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Abstract

Humans often learn how to perform tasks via im-
itation: they observe others perform a task, and
then very quickly infer the appropriate actions to
take based on their observations. While extend-
ing this paradigm to autonomous agents is a well-
studied problem in general, there are two particu-
lar aspects that have largely been overlooked: (1)
that the learning is done from observation only (i.e.,
without explicit action information), and (2) that
the learning is typically done very quickly. In this
work, we propose a two-phase, autonomous imi-
tation learning technique called behavioral cloning
from observation (BCO), that aims to provide im-
proved performance with respect to both of these
aspects. First, we allow the agent to acquire ex-
perience in a self-supervised fashion. This expe-
rience is used to develop a model which is then
utilized to learn a particular task by observing an
expert perform that task without the knowledge of
the specific actions taken. We experimentally com-
pare BCO to imitation learning methods, including
the state-of-the-art, generative adversarial imitation
learning (GAIL) technique, and we show compara-
ble task performance in several different simulation
domains while exhibiting increased learning speed
after expert trajectories become available.

1 Introduction

The ability to learn through experience is a hallmark of intel-
ligence. Humans most certainly learn this way, and, using
reinforcement learning (RL) [Sutton and Barto, 1998], au-
tonomous agents may do so as well. However, learning to
perform a task based solely on one’s own experience can be
very difficult and slow. Humans are often able to learn much
faster by observing and imitating the behavior of others. En-
abling this same ability in autonomous agents, referred to as
learning from demonstration (LfD), has been given a great
deal of attention in the research community [Schaal, 1997,
Argall et al., 2009].

While much of LfD research is motivated by the way hu-
mans learn from observing others, it has largely overlooked
the integration of two important aspects of that paradigm.
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Figure 1: Behavioral Cloning from Observation (BCO(«)) frame-
work proposed in this paper. The agent is initialized with a (random)
policy which interacts with the environment and collects data to to
learn its own agent-specific inverse dynamics model. Then, given
state-only demonstration information, the agent uses this learned
model to infer the expert’s missing action information. Once these
actions have been inferred, the agent performs imitation learning.

The updated policy is then used to collect data and this process re-
peats.
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First, unlike the classical LfD setting, humans do not typically
have knowledge of the precise actions executed by demon-
strators, i.e., the internal control signals demonstrators use to
guide their behavior Second, humans are able to perform im-
itation without needing to spend a lot of time interacting with
their environment after the demonstration has been provided.

Most LfD work is unlike human imitation in its assump-
tion that imitators know the actions executed by demonstra-
tors. Human imitators typically do not have access to this
information, and requiring it immediately precludes using a
large amount of demonstration data where action sequences
are not given. For example, there is a great number of tutorial
videos on YouTube that only provide the observer knowledge
of the demonstrator’s state trajectory. It would be immensely
beneficial if we could devise LfD algorithms to make use of
such information.

Another challenge faced by LfD is the necessity of environ-
ment interaction, which can be expensive in several regards.
One is the amount of time it requires: executing actions, ei-
ther in the real world or in simulation, takes time. If a learn-
ing algorithm requires that a large number of actions must
be executed in order to find a good imitation policy after a



demonstration is presented, then there will be an undesirable
amount of delay before the imitating agent will be successful.
Furthermore, algorithms that require post-demonstration in-
teraction typically require it again and again for each newly-
demonstrated task, which could result in even more delay.
Beyond delay, environment interaction can also be risky. For
example, when training autonomous vehicles, operating on
city streets while learning might endanger lives or lead to
costly damage due to crashes. Therefore, we desire an algo-
rithm for which environment interactions can be performed as
a pre-processing step - perhaps in a safer environment - and
where the information learned from those interactions can be
re-used for a variety of demonstrated tasks.

