 2013; Stone et al., 2010]
is a setting in multiagent RL where individual agents come
together to accomplish a shared task with no prior knowledge
of the policies of the other agents. It is conceivable that in this
setting, each agent has some previous policy that they prefer.
Our work considers how to leverage such previously existing
policies towards accomplishing the shared task.

Our approach uses GAIL as a way to generate the indi-
vidual preferences which the agents use as their personal
reward signals. The GAIL reward can be considered to
induce directed exploration, and has been used in single
agent RL scenarios to accelerate learning [Kang et al., 2018;
Zhu et al., 2018].

The individual agent preferences we propose can also be
considered as an approach to Curriculum Learning [Narvekar
et al., 2020]. These preferences can be seen as simpler tasks
that can prime the agent policies for the shared task. They can
also be considered an approach to multi-task Reinforcement
Learning [Wilson et al., 2007; Ammar et al., 2014] where
the agent attempts to learn a policy that can satisfy multi-
ple objectives, or the individual reward - social choice set-
ting in the multi-objective multi-agent taxonomy [Rădulescu
et al., 2020]. Another perspective on the individual pref-
erences is as a sort of intrinsic motivation [Barto, 2013;
Sequeira et al., 2011], that uses it to encourage behaviors like
exploration or better transfer [Barto et al., 2004]. Previous
work has also shown the effectiveness of learning a separate
reward function for different agents [Jaderberg et al., 2019],
but does so from scratch using population based techniques.
Our approach leverages known preferences to improve task
performance. CM3 [Yang et al., 2020] learns individual agent
policies in isolation before introducing the multi-agent set-
ting. However, they do so for tasks that each individual has
to accomplish individually, as opposed to the more general
coordinated tasks we consider here.

7 Discussion and Future Work
This paper analyzes the cooperative multiagent learning sce-
nario where each agent has their own individual preference
about how the shared task should be accomplished. We model
this scenario with a linear mixing scheme that trades off the
task reward with each agent’s individual preference. Even
though this model is fairly straightforward, we find it leads
to the interesting outcomes where partial selfishness leads
to better performance compared to purely selfless task based
learning. This is a surprising result since our game theoretic
analysis suggests that at best the individual preferences do
not hurt the task performance. This gap between the empir-
ical outcomes and theoretic analysis deserves more attention
in future work.

Studying the impact of individual preferences on task per-
formance is necessary in an environment where heteroge-
neous agents come together to accomplish a task (ad-hoc
teamwork). While we do not address the question of where
preferences come from, we show that a wide variety of prefer-
ences can be used in this scenario. On the other hand, our ex-
periments with a preference that hurts task performance (ran-
dom actions in predator prey) show that the exact conditions

under which a preference is useful needs to be characterized
further.

We also show that it is feasible to find a good mixing
scheme for a given set of preferences using basic Bayesian
Optimization. However, an interesting extension to this work
would be to find a way to optimize the mixing scheme within
the agent’s lifetime.
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