In this paper, we propose a new imitation learning al-
gorithm called behavioral cloning from observation (BCO).
BCO simultaneously addresses both of the issues discussed
above, i.e., it provides reasonable imitation policies almost
immediately upon observing state-trajectory-only demonstra-
tions. First, it calls for the agent to learn a task-independent,
inverse dynamics model in a pre-demonstration, exploratory
phase. Then, upon observation of a demonstration without
action information, BCO uses the learned model to infer the
missing actions. Finally, BCO uses the demonstration and
the inferred actions to find a policy via behavioral cloning. If
post-demonstration environment interaction is allowed, BCO
additionally specifies an iterative scheme where the agent
uses the extra interaction time in order to learn a better model
and improve its imitation policy. This iterative scheme there-
fore provides a tradeoff between imitation performance and
post-demonstration environment interaction.

2 Related Work

BCO is related to both imitation learning and model-based
learning. We begin with a review of imitation learning ap-
proaches, which typically fall under one of two broad cat-
egories: behavioral cloning (BC) and inverse reinforcement
learning (IRL).

Behavioral cloning [Bain and Sommut, 1999; Ross er al.,
2011; Daftry et al., 2016] is one of the main methods to ap-
proach an imitation learning problem. The agent receives
as training data both the encountered states and actions of
the demonstrator, and then uses a classifier or regressor to
replicate the expert’s policy [Ross and Bagnell, 2010]. This
method is powerful in the sense that it is capable of imitat-
ing the demonstrator immediately without having to interact
with the environment. Accordingly, BC has been used in a
variety of applications. For instance, it has been used to train
a quadrotor to fly down a forest trail [Giusti er al., 2016].
There, the training data is the pictures of the forest trail la-
beled with the actions that the demonstrating quadrotor used,
and the policy is modeled as a convolutional neural network
classifier. In the end, the quadrotor manages to fly down the
trail successfully. BC has also been used in autonomous driv-
ing [Bojarski et al., 2016]. The training data is acquired from
a human demonstrator, and a convolutional neural network
is trained to map raw pixels from a single front-facing cam-
era directly to steering commands. After training, the vehicle
is capable of driving in traffic on local roads. BC has also

been successfully used to teach manipulator robots complex,
multi-step, real-world tasks using kinesthetic demonstration
[Niekum e al., 2015]. While behavioral cloning is powerful,
it is also only applicable in scenarios where the demonstra-
tor’s action sequences are available. However, when humans
want to imitate each other’s actions, they do not have access
to the internal control signals the demonstrator used. Instead,
they only see the effects of those actions. In our setting, we
wish to perform imitation in these scenarios, and so we can-
not apply BC techniques as they are typically formulated.

Inverse reinforcement learning is a second category of im-
itation learning. IRL techniques seek to learn a cost func-
tion that has the minimum value for the demonstrated ac-
tions. The learned cost function is then used in combina-
tion with RL methods to find an imitation policy. Like BC
techniques, IRL methods usually assume that state-action
pairs are available [Finn et al., 2016; Ho and Ermon, 2016;
Ho et al., 2016], and also that the reward is a function of
both states and actions. An exception is the work of Liu et
al. [2017]. In this work, it is assumed that both demonstrator
and imitator are capable of following a trajectory at the exact
same pace to perform a task, and the IRL method defines the
reward signal to be the proximity of the imitator and demon-
strator’s encoded state features at each time step. As a result,
the reward signal can only be generated after the demonstra-
tion is made available, after which reinforcement learning and
environment interaction must be completed in order to find a
good policy. In our work, we wish to minimize the amount of
environment interaction necessary after the demonstration is
provided, and so we seek an alternative to IRL.

BCO is also related to the model-based learning litera-
ture in that it makes use of learned models of the environ-
ment. In general, model-based methods have major advan-
tages over those that are model-free. First, they are more
sample-efficient [Chebotar et al., 2017], i.e., they do not re-
quire as many environment interactions as model-free meth-
ods. Second, the learned models can be transferred across
tasks [Taylor er al., 2008]. Typical model-learning techniques
focus on obtaining an estimate of the transition dynamics
model, i.e., a mapping from current state and action to the
next state. In our work, on the other hand, we want the agent
to learn a model of the environment that will help us infer
missing actions, and therefore BCO learns a slightly-different
inverse dynamics model, i.e., a mapping from state transitions
to the actions [Hanna and Stone, 2017].

There has also been recent work done where inverse mod-
els have been used to perform imitation learning in the ab-
sence of action information. Niekum et al [2015a] present
such a technique for situations in which the kinematic equa-
tions are known. Nair et al [2017] propose a technique that
first learns an inverse dynamics model and then use that
model to estimate the missing action information at each time
step from a single demonstration. The method we develop
here, on the other hand, both does not assume prior knowl-
edge of the inverse model and is capable of generalizing in
cases when mulitiple demonstrations are available.
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Figure 2: Learning timelines for BCO(0), BCO(«), and the IRL methods we compare against in this paper. The horizontal axis represents
time, gray rectangles mark when each technique requires environment interactions. For BCO, the white and gray circles denote the inverse
model and policy learning steps, respectively. For BCO, «|ZP"¢| is the number of post-demonstration environment interactions performed

before each model- and policy-improvement step and for IRL methods,

3 Problem Formulation

We consider agents acting within the broad framework of
Markov decision processes (MDPs). We denote a MDP us-
ing the 5-tuple M = {S, A, T,r,~v}, where S is the agent’s
state space, A is its action space, 1'%, = P(sit1]si,a) is
a function denoting the probability of the agent transitioning
from state s; to s; 41 after taking actiona, r : S x A — R
is a function specifying the immediate reward that the agent
receives for taking a specific action in a given state, and -y is
a discount factor. In this framework, agent behavior can be
specified by a policy, 7 : S — A, which specifies the ac-
tion (or distribution over actions) that the agent should use
when in a particular state. We denote the set of state transi-
tions experienced by an agent during a particular execution of
apolicy 7w by T = {(si, $i+1) }-

In the context of these transitions, we will be interested
in the inverse dynamics model, My*""" = P(a|s;, si11),
which is the probability of having taken action a given that
the agent transitioned from state s; to s;;. Moreover, we
specifically seek task-independent models. We assume that
some of the state features are specifically related to the task
and others specifically to the agent, i.e., a given state s can be
partitioned into an agent-specific state, s®, and a task-specific
state, st, which are members of sets S% and S*, respectively
(i.e., S = 5% x S%) [Konidaris, 2006; Gupta et al., 2017].
Using this partitioning, we define the agent-specific inverse
dynamics model to be a function My : S* x S — p(A) that
maps a pair of agent-specific state transitions, (s{,s{ ;) €
T2, to a distribution of agent actions that is likely to have
given rise to that transition.

Imitation learning is typically defined in the context of
a MDP without an explicitly-defined reward function, i.e.,
M \ r. The learning problem is for an agent to determine an
imitation policy, ™ : S — A that the agent may use in order to
behave like the expert, using a provided set of expert demon-
strations {&1, &2, ...} in which each ¢ is a demonstrated state-
action trajectory {(so,ao),(s1,a1),...,(sn,an)}. There-
fore, in this setting, the agent must have access to the demon-
strator’s actions. If the imitator is unable to observe the action
sequences used by the demonstrator, the resulting imitation
learning problem has recently been referred to as imitation

T'RL| represents the total number of interactions.

from observation [Liu ef al., 2017]. In this setting, one seeks
to find an imitation policy from a set of state-only demon-
strations D = {(1,(a,...} in which each ( is a state-only
trajectory {so, 1, ..., SN }-

The specific problem that we are interested in is imitation
from observation under a constrained number of environment
interactions. By environment interactions we mean time steps
for which we require our agent to gather new data by execut-
ing an action in its environment and observing the state out-
come. We are concerned here in particular with the cost of
the learning process, in terms of the number of environment
interactions, both before and after the expert demonstrations
are provided. Pre- and post-demonstration environment in-
teractions are represented by ZP"¢ and ZP°%t, respectively, to
denote sets of interactions (s;, a;, s;+1) that must be executed
by a learner before and after a demonstration becomes avail-
able. In this context, we are concerned here with the fol-
lowing specific goal: given a set of state-only demonstration
trajectories, D, find a good imitation policy using a minimal
number of post-demonstration environment interactions, i.e.,
| Ipost|.

In pursuit of this goal, we propose a new algorithm for
imitation learning that can operate both in the absence of
demonstrator action information and while requiring no or
very few post-demonstration environment interactions. Our
framework consists of two components, each of which con-
siders a separate part of this problem. The first of these com-
ponents considers the problem of learning an agent-specific
inverse dynamics model, and the second one considers the
problem of learning an imitation policy from a set of demon-
stration trajectories.

4 Behavioral Cloning from Observation

We now describe our imitation learning algorithm, BCO,
which combines inverse dynamics model learning with learn-
ing an imitation policy. We are motivated by the fact that
humans have access to a large amount of prior experience
about themselves, and so we aim to also provide an au-
tonomous agent with this same prior knowledge. To do so,
before any demonstration information is observed, we allow
the agent to learn its own agent-specific inverse dynamics



model. Then, given state-only demonstration information, we
use this learned model to infer the expert’s missing action in-
formation. Once these actions have been inferred, the agent
performs imitation learning via a modified version of behav-
ioral cloning (Figure 1). The pseudo-code of the algorithm is
given in Algorithm 1.

4.1 Inverse Dynamics Model Learning

In order to infer missing action information, we first allow
the agent to acquire prior experience in the form of an agent-
specific inverse dynamics model. In order to do so, we let the
agent perform an exploration policy, 7. In this work, we let
7 be a random policy (Algorithm 1, Line 2). While execut-
ing this policy, the agent performs some number of interac-
tions with the environment, i.e., ZP"¢. Because we seek an
agent-specific inverse dynamics model as described in Sec-
tion 3, we extract the agent- speciﬁc part of the states in ZP"¢
and store them as 7, = {(s{,s{,,)}, and their associated
actions, A, = {a; } (Algorithm 1, Lines 5-8). Given this in-
formation, the problem of learnlng an agent-specific inverse
dynamics model is that of finding the parameter 6 for which
My best describes the observed transitions. We formulate
this problem as one of maximum-likelihood estimation, i.e.,
we seek 6* as

0* = arg maxy Hl 0 lpg(ai Isf, 580 1), (1)
where py is the conditional distribution over actions induced
by My given a specific state transition. Any number of su-
pervised learning techniques, denoted as “modelLearning” in
Algorithm 1, may be used to solve (1).

Some details regarding particular choices made in this pa-
per: For domains with a continuous action space, we assume
a Gaussian distribution over each action dimension and our
model estimates the individual means and standard devia-
tions. We use a neural network for My, where the network
receives a state transition as input and outputs the mean for
each action dimension. The standard deviation is also learned
for each dimension, but it is computed independently of the
state transitions. In order to train this network (i.e., to find 6*
in (1)), we use the Adam variant [Kingma and Ba, 2014] of
stochastic gradient decent. Intuitively, the gradient for each
sample is computed by finding a change in § that would in-
crease the probability of a; with respect to the distribution
specified by My(s;, s;+1). When the action space is discrete,
we again use a neural network for My, where the network
computes the probability of taking each action via a softmax
function.

4.2 Behavioral Cloning

Our overarching problem is that of finding a good imita-
tion policy from a set of state-only demonstration trajecto-
ries, Dgemo {¢1,(2,...} where each ( is a trajectory
{s0,81,...,8n}. Note that, although the inverse dynamics
model is learned using a set of agent-generated data in Sec-
tion 4.1, the data used there is not utilized in this step. In or-
der to use the learned agent-specific inverse dynamics model,
we first extract the agent-specific part of the demonstrated
state sequences and then form the set of demonstrated agent-
specific state transitions (Algorithm 1, Line 10). Next,

demo

Algorithm 1 BCO(«)

1: Initialize the model My as random approximator
2: Set my to be a random policy
3: Set I = |ZP¢|
4: while policy improvement do
for time-step t=1to I do
Generate samples (s¢, s{, ;) and a; using 7
Append samples T, < (s, s{, 1), Ar, ¢ a
end for
Improve My by modelLearning(7 Aw o)
Generate set of agent-specific state transmons
from the demonstrated state trajectories D gemo
11: Use My with 7% to approximate Ager,o
12 Improve 74 by behavioralCloning(Sgemo, Ademo)
13: Set I = «|Z7"¢|
14: end while

SN TR

demo

for each transition (s{, s, ;) € Tj.,,,. the algorithm com-
putes the model-predicted distribution over demonstrator ac-
tions, M- (s{, s{, ;) and uses the maximum-likelihood ac-

tion as the inferred action, a;, which is placed in a set Agemo
(Algorithm 1, Line 11). Using these inferred actions, we then
build the set of complete state-action pairs {(s;, @;)}.

With this new set of state-action pairs, we may now seek
the imitation policy 4. We cast this problem as one of behav-
ioral cloning, i.e., given a set of state-action tuples {(s;,a;)},
the problem of learning an imitation policy becomes that of
finding the parameter ¢ for which 74 best matches this set of
provided state-action pairs (Algorithm 1, Line 12). We find
this parameter using maximum-likelihood estimation, i.e., we
seek ¢* as

¢* = arg max,, Y ms(a; | si) - ()
Some details regarding particular choices made in this pa-
per: For continuous action spaces, we assume our policy to
be Gaussian over each action dimension, and, for discrete ac-
tions spaces we use a softmax function to represent the prob-
ability of selecting each value. We let 7 be a neural network
that receives as input a state and outputs either the Gaussian
distribution parameters or the action probabilities for contin-
uous or discrete action spaces, respectively. We then solve
for ¢* in (2) using Adam SGD, where the intuitive view of
the gradient is that it seeks to find changes in ¢ that increase
the probability of each inferred demonstrator action, a;, in the
imitation policy’s distribution 7 (- | s;).

4.3 Model Improvement

The techniques described above form the building blocks of
BCO. If one is willing to tolerate post-demonstration en-
vironment interaction, a modified version of our algorithm
can further improve both the learned model and the resulting
imitation policy. This modified algorithm proceeds as fol-
lows. After the behavioral cloning step, the agent executes
the imitation policy in the environment for a short period of
time. Then, the newly-observed state-action sequences are
used to update the model, and, accordingly, the imitation
policy itself. The above procedure is repeated until there is
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Figure 3: Representative screenshots of the domains considered in this paper.

no more improvement in the imitation policy. We call this
modified version of our algorithm BCO(«), where « is a
user-specified parameter that is used to control the number
of post-demonstration environment interactions at each iter-
ation, M, according to M = «|Z?"¢|. The total number of
post-demonstration interactions required by BCO(«) can be
calculated as |ZP"™¢| = TM = Ta«|ZP"¢|, where T is the
total number of model-improvement iterations required by
BCO(«). Using a nonzero «, the model is able to leverage
post-demonstration environment interaction in order to more
accurately estimate the actions taken by the demonstrator, and
therefore improve its learned imitation policy. If one has a
fixed budget for post-demonstration interactions, one could
consider terminating the model-improvement iterations early,
i.e., specify both o and 7T'.

S Implementation and Experimental Results

We evaluated BCO(«) in several domains available in Ope-
nAI Gym [Brockman et al., 2016]. Continuous tasks are sim-
ulated by MuJoCo [Todorov et al., 2012]. These domains
have different levels of difficulty, as measured by the com-
plexity of the dynamics and the size and continuity of the state
and action spaces. Ordered from easy to hard, the domains
we considered are: CartPole, MountainCar, Reacher, and
Ant-v1. Each of these domains has predefined state features,
actions and reward functions in the simulator. Any RL algo-
rithm could be used with this reward function to generate an
expert policy. Since trust region policy optimization (TRPO)
[Schulman et al., 2015] has shown promising performance in
simulation [Liu et al., 2017], we generated our demonstra-
tions using agents trained with this method.

We evaluated our algorithm in two senses. First, with re-
spect to the number of environment interactions required to
attain a certain performance. In a real-world environment, in-
teractions can be expensive which makes it a very important
criterion. The second way in which we evaluate our algo-
rithm is with respect to data efficiency, i.e., the imitator’s task
performance as a function of the amount of available demon-
stration data. In general, demonstration data is scarce, and so
making the best use of it is very important.

We compared BCO(«) to the following methods:

1. Behavioral Cloning (BC): This method applies super-
vised learning over state-action pairs provided by the
demonstrator.

2. Feature Expectation Matching (FEM) [Ho et al.,

2016]: A modified version of the approach presented by
Abbeel and Ng [2004]. It uses trust region policy opti-
mization with a linear cost function in order to train train
neural network policies.

3. General Adversarial Imitation Learning (GAIL) [Ho
and Ermon, 2016]: A state-of-the-art in IRL. It uses a
specific class of cost functions which allows for the use
of generative adversarial networks in order to do appren-
ticeship learning.

Note in particular that our method is the only method that
does not have access to the demonstrator’s actions. How-
ever, as our results will show, BCO(«) can still achieve com-
parable performance to these other techniques, and do so
while requiring far fewer environment interactions.

5.1 Training Details and Results

Because both BC and BCO(«) rely on supervised learning
methods, we use only 70% of the available data for training
and use the rest for validation. We stop training when the er-
ror on the 30% validation data starts to increase. For the other
methods, all available data was used in the training process.
We will now discuss the architecture, details for each domain.

e CartPole: The goal is to keep the pole vertically upward
as long as possible (Figure 3a). This domain has a dis-
crete action space. In this domain, we considered linear
models over the pre-defined state features for both the
inverse dynamics model and the imitation policy and we
only used M = 1000 interactions to learn the dynamics.

e MountainCar: The goal is to have the car reach the
target point (Figure 3b). This domain has a discrete
action space. In this domain, the data set for learning
the inverse dynamics model is acquired by letting the
agent to explore its action space for M = 2000 time
steps. For both the imitation policy and inverse dynam-
ics model, we used neural networks with two hidden lay-
ers, 8 nodes each, and leaky rectified linear activation
functions (LReLU).

e Reacher: This domain has a continuous action space.
The goal is to have the fingertip of the arm reach the tar-
get point whose position changes in every episode (Fig-
ure 3c). Therefore, in this domain, we can partition the
state-space to agent-specific features (i.e., those only re-
lated to the arm) and task-specific features (i.e., those
related to the position of the target). A neural network
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Figure 5: Performance of imitation agents with respect to the number of available demonstration trajectories. Rectangular bars and error bars
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performance of a random policy and the demonstrating agent are zero and one, respectively. *Note that FEM is not shown for the Reacher
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architecture with two hidden layers of 100 LReL.U nodes
are used with M = 5000 agent-specific state transition-
action pairs in order to learn the dynamics and then this
model is used to learn a policy which also has two layers
but with 32 LReLU nodes.

e Ant: The goal to have the ant to run as fast as pos-
sible(Figure 3d). This domain has a continuous action
space. This is the most complex domain considered in
this work. The state and action space are 111 and 8
dimensional, respectively. The number of interactions
needed to learn the dynamics was M = 5eb and the ar-
chitectures for inverse dynamics learning and the policy
are similar to those we used in Reacher.

5.2 Discussion

Each experiment was executed twenty times, and all results
presented here are the average values over these twenty runs.
We selected twenty trials because we empirically observed
very small standard error bars in our results. This is likely a

reflection of the relatively low variance in the expert demon-
strations.

In our first experiment, we compare the number of en-
vironment interactions needed for BCO(0) with the num-
ber required by other methods (Figure 4.) We can clearly
see how imitation performance improves as the agent is
able to interact more with the environment. In the case of
BCO(0), the interactions with the environment happen be-
fore the policy-learning process starts, and so we represent
its performance with a horizontal line. The height of the line
indicates the performance, and we display the number of pre-
demonstration environment interactions it required next to it.
The random and expert policies also do not benefit from post-
demonstration environment interaction, and so they are also
shown using horizontal lines. From these plots, we can see
that it takes at least 40 times more interactions required by
GAIL or FEM to gain the same performance as BCO(0).

Now, we aim to compare the performance of our algo-
rithm BCO(«) with the other algorithms. To do so, we use
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policy. Note that BC has access to demonstration action information whereas BCO does not. Also note that the number of trajectories required
for learning a fairly good policy is very small. Each demonstrated trajectory has 5, 50, and 50 transitions for each domain from left to right,
respectively. Note that we did not demonstrate the results for CartPole because the results were equally perfect regardless of the value of a.

MountainCar (pre-demo = 2FE3) Reacher (pre-demo = 5E3) Ant (pre-demo = 5E5)
d\a |2E—3 |4E—-3 |1E—2 |d\a |2E—3 |4E—-3 |1E—2 |d\«a | 2E—3 | 4E—3 | lIE—2
1 6825 23475 28950 1 210052 | 358736 | 912368 5 602500 | 1270000| 3362500
4 8387 12000 31200 5 270500 | 486578 | 1837500 10 940000 | 2075000| 5000000
7 6300 23100 | 122200 10 221421 | 569736 | 1055921| 15 1387500| 2855000| 7325000
10 45462 61450 88600 15 509289 | 852210 | 1859210 20 1925000| 4055000| 9687500

Table 1: This is an extension to Figure 6 which provides the number of post-demonstration interactions for each case. First vertical column for
each domain (d) shows the number of demonstrated trajectories. As an example, for the MountainCar domain with 1 demonstrated trajectory
and a = 2F — 3, the average number of post-demonstration interactions is 6825. We can also see at the top of the table that the number
of pre-demonstration interactions is 2E3 so the overall number of interactions would become 8825. It can be seen that almost always by
increasing « or the number of demonstrated trajectories, the number of post-demonstration interactions increases. Also the overall number
of interactions (combined pre- and post-demonstration interactions) in all the cases is far less than the overall number of interactions required
by the other methods (FEM and GAIL).

each algorithm to train the agents, and then calculate the fi-
nal performance by computing the average return over 5000
episodes. For comparison purposes, we scale these perfor-
mance values such that the performance of the expert and a
random policy are 1.0 and 0.0, respectively. This compari-
son is shown in Figures 5, and 6 where we have plotted the
performance of each algorithm with respect to the number of
available demonstrated trajectories. Figure 5 shows the com-
parison between the performance of BCO(0) with all the other
methods, and Figure 6 compares the performance of BCO(«)
across different values of a. In Figure 5, we can see that
performance of our method is comparable with other meth-
ods even though our method is the only one without access to
the actions. In the case of Reacher, the transferability of the
learned inverse model is highlighted by the high performance
of BCO. In the case of the Reacher and Ant domains, we
can see that FEM performs poorly compared to others, per-
haps because the rewards are not simple enough to be approx-
imated by linear functions. In the CartPole domain, each of
the methods performs as well as the expert and so all the lines

are over each other. In the case of MountainCar, our perfor-
mance is worse than other methods. Conversely, for Reacher,
ours is more sample efficient than GAIL, i.e., with smaller
number of demonstrations we get much better results. In the
case of Ant, our method performs almost as good as GAIL. In
Figure 6, we can see that BCO’s performance improves with
larger «v since the extra environment interactions allow it to
make better estimates of the demonstrator’s actions.

6 Conclusions

In this paper, we have presented BCO, an algorithm for per-
forming imitation learning that requires neither access to
demonstrator actions nor post-demonstration environment in-
teraction. Our experimental results show that the result-
ing imitation policies perform favorably compared to those
generated by existing imitation learning approaches that do
require access to demonstrator actions. Moreover, BCO
requires fewer post-demonstration environment interactions
than these other techniques, meaning that a reasonable imita-
tion policy can be executed with less delay.
